REL AT E “3000
RELATIONAL DATA BASE MANAGEMENT SYSTEM

REFERENCE MANUAL

COMPUTER RESOURCES INCORPORATED
5333 Betsy Ross Drive
P.O. Box 58004
Santa Cilara CA 95052
{408} 380-9898

R M-100"

{c) Copyr:ght 1985 by Computer Resources Incorporated

NOTICE

The information in this document and its associated software are subject to change
without notice.

COMPUTER RESOURCES INCORPORATED ("CRI") MAKES NO WARRANTY OF ANY
KIND WITH REGARD TO THIS MATERIAL, INCLUDING. BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. CRI shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing performance. or use of this
material.

This document contains proprietary information which is protected by copyright. Al
rights are reserved. No part of this document or its associated software product may be
photocopied, reproduced, or translated to another program language without the prior
written consent of CRI.

Introduction
Getting Start
. 1. Concepts

Notation

TABLE OF CONTENTS

O .

....................................

Special Characters« e e e e e e e e

Glossary
Range .

Exoression Evaluation.00 e
Type Conversion Functions. e e e e e e
Character Manipulation Functions.

Arithmetic Functions

Trigonometric Functions
Date Manipulation Functions.o

Inter~Rec

ord Functions L

Pattern Matching oL oL
System Defined Fields

Indexes a

Normalization

"TO filen

2. Commands

. {MPE C

nd Keys

ame” . .

ommands)

Abort Transaction. (RELATE H ONLY)

Allow. L e (RELATE 1l ONLY)

Commit Transaction
Compare .
Compile Catalog .

Consolida

(RELATE Il ONLY)

te

Copy . . . O

Create D

ictionary

Create File s e e

Specify
Field S

Field Options
Create !ndex
Create View

ing Fieldnames
ize Limitations . . | S o

Delete = = . . . s

Deny . .

{(RELATE 1l ONLY)

Disable Data Logging. (RELATE 1 ONLY)

2-1

2-3

2-5

2-9
2-11
2-13
2-17
2-21
2-23
2-25
2-27
2-33
2-37
2-41
2-43
2-45
2-48
2-49
2-50
2-55
2-57
2-59
2-61
2-63

Disable Event Logging = . {(RELATE it ONLY) 265
Disable Security. (RELATE 11 ONLY) 2-67
Disallow (RELATE 1l ONLY) 269
Ernable Data Logging. (RELATE 1i ONLY) 2-71
Enable Event Logging = . . (RELATE I} ONLY) 2-73
Enable Security (RELATE 1l ONLY) 2-75
End (/7). . 2-77
Erase File 2-79
Execute 2-81
Fix Fileo 2-83
Fix Format =~ . . 285
Help 2-89
If..Else...Endif 2-93
dgnore Error . 2-95
Label. . o 2-97
ket . 2-103
‘kist Commands . . . 2-105
List File. . 2-107
togk . - 2-108
Modify Field. 2-111
Modify File 2-115
Note 2-119
Open Database 2-121
Open FilelSet. . = 2-123
Open RDBLIST 2-127
Pause. 2-129
Permit . . . (RELATE 1I ONLY) 2-131
Print . 2-135
Purge File. 2-139
Purge Index 2-141
Purge View (RELATE H ONLY) 2-143
Quiz (RELATE Il ONLY) 2-145
Recover 2-151
Recover Data 2-153
Redo. . . 2-155
Reorganize. 2~-157
Select . S ... 2-1:
Set Index . . v 2-173
et Path .~ 2-177
Show S L 2-179
Sert . S ... 2-183
Sum ‘ . o 2-185
System . o 2-187
Terminal | L ... 2-189
Unlock . . , _ S 2-193
Update = . _ _ A o _ _ , 2-195
3. Host Language Interface
introduction 31
Call Summary 32
RELATE , _ o . _ 34
RDBADD. 35
RDBBIND 36
RDBCLOSE | 3-7
ROBCLOSEX 38

RDBDELETE. o o, 3-9

RDBERROR . . 3-i0
RDBINFOD 3-i
ROBINIT . 3-20
RDBINITX . 321
RDBPOINT. . o 322
ROBREAD . 323
RDBREPOINT S 324
RDBUPDATE . 325
BASIC Interface. 326
Print Formats 343
Data Type Codes and Interface. = 345
Type Conversion Errors 347
Cursor Format 349
Sample Programs 353
BASIC . . 355
COBOL . . . 359
FORTRAN. . . . 363
SPL 67
4. File System Descriptions .
Introduction . . 4-1
Access to IMAGE/3000 Databases. 4~3
Access to KSAM Files . .~ . . . 47
Access to MPE Files 4-11
Functional Restrictions. Y413
5. Transaction Processing — RELATE Il ONLY A T
Introduction R " 59
Controlling Transactions " 52
Transaction Posting e B3
Multi-User Access = . . . T 53
Locking Modes =~ . . 5-3
Locking Restrictions oo 54
Logging =54
implementation L « 7 54
Enabling MPE Logging - 55
Enabling RELATE Logging. * 55
Data Logging Considerations. &6
Recovery System . . 56
Recovery Procedures 57
Post-Recovery Procedures - 58
6. Updating Views — RELATE Il ONLY
introduction w8
Defining a View. 6-2
Using Views o 4 ‘ : 6-3
Opening a View L . 64
Reading From a View o . el 64
Join Conditions . . o . ST o
Update Requirements = = . L R -)
Adding To a View . . S BB

Deleting From a View voas 7

7. Security — RELATE Il ONLY

Security System Overview
MPE Security System Overview

MPE Security — Logon.

MPE Security — Account Level

MPE Security — Group Level

MPE Security — File Level

MPE Security Sumriary . . .
Security Screening

8. RELATE/3000 Internals

Formal File Designators

Appendices

..

7-1
7-2
7-3
7-3
7-3
7-3
74
7-5
7-5

8-1

INTRODUCTION

This manual introduces RELATE(tm}/3000, CRI's Relational Database Management System,
and provides information on how to use it. The RELATE/3000 system is designed to
manipulate disk files on Hewiett-Packards HP3000 series of computers under the
Multi-Programmina Executive (MPE) operating system.

RELATE/3000 is built on the premise that any user, whether technically experienced or
beginning. should have the ability to manipulate computerized data files. RELATE/3000
consists of both interactive terminal commands and interface routines callable from
BASIC, FORTRAN, SPL, and COBOL.

Relate commands are easy 1o understand and remember because all of the commands have
an English-like structure.

This manual is divided into eight major sections:

1. Definition of Terms— This section explains terms that are crucial to understanding
RELATE/3000 commands. This section also includes syntax conventions and a
glossary.

2. Commands Reference— This section contains all commands available in
RELATE/3000. and their options. Complete functiona! descriptions as well as
examples are given for each command.

3. Programmatic Interface— The Programmatic interface section lists the subroutines
callable from BASIC FORTRAN. SPL, and COBOL. and describes how to use them.

4. File System Descriptions— This section deals with IMAGE/3000, KSAM, and MPE
files. Restrictions on their usage with RELATE/3000 and general overviews on their
manipulation are listed.

5. Transaction Processing— This section defines a transaction and describes the deferred
update mechanism.

6. Updating Views— A discussion of the reaquirements which must be met to allow views
to be updated.

7. Security— This section describes how the SECURITY commands operate and what
restrictions are placed on them.

8. RELATE/3000 Internals— The RELATE/3000 Internals section describes what methods
RELATE uses to solve various problems as well as how the software functions In
general.

GETTING STARTED

Log on to the system with the HELLO command. When a colon (":") is displayed, enter
RELATE. RELATE/3000 will display the current date and version number, and then prompt
with a command number and a right parenthesis (“)’). RELATE/3000 is now expecting the

user to enter a command.

If an error is encountered during the execution of a command, an error number will be
displayed between two asterisks (e.g., *6*). If any key other than RETURN is pressed, the
error message corresponding to the error number given will be printed. if only a
RETURN is entered, no error message will be printed.

SECTION 1

CONCEPTS

NCTATION

The following notation is used to define the syntax of the RELATE/3000 commands and
subroutines described in this manual:

CAPITALIZED BOLD WORDS are the names of commands or subroutine names.

CAPITALIZED WORDS identify words that have specific meanings to
RELATE. These are sometimes referred to as
keywords.

lower—case words identify words that are names or labels to be

specified by the user.

[] (Square Brackets) are used to indicate that the enclosed item is
optional and may be omitted. The brackets may be
nested such that if the inner items are used the
outer items must be used.

t i (Vertical Bars) between items indicate that one of the items must
be chosen.
... {Ellipsis) indicates that the immediately preceding item may

occur once, or any number of times in succession.

Commands may be entered in any combination of upper and lower case characters. They
are processed as if only upper case characters had been used (except for information in
double quotes). Commands may be up to 1500 characters in length and span up to 100
lines. Each line of the command may be up to 250 characters long. if an error occurs
in a command, the command may be edited (see REDO) and then resubmitted.

All command names and most keywords may be abbreviated to as few characters as are
required to uniquely identify the word. For example, the OPEN command may be
abbreviated to O since no other commands begin with the same letter. The ADD
command may only be shortened to AD since the ALLOW command also begins with an
AT

When RELATE is used in a batch mode or from the Host Language Interface routines it
1s recommended that keywords be speiled out fairly completely. This will ensure that
ambiguities will not arise because of new features in subsequent releases of the software.
Obviously, an error such as this is easy to correct at the terminal (since the new choices
are displayed) but may take some time to correct in a job stream, procedure file, or
program.

1-1

Commands in RELATE are generally in the following format:
[range] VERB [parameters] [FOR condition]

The commands must be entered in this format. That is, if a range is required it must
come first, the command verb foliows, then the parameters to the command followed by
any condition. Some latitude is allowed in the entry of the parameter portion of the
command. In general, some of the parameters are required while others are optional.
The required parameters generally appear first. They must usually be entered in the
order indicated in the command's description. Optional items can usually be rearranged as
desired.

Punctuation and spacing are crucial when entering commands. Punctuation is performed by

delimiters. Delimiters include a space (" "), comma ("."). equal sign (“="), or semicolon
("."). Only the first space between items is important; extra spaces may be added to
improve readability. Each command describes the punctuation required for proper

operation. Generally, however, keywords are delimited by spaces (or equal signs), lists
(field names, user names, etc.) are delimited by commas, and keyword seaquences delimited
by eaual signs are separated with semicolons.

1-2

& (ampersand)

\ (backslash)

/1

ControlH

Control-Q

Controt-S

Control-X

Control-Y

SPECIAL CHARACTERS

An ampersand entered as the last character on a line indicates that
the input for the current line continues on the next line. The prompt
for the continuation line wili then be an "&)".

A backslash can be used to separate multiple commands, or responses,
on a single hine. A maximum of 1500 characters may be entered in
this way. When multiple responses are entered, and an error occurs,
all unused information is discarded and prompting is returned to the
terminal.

This terminates the current input stream. It is also used to exit ihe
system. If a "//" is actually desired as data it must be enclosed in
quotes.

(or Backspace) Characters can be deleted by using scither a
Control-H or a Backspace. One character is deleted each tirne the
Control~H or backspace is used. |f a hard—copy terminal is being used,
the carriage will advance one line and then backspace a single position
for each character deleted. If a CRT is being used, the cursor will
normally backspace one position per character deleted.

The Control-Q resumes output suspended by the Control-S.

The Control-S suspends output to the terminal. Output may be
resumed by entering a Control-Q.

Use Control-X to delete an entire line. The system responds with
three exclamation points, a carriage return. and a line feed. No
prompt 1s printed by the system and data or commands may
immediately be entered.

A Control-Y can be used to terminate lengthy printout or cancel the
execution of a command. The text “<Control-Y>" is printed when this
key is used. |f a procedure file is executing when the key is struck,
the user will have the opportunity to continue with or terminate the
procedure file.

GLOSSARY

aggregate - A function that returns summary information on a file. For more
information see the SELECT command.

alphabetic — A string of any characters, letters, digits, or punctuation.

assignment - An expression that is evaluated to set a new value. See also the
EXPRESSION EVALUATION section.

command - A request by the user for RELATE/3000 to perform some desired action. [t
normally starts with a verb and is followed by additional parameters.

condition — An expression that is evaluated as TRUE or FALSE. A condition may not
include aggregates. See also the EXPRESSION EVALUATION section.

data - Information.

date field ~ An unsigned, double, or real field given a date format when the file was
created or with the MODIFY FIELD command; or an alpha field of the format
M/D/Y.

DBA - A Data Base Administrator is the person in charge of the data base system.

doubie integer — A whole number in the range -2147483647 to +2147483647. A double
integer 1s stored in two words.

expression — Some combination of constants, variables, functions, and operators. See also
the EXPRESSION EVALUATION section.

field - The smallest item of information that can be accessed. Fields have many

.. propertigs, including name, type, print length and value. Fields are analogous to the

blanks one fills in on an employment application. For example. one field could be

YOUR_NAME. The fields name would be YOUR_NAME, its type would be

Alphabetic, and its value might be "Jim Jones.” When the term “field” is used, it
will be aqualified to indicate which property is being discussed.

fieldname - A name provided by the user to reference a column of information. A

fieldname may be up to ten characters long. It must start with a letter and contain
. only letters, digits, or underscores {"_").

fieldiist —~ One or more fieldnames separated by commas.

file — A file is composed of one or more records (see "record”) of the same type.

filename - A name provided by the user to reference all records of a given type (i.e., a
file). A RELATE filename may be up to eight characters long. It must start with
a letter and contain only letters or digits.

global switches — These are switches that apply to an entire command and, if used, are

always found appended to the first word of the command name. For example, in
"MODIFY:K FIELD", "K" is a global switch. See also "switch".

14

index ~ A method of organizing and accessing information. See the INDEXES AND
KEYS section for more information. An index consists of keys. If a file is ordered
by LAST_NAME, for example, the file wouid have an index containing the field

LAST_NAME.

index number — A quick method of referring to an index. An index number may be from
0 to 9. Zero is reserved by the system to reference the index containing line
numbers in ascending order. Indexes one through nine are user—defined. See the
INDEXES AND KEYS section for more information.

integer — A whole number in the range -32767 to 32767. An integer is stored in one
word.

key - A key is one or more fields used to sequence a file. For example, the part
number in an Inventory File could be considered a key. Key values comprise the
contents of an index.

keywords — Words that have special meanings to RELATE.

line number — Each line (record) of information entered into a RELATE, MPE. or KSAM
file is assigned a sequential number, starting at one. These numbers can be used to
indicate to RELATE/3000 which records should be processed by a command. See also
the RANGE section.

local switches — These are switches that, if used, are attached to thz items in a
command line. For example, in "CHANGE PARTNQO:P", "P" is a local switch. See
also "switch”.

logical — See "Unsigned”.

long -~ A number., which may contain decimal places, in the range --1,157921x1(‘;76 to
+1.157921x10° ~. A long number 1s stored in four words and has an accuracy of about
17 digits.

packed — A number containing up to 28 digits, including the sign, and an optional
decimal point. A packed number s stored four {4) digits per word.

printlen — A value indicating the number of characters displayed when a value 3 printad.
A print length is an integer optionally followed by a decimal point and another
integer. The first integer portion indicates the total number of characters ihat will
print, including the sign commas the decimal point, fractional digits, and so forth.
The integer to the right of the decimal pcint indicates how many of the characters
that are printed will be placed to the right of a decimal point.

procedure file — An ASCHl MPE file. which may be an EDITOR file containing RELATE
commands.

range - An indication of which records RELATE/3000 should choose to perform a
command upon. See also the RANGE section.

5
real -~ A number_ which may contain decimal places, in the range -1.157921x10'b to

+1.157921x10" . A real number is stored in two words and has an accuracy of about
seven (7) digits.

1-5

record - A record is composed of one or more fields. Think of an employment
application as a record. Its fields might include NAME. ADDRESS, SALARY, and
HOBBIES.

relation — A relation is a file or table containing information in tabular (two-dimensional)
format. Files are placed into this format by normalization.

switch — A series of characters appended to an item in a command line other than the
range. Switches are a means of expressing options. A switch is preceded by a
colon (":").

Blanks are not allowed between the item and the switch or between any of the
switches on a single item. Only the first character after each colon is recognized as
being a switch. For example, "PRINT:S" could be entered as "PRINT:SUPPRESS".

When a “#" switch is indicated, it may be any single digit from 1 through 9. |If a
zero is entered, it is ignored. Only the last non-zero numeric switch on an item is
recognized; all other numeric switches on the same item are ignored.

Multiple switches are aliowed on a single item. as in "PRINT:P:S".

Switches that are not defined for a particular command are ignored. If superfluous
switches are included, they will not generate an error.

Switches that indicate conflicting options generate an error.
The order of alphabetic switches on an item is not important.

The same letter may indicate different options on different commands, or on the
same command if it is used as both a local and a global switch or on different
items in the command line.

type — Each field in RELATE/3000 contains a single type of information. The types
recognized by RELATE are: Alphabetic, Zoned, integer, Double Integer, Real, Long,
Packed, and Unsigned.

unary index — An index where the value of the key may not be duplicated. For
example, in an Employee File indexed by EMP_NO, there should be no duplicate
employee numbers.

unsigned — A whole number in the range O to 65535. If its value 1s O its value can also
be called FALSE. Any other value can also be cailed TRUE. A logical is stored in
one word.

zoned — A number containing up to 28 digits, plus a sign and a decimal point, if desired.
A zoned number is stored two digits per word.

1-6

RANGE

Many RELATE/3000 commands allow the user to specify which records should be used in
a particular operation. Records may be specified with a condition (described in the
EXPRESSION EVALUATION section) or a range. A range is a shorthand method of
specifying a condition. Any range can be translated to a condition.

The RELATE/3000 command interpreter interprets a range as a set of index values that
indicate the data records to be used in a command. When a file is initially accessed, the
system uses index number zero for the evaluation of the range. Index zero corresponds
directly to the line or record numbers in the data file.

Wnhen a SET INDEX command is properly executed, the current index is changed to that
indicated in the command. Furthermore, until access to the file is terminated, or another
SET INDEX or PURGE INDEX command is executed for the current index, the range
parameter must correspond to the format of that index. If a SELECT command with a
BY clause is issued. the fields in the BY clause are used as the current index.

When an index has N fields, up to N+1 values may be included in the range. The N+1st

value is the line number and exists in all indexes. Each of the values in the range must

be separated by a colon (":"). If less than N+1 values are supplied, the remainder of the

range defaults to either the largest or smallest value of the field, deperding on the

portion not supplied and whether the fields are in ascending or descending order.

A range consists of one or more of the following separated by commas:

value A single value of the first field in the current index. All records
having this value will be returned. If the field is alphabetic or date
formatted, the value must be enclosed in quotes.

[stval]/[endval] A starting value and an ending value. All records having values
greater than or equal to stval and less than or equal to endval are
returned. If stval is not specified, all records less than or equal to

endval are returned. If endval is not specified, all records greater
than or equal to stval are returned.

EXAMPLES:

If index #1 is composed of the fields PART and BIN, where PART is an alphabetic field
(4 characters long), and BIN is an integer fieid:

"BOLT" PRINT

Prints all records (if any) where the part is listed as "BOLT".

"BOLT":5 PRINT

Prints all records where the part is listed as "BOLT" and the BIN is 5.

1-7

"BOLT":5:6 PRINT

Prirts the record that has PART="BOLT", BIN=5 and a line number of 6.

"B"/"C” PRINT
Prints all records that have a part field greater than or equal to "B" and less than or
equal to "C".

"BOLT","NUT":1 PRINT
All records that have PART="BOLT", and all records that have PART="NUT" in BIN 1,

will be printed. Multiple ranges can be strung together. as above. by separating them
with commas.

1-8

EXPRESSION EVALUATION

Throughout the text, several references are made (especially in the Command Reference
section) to "expressions”, "assignments”, and “conditions”. In general, all are made up of
the same elements. An "expression’ is some combination of constants, variables,
functions, and operators. An "assignment” consists of a variable on the left, an eaual
sign, and an expression on the right, and resuits in the variable name obtaining the vaiue
of the evaluated expression. A “condition” is an expression that is evaluated to either
TRUE (non—zero) or FALSE (zero) and qualifies records for use in a command.

Examples:

ASSIGNMENTS CONDITIONS
$SMATCH(STRING,"A")
LOGICALVAR

A=B A=B

TOTAL=PART1+PART2 TOTAL=PART1+PART2

NUM=(OTHER/2.4)+3$SIN(ITEM) NUM=(OTHER/2.4)+$SIN(ITEM)
NAME="SMITH" AND AGE47
CHAR>"W"

PART1+PART2=$COS(OTHER)*2

FOR condition vs. WHERE condition

Conditions following a WHERE keyword may contain aggregates (described in the SELECT
command). Conditions following a FOR keyword may not contain aggregates.

Data Types

Any of the data types recognized by RELATE can be used in expressions. There are eight
data types recognized by RELATE: ALPHABETIC, ZONED, INTEGER, DOUBLE INTEGER,
REAL, LONG, PACKED, and UNSIGNED. Refer to the giossary for a description of each
of the types.

Constants

Constants are elements in an expression which have a fixed value. Constants contained in
quotes are ALPHABETIC in type. To determine the type of numeric constants, see the
Type Conversion paragraph.

Examples: These are all constants:

"
"LMP*247"
3982
4.65

Variables or Fieids

Variables {usually referred to as Fields) are elements in an expression which have
different values depending on the current record.

Exampies: These are all variabies:

A

LMP

X247
FIRST_NAME
A.FRED

Type Conversion

If more than one data type appears in an expression, RELATE automaticaily converts the
items to be consistent with one another. |f constants are used in an expression, RELATE
determines the type of the constant based on the types of the values surrounding the
constant. For example, if A=B+1.23 is used, the 1.23 would be converted to the same
data type as B. The operands would be added together, after which A or B would be
converted. The following table summarizes the conversion operations:

SURROUNDING VALUE

- A 1 U D R L P Z
A - I U D R L P Z
1 1 - D D R L P Z
U U D - D R L P Z
ORIGINAL D D D D - R L P Z
VALUES R R R R R - L P Z
L L L L L L - P Z
P P P P P P P - z
Z Z Z P4 z Z p4 Z -

The system attempts to preserve as much accuracy as possible by always converting to a
representation that allows more significant digits or a more direct representation. iIf the
automatic conversion done by RELATE seems incorrect, the user can explicitly state the
data type preferred by using the S$INTEGER. SDOUBLE, $REAL, $LONG. S$PACKED,
$ZONED, and $SUNSIGNED functions.

Operators

An expression obtains meaning by connecting constants, variables. and functions with
various operators. The standard operators available in RELATE are as follows:

NAME
unary plus
unary minus

plus

minus
times
divide
exponent

NOT

AND

OR

SYMBOL

+

XX

NOT

AND

OR

EXAMPLE
+5

-5

3+A

3-A
3*A
3/A
Ax*2

NOT A

A AND B

A OR B

1-11

MEANING
Positive five.
Negative five.

Add three and the value of A
together.

Subtract the value of A from three.
Multiply three times the value of A.
Divide 3 by the value of A.

A squared.

If A is not true (was zero or
contained only blanks).

If A and B are both true.
If either A or B is true (was non-zero

or contained characters other than
blanks).

Conditions and
operators:

NAME

less thanr

less than or
equal to

equal

greater
than

greater
than or

equal to

not equal
to

"Assignments” must

equal

assignmentis

SYMBOL

may, in

EXAMPLE

A<3

A>3

A=3

addition,

contain any of the following

togical

MEANING

True if the value of A is less than
three.

True if the value of A is less than or
equal to three.

True if value of A is equal to three.

True if the value of A is greater than
three.

True if the value of A is greater than

or equal to three.

True if the value of A is not equal to
three.

contain the assignment operator:

Set A to eaual three.

The hierarchy of expression evaluation is as follows:

1) unary +, -

2) NOT
3)

4 *
5 + -
6)

7) AND
8) OR

Operators at the same level are not guaranteed to be performed in any particular order.
Parentheses may be used to override the above hierarchy or to emphasize the order of

evaluation.

If nested parentheses are encountered, the

inner expressions are evaluated

first. Comparisons and the operators AND, OR, and NOT result in an integer value of one

(for true) or zero (for false).

When comparisons of aiphabetic fields or constants are performed,

the shorter string is

assumed to be padded with blanks up to the length of the longer string.

TYPE CONVERSION FUNCTIONS

RELATE/3000 will automatically convert between various data types when expressions are
evaluated. The rules for conversion are given in the Expression Evaluation section. In
some cases the default conversion precedence is not correct. The functions listed below
allow the user to override the conversion order normally used by RELATE.

The printlen and decimal value must be specified as constants. If the type conversion
function results in an integer, double, or unsigned field, the value is rounded to the
nearest whole number.

$ASClI{expression [,printlen])

Transforms the value of the expression to an alphabetic value with the indicated print
length. If $ASCII is performed on a field with a date FORMAT, the result will be the
date in the fieid's defined format.

$DOUBLE(expression [printlen))
Transforms the value of the expression to a double integer with the indicated printlength.

$INTEGER({expression [printien])
Transforms the value of the expression to an integer with the indicated printiength.
Fractional amounts will be truncated.

$LONG(expression [.printlen [, decimals}])
Transforms the vaiue of the expression to a long number with the indicated number of
decimal positions included in its print length.

$PACKED(expression [.printien [decimals]])
Transforms the value of the expression to a packed number with the indicated number of
decimal positions included in its print length.

$REAL(expression [,printien [decimals]])
Transforms the value of the expression to a real number with the indicated number of
decimal positions included in its print length.

$UNSIGNED(expression [printlen])
Transforms the value of the expression to an unsigned number with the indicated print
fength.

$ZONED(expression [printlen [decimals]])
Transforms the value of the expression to a zoned number with the indicated number of
decimal positions included in its print length.

CHARACTER MANIPULATION FUNCTIONS

$APPEND(string {....])
Returns an alphabetic field comprised of all of the parameters concatenated together. No
deblanking is performed.

$CONCAT(string [....])

Returns an alphabetic field comprised of the deblanked strings concatenated together. If a
constant is used, the constant is not deblanked. Fields and variables, however, will be
deblanked. The function results in a field large enough to contain all of the strings. The
$ASCII function can be used to force the creation of a field containing fewer characters.

$DEB(string)
Returns the string without any leading or trailing blarks.

$DOWNS(string)
Returns the alphabetic field with all uppercase characters downshifted.

$HEAD(string [separator])

Returns a substring of the first string starting at the beginning of the string and ending
with the character immediately before the first occurrence of the indicated separator.
The separator must be a field or constant of no more than 40 characters. |If the
separator is not given, the space character is used. If no separator is found in the
string, the entire string is returned.

SLENGTH(string)
Returns the position of the last nonblank character in the field as an integer value.

$L OWER CASE(string)

Returns a string the same length as the input string. The string will be converted to
lowercase with the first letter of each word capitalized. Any letter immediately
following a blank, dash, period, slash ("/”), pound sign ("#"), comma. or left parenthesis is
considered to be the first letter of a word.

$ROMAN(amount)
Returns a character string containing the value of amount in lower case Roman numerals.
Amount may be negative. Decimal fractions are truncated.

$SUBSTR(string. start [.length])

Returns the portion of the field beginning with start for a count of length characters. |If
length is not specified. the remainder of the field is returned. The first character in the
string is 1.

$TAIL(string [separator}])

Returns a substring of the first string starting with the first character after the first
occurrence of the separator and ending at the end of the string. The separator must be
a field or constant of no more than 40 characters. If the separator is not given, the
space character is used. If no separator is found. a string of zero length is returned.

$UPS(string)
Returns the alphabetic field with all lowercase characters upshifted.

$WORD{amount [,length [,sequence]))
Returns a string containing the amount written out in all capital letters as a number on a

check (e.g. $WORD(1.23)= "ONE DOLLAR AND 23 CENTS’). The second parameter
specifies the iength of the resulting string. The default length is 80 characters. |f the
resulting string is longer than the specified length, then the rest of the string may be
obtained by specifying a sequence number of 2 (e.g. sequence of 1 returns the first 80
characters, sequence=2 returns the next 80 characters, and so forth). If sequence is not
specified, the default is one.

ARITHMETIC FUNCTIONS

$ ABS(expression)
Returns the absciute value of the expression. The type of data returned by the function is
determined by the type of the expression.

$CASE(expression, casel, value?l, [case2, value2.]...defaultvaiue)
Evaluates the expression and compares the result to each case. |If a match is found, the
foliowing vaiue is returned. If no match is found, the defauitvalue is returned.

$EXP(expression)
Returns the mathematical value "e" raised to the value of the expression. The type of
data returned by the function is determined by the type of the expression.

$F ACT(expression)
Returns the factorial of the specified expression. The value of the expression is first
truncated to an integer ($FACT(4)=4*3%2%1=24),

$IF(expression, truevalue, falsevalue)

Returns truevaiue if the expression is non-zero or non-blank. Returns falsevalue if the
expression is zero or blank. The type of data returned by the function is determined by
the truevalue and falsevalue expressions.

$LOG(expression [,base])

Returns the log of the expression with the indicated base. Base is optional. The default
is the natural log. The type of data returned by the function is determined by the type
of the expression.

SMAXIMUM(exp1, exo2, ...expN)
Returns the largest of the passed expressions. The type of data returned by the function
s determined by the types of the expressions.

SMINIMUM(exp1, exp2, ...expN)
Returns the smallest of the passed expressions. The type of data returned by the function
is determined by the types of the expressions.

$MOD(expression, modulo)
Divides the expression by the modulo and returns the remainder. The type of data
returned by the function is determined by the type of the expression.

$PI
Returns the value of pi (3.14159) as a 64 bit floating point number.

$ROUND(expression [,decimals])
Returns a number rounded off to the specified number of decimal positions. {f decimals
1S omitted then zero i1s assumed. Examples:

$ROUND(124.381,0)=124.000
$ROUND(124.381,1)=124.400
$ROUND(124.381,2)=124.380
$ROUND(124.381,-1)=120.000

$SIGN{expression)

Returns a -1 if the expression is less than zero, a 0 if the expression is zero and 1 if
the expression is greater than zero. The type of data returned by the function is
determined by the type of the expression.

$SQR T (expression)
Returns the square root of the expression. A 32 bit floating number is returned.

1-17

TRIGOMOMETRIC FUNCTIONS

All trigonometric functions return real resuits regardless of the expression type.

$ACOS(expression [,1])
Returns cos " (expression). The result is in radians if 1 is not specified; in degrees if it
8.

$ASIN(expregsion [, 1])
Returns sin ~(expression). The result is in radians if 1 is not specified; in degrees if it
iS.

$ATAN(e>¢>r§r§sion [.1h

Returns tan " (expression). The result is in radians if 1 is not specified; in degrees if it
is.

$COS(expression [,1])
Returns the cosine of the expression. The expression must be in radians if 1 is not
specified; in degrees if it is.

$SIN(expression [,1])
Returns the sine of the expression. The expression must be in radians if 1 is not
specified; in degrees If it is.

$TAN(expression [, 1))
Returns the tangent of the expression. The expression must be in radians if 1 is not
specified: in degrees If it is.

DATE MANIPULATION FUNCTIONS

Only UNSIGNED, DOUBLE, or REAL fields or ALPHABETIC fields or constants represent
valid date types. RELATE is aware of how these values are stored internally and can
manipulate them appropriately. If an ALPHABETIC field or constant is used, it must be
in "M/D/Y" or "M/D/C" format. An alphabetic field cannot, however, be given a date
format with the MODIFY command.

$DAY(date)
Returns an integer representing the day of the month for the date.

$DAY_DIFF(startdate, enddate)
Returns the number of days between the two dates as a DOUBLE data type. If the
enddate falls before the startdate, a negative value will be returned.

$SDAY_WEEK/(date [,option])

Returns the day of the week of the date passed. If option is not included, value is
returned as an integer. If an undefined option is specified, blanks are returned. The
options are as follows:

0 Day number (1-7) returned as an integer representing Sunday thru Saturday.
1 The first three characters of the day in uppercase ASCII characters.
2 The complete day name in upper and lowercase ASCIl characters.

$SFORMAT_TIME(time [option))

Returns a string containing a formatted time. The time is an integer in a 24 hour
(HHMM) format. If no option is specified, zero is assumed. |f an undefined option is
specified, blanks are returned. The options are as follows:

0 1:34 PM
1 13:34
2 1334

$JULIAN({date)
Returns an integer representing the julian portion of the date.

$LAST_DAY/(date)
Returns a date (month. day, and year) equal to the last day of the month in the month
and year of the original date.

$MONTH(date [,option])

Returns an indication of the month of the passed date in an alphabetic field. |f option s
not included. value is returned as an integer. If an undefined option is specified, blanks
are returned. If no option is specified, zero is assumed. The options allowed are as
follows:

0 Month number (1-12) returned as an integer.
1 The first three characters of the month name in uppercase ASCIlI characters.
2 The complete month name in upper and lowercase ASCIll characters.

$NEW_DATE(originaldate, days)

The $NEW_DATE function returns a date the indicated number of days before or after
the original date. The days parameter may be either positive or negative.

1-19

SYEAR(date)

Returns an integer representing the year of the date. The year will contain the century
as in 1982.

1-20

INTER-RECORD FUNCTIONS

$LAST(expression [key1,...])
The $SLAST function can be used to move information from a record to the next record.

The function operates by holding the value of the expression for the first record until the
second record. The first use of the function returns a zero.

If any key fields are present, the function resets to zero when they change. The key
fields do not sort the files as is the case with an aggregate. The user must guarantee
that the records are fed through the function in the correct order. This function can
safely be used in assignments and conditions. The function should not be used in a
SELECT command unless a BY clause is given and the clause is satisified by a sorted
index on one of the base files. The function should not be used in a view definition.

SRTOTAL(expression [key1,...])
The SRTOTAL function returns the running total of the expression within a key. The
function operates similarly to the $LAST function.

1-21

PATTERN MATCHING

In several places in RELATE, lists can be shortened by specifying a particular pattern
that the items in the list should match. In addition, the SMATCH function is provided to
make use of RELATE's pattern matching capabilities over the contents of a field in a
file. Pattern matching may be used in:

SMATCH function

PRINT command fieldlist

SUM command fieldlist

CONSOLIDATE command fieldlist

FIELDS= in CREATE and OPEN FILE commands

The elements of pattern matching are:

%text
text$

text?text
char*

[chars])
[range of chars])

@char

Search for all items beginning with the indicated text.
Search for all items ending with the indicated text.

Match the indicated text but allow any character in the position(s)
indicated by question mark(s).

Zero or more consecutive occurrences of the preceding character.

Indicates a character class. If any one of the characters in the class
occurs, then a match is found (see example in SMATCH, following).
The character class may include a slash as the first character to

indicate NOT in this character class.

Used when you want an actual %, 8, 7, *, |, or] to indicate that the
character should be read as is.

1-22

$MATCH(string, matchstring)

string

matchstring

A character literal (a string enclosed in quotes), or a fieldname, whose

contents will be searched for a match to the matchstring.

¥ the

string is not a constant it wili have trailing blanks removed before
being used.

A character literal (a string enclosed in quotes), or a fieldname who;e
characters are described below, which SMATCH will attempt to find in

the original string.

If the matchstring is not a constant it will have

trailing blanks removed before being used.

The $MATCH function returns a number indicating the position of the first character in

the string that satisfies the matchstring.

If a match cannot be found, zero is returned.

If string or matchstring are non-alphabetic fields, they will be converted to characters
before the match is performed.

SAMPLE

$SMATCH(TEXT,”

$SMATCH(TEXT,

SMATCH(TEXT,

$MATCH(TEXT,

SMATCH(TEXT,

SMATCH(TEXT,”

$MATCH(TEXT,”

$MATCH(TEXT."

$MATCH(TEXT,

$SMATCH(TEXT,

$SMATCH(TEXT,

A")

“%A”)

"AS$")

"A7B")

A?*B")

A?7*B")

A*")

"[ABC]X")

"la-z]la-z]") Find

"l/a-z]")

EXPLANATION

Find the position of the letter "A" in the TEXT field in all

records.

Find all records where the first character of the field TEXT is
the letter "A".

Find all records where the last character of the field TEXT is
the letter "A".

Find the first position of an "A", followed by any character,
followed by a "B” in the field TEXT in all records. Both "ANB”"
and "XA&B" will be found.

"2 A???X?")Find the position in each TEXT where there is a string of the

format: any character followed by an "A", 3 other characters,
and an "X". This will find "BAD AXE" but not "AD AXE" since
there is no character immediately before the "A".

Find the position in each TEXT where there is a string of the
format: "A*, followed by any number of characters, followed by
a "B”. This would find "AB", "AQB", and "AS ANYBODY".

Find the position in each TEXT where there is an "A" followed
by at least one other character followed by a "B".

Find the position in each TEXT where there are zero or more
consecutive "A”'s (this would naturally find all records).

Find the position in each TEXT where there is either an "A"
"B". or "C" followed by an "X".

each TEXT with consecutive

the position two

lowercase ietters.

in

Find all texts that do not contain any lowercase letters.

1-23

SMATCH(TEXT,"@%@@") Find the position in each TEXT where there is a "% followed
by an "@"

EXAMPLES:

The SMATCH function returns a number indicating the position of the requested match
string. Since conditions are evaluated as true if the result is non-zero, this can be useful
in FORs and WHERESs.

JOPEN FILE CUST
)SELECT NAME, X=$MATCH(NAME,"X")
YPRINT

NAME X

HASLETREX INC.
DEXMACH, INC.
CUPERCO

AMERICAN TIRE CO.
FINCH, FINCH, & OTTO
NATIONAL AIRLINES
ALEXANDER HALE & CO.
PERFECT SOUND

® »+ OO OO LW

8 LINES PRINTED.
JSELECT NAME WHERE $MATCH(NAME,“X")
JPRINT

NAME
HASLETREX INC
DEXMACH, INC.

ALEXANDER HALE & CO.

3 LINES PRINTED.
)

1-24

SYSTEM DEFINED FIELDS

RELATE/3000 has several pre-defined fields available to the user. These fields allow
access to the current date, time of day, port number, user name, and group name. The
fields can be used in any expression, condition, targetlist or qualification. They can be
used in security constraints in order to limit access on a time of day, user name or port
number basis.

The following system defined fields exist:

$ACCOUNT Returns the account name to which the user is logged in as an 8 character

$DATE

$ERROR

$GROUP

$SPORT

$TIME

$USER

alphabetic field.
Returns the current date as a double integer.

Returns the error number of the latest RELATE error. This is reset to zero
whenever an IGNORE ERROR is encountered.

Returns the group name to which the user is logged in as an 8 character
alphabetic field.

Returns the terminal device number to which the user is logged on. A zero
15 returned if the function is evaluated in a job.

Returns the current time of day as an integer. The time is returned in a 24
hour (HHMM) format. :

Returns the user name as an 8 character alphabetic field.

1-25

INDEXES AND KEYS

When the user accesses information, he or she may need to be able to access it in more
than one manner. Indexes assist in or speed up this operation. An index is an organized
collection of fields by which the data in a file is referenced. A key is that field or
fields.

If one thinks of a file cabinet as a file, the information in it can be sorted in only one
way, usually alphabetically. [f the information is sorted only by LAST NAME, with no
attention paid to any other information, then we say that the KEY in the index Is
LASTNAME. We could also say "the file is indexed by [the key] LASTNAME".

Usually, however, other information is used to help access the information. For example,
if duplicate LASTNAMEs are found, then checking proceeds to FIRSTNAME. If duplicates
exist there, then the checking could proceed to an ADDRESS. In this case, the key would
be said to be LASTNAME, FIRSTNAME, ADDRESS. One could also say “"the file is
indexed by [the key] LASTNAME, FIRSTNAME, ADDRESS", or “the index contains
LASTNAME, FIRSTNAME, ADDRESS".

in RELATE/3000 a data file can have several indexes, although only one index can be
used explicitly by the user at one time.

One index is supplied automatically by RELATE. This is the line number. As each
record s added to a file, it is given its own unique line number. Nothing special need be
done to make this index the current method of access. When a file is opened, it is
automatically accessed by the line number.

The user will usually want to access information in a different order than line number
(i.e.., by LASTNAME and then FIRSTNAME). In that case, the command "CREATE INDEX
BY LASTNAME, FIRSTNAME" can be used to sort the file in that order. When the
command is completed, the system will say “INDEX #1 HAS BEEN CREATED". This
means that from now on there will be an INDEX #1 consisting of the key LASTNAME,
FIRSTNAME (until it is purged using the PURGE INDEX command).

Thereafter, when the user opens the file, it will be sorted by line number. But if the
user wants it ordered by LASTNAME and FIRSTNAME, the command "SET INDEX 1" can
be entered.

Up to thirty indexes may be defined in this manner on RELATE type files. The user may

flip from one to the other, as often as desired, using the SET INDEX command. The
current index defines the field that comprises the range of a command.

1-26

NORMALIZATION

For a relational database system to function correctly, all of the files used by the system
must be normalized. The process of normalization removes repeating groups (COBOL
OCCURS clauses) and decomposes files in such a way that the contents of each field in a
file contains a value that depends only on the primary key of the record. This is a
simplified explanation of normalization; for a more thorough description, the user s
directed to An Introduction to Database Systems by C. J. Date, published by
Addison-Wesley.

Although normalization sounds complex, the operations used to create the normalized files
are really based on common sense. An example using a hypothetical job cost and
employee information file should serve to illustrate the problems of working with
unnormalized data.

Assume a file with the following fieids:

WORK: EMP_NO, EMP_NAME, SALARY,
(PROJ_NO, HOURS, END_DATE)*10

The PROJ_NO, HOURS, and END_DATE fields are repeated ten times for each record.

To place the file into "first” normal form, the repeating group must be eliminated. This
can be done by duplicating the EMP_NO, EMP_NAME and SALARY fields for each
PROJ_NO entry. After the repeating group is removed, the file can be used by RELATE.

Unfortunately, the file contains many undesirable features. Some of the undesirable
properties that are exhibited by the new format include:

1) To change an employee's salary, many records may need to be changed
depending on the number of projects that he has worked on.

2) An employee's name and salary cannot be entered until he has been assigned a
project. Likewise, a project completion date cannot be specified until an
employee is assigned to the project.

3) it contains a large amount of redundant data.
These problems occur because data exists in the record that is not directly associated
with the primary key (in this case EMP_NQ). To correct the problem, the file must be
divided into two files:
EMP: EMP_NO, EMP_NAME, SALARY
WORK: EMP_NO, PROJ_NO, HOURS, END_DATE
Each field in the EMP file is now directly associated with the primary key (EMP_NO).
Each field in the WORK file is not, however, directly related to the key (which is
EMP_NO, PROJ_NO). The process performed on the original WORK file must now be
repeated on the new WORK file:
WORK: EMP_NO, PROJ_NO, HOURS

PROJ: PROJ_NO, END_DATE

1-27

After this second transformation, the data is in a correctly normalized form. Notice that
it 1s possible to:

1) Change an employee's salary or name by updating a single record.

2) Add a completion date for a project without assigning any employees and add
an employee without assigning him a project.

3) Delete a project or an employee without destroying any other information.
The result of the normalization process is a set of two-dimensional tables. The format or

content of these tables is easily understood by non-technical people, and the operations
that must be performed on these tables by an application is much simpler to describe.

1-28

*TO filename”

When the "TO filename” clause is used in a command, RELATE will attempt to open the
file for the duration of the command whether or not the file has already been explicitly
opened. All options listed in the OPEN FILE command that are needed to access the file
must be appended to the filename. If the file is correctly opened, the system continues.

iIf the file cannot be opened, RELATE will attempt to create the file. In this case, the
options available on the CREATE FILE command may be specified after the filename. If
the file cannot be created, an error results.

After the file is located, opened, or created, the path name that the file has assumed for
the duration of the command is checked against the names of any other files that are
also used in the command. If the name is duplicated, an error occurs and the command
terminates.

When an output file is used, RELATE will automatically match fieldnames from the input
file(s) with those in the output file(s). The order in which fields are matched is described
in each command. RELATE will automatically perform data type conversion as well as
alphanumeric field expansion and truncation during any copy operation.

If information is converted from a numeric format to an alphabetic format the resulting
field will reflect ali format options in effect at the time. For example, if the source
field is formatted as a date field, the destination field will be filled with a date. Any
type conversion errors that occur are ignored and result in zeroes or blanks in the
destination field.

EXAMPLES:

OPEN DATABASE XDB; TYPE=IMAGE,; PASSWORD="xxx":. MODE=3
OPEN SET LONGSET, PATH=L; DATABASE=XDB

OPEN FILE SFILE

COPY LONGSET .NAME=SFILE.TITLE TO LONGSET;DATABASE=XDB

CREATE FILE ABC, RETENTION=TEMP; FIELDS=(NAME A ,20); PATH=A

SET PATH SFILE
COPY A1 . NAME=SFILE.TITLE TO ABC; RETENTION=TEMP,; PATH=A1

1-29

EXECUTION OF RELATE/3000 IN A JOB

When the RELATE/3000 Command Interpreter is executed in a job all commands and
prompts are echoed to $STDLIST (RDBOUT). The result is identical to the output that
would be obtained if RELATE/3000 was run at a bhard copy terminal. RELATE/3000
commands and functions execute the same way in a job as in a session, except for the
foliowing:

1) The continuation character ("&"), if used, must be the last non-blank, non—null
character on the line.

2) All errors are treated as fatal errors. The error number is printed followed by its
description. A message is then generated indicating that the job will be terminated.
RELATE then sets the system Job Control Word (JCW) bit O high and terminates.
The job is then cancelled by MPE.

1-30

SECTION 2

COMMANDS

:mpecommand
Executes an MPE command directly from RELATE.

mpecommand Must be an MPE command that can be executed programmatically, or
the RUN or EDITOR command. See the MPE Intrinsics Reference
Manual (HP part number 30000-90010) for a complete list of the
commands that may be used.

EXAMPLES:

Any MPE command that can be executed from a program can also be executed from
RELATE. The command name must be preceded by a colon (":").

) : SHOWME

USER: #S453,D0C79 RDB,DOC79 (NOT IN BREAK)
MPE VERSION: HP32002C .NO® . A3

CURRENT: THU, MAR 18, 1982, 2:14 PM

LOGON: THU, MAR 18, 1982, 10:54 AM

CPU SECONDS: 86 CONNECT MINUTES: 201
$STDIN LDEV: 41 $STDLIST LDEV: 41

)

2-2

ABORT

ABORT [ENTIRE] TRANSACTION

Causes all file changes made at the current transaction level to be ignored and reduces
the transaction level by one.

ENTIRE Optional. If the transaction level is greater than 1 all levels can be
ABORTed by using this keyword.

EXAMPLES:

The ABORT TRANSACTION command informs RELATE to ignore any file modification
requests at the current transaction level. In most cases, this terminates the entire
transaction. In some instances, transactions may be nested and the ABORT will cause the
nesting level to be decreased by one (1) thus undoing a portion of a transaction.

)BEGIN TRANSACTION
THE TRANSACTION LEVEL 1S NOW 1.
JPRINT NAME ST

$LINE NAME ST
1 HASLETREX INC CA
2 DEXMACH, INC. CA
2 CUPERCCOC CA
4 AMERICAN TIRE CO. caA
5 FINCH. FINCH, & OTTO CA
€ NATIONAL AIRLINES CA
7 ALEXANDER HALE & CO. NUJ
& PERFECT SOUND VA

§ LINES PRINTED
YJODELETE FOR ST="CA"
€ LINES DELETED
Because a tramsaction 1s in progress the changes have not yet been made on the file.

JPRINT NAME,ST

$LINE NAME ST
1 HASLETREX INZT CA
2 DEXMACH, INC CA
2 CUPERCC CA
4 AMERICAN TIRE CO Cca
5 FINCH., FINCH, & OT70C CA
€ NATIONAL AJRLINES CA
7 ALEXANDER HALE & CO. Ny
& PERFECT SCOUND VA

2-3

ABORT

8 LINES PRINTED.

If the operations performed in the transaction are incorrect they can be discarded by
ABORTing the transaction

JABORT TRANSACTION
ALL TRANSACTIONS HAVE BEEN ABORTED

The contents of the file are unchanged.

YPRINT NAME,ST

$LINE NAME ST
1 HASLETREX INC. CA
2 DEXMACH, INC. CA
3 CUPERCO CA
4 AMERICAN TIiRE CO CA
& FiINCH, FINCH, & 0OTTO CA
6 NAT]IONAL AJRLINES CA
7 ALEXANDER HALE & CO NJ
8 FERFECT SCUND VA

8 LINES PRINTED
)

24

ADD

ADD [SEPARATOR="character"}

Adds data to the current file.

: Optional global switch. If the ADD command is used in a procedure,
data is requested from the user's terminal (from $STDINX) unless a
global "I" switch is used. If the global "I" switch is used, data is
obtained from the procedure file. The switch is ignored if a
procedure is not executing.

'L Optional giobal switch. |f specified, the line number will be displayed
after each record is added. The line number will not be displayed if
records are added to a view.

SEPARATOR Optional. If a separator other than a comma is desired during data
entry, it must be included in the command line. The separator must
be a single non-blank character enclosed in quotes (“). Backsiashes (")
may not be used.

The ADD command will prompt for data input by printing a fieldname and a question
mark. In general, it will prompt for input in the order in which the fields were described
during the creation of the file (for exceptions, see the Data Entry Levels paragraph).
One value may be entered, in which case the next field will be prompted for. More than
one value may be entered, separated by commas or the user—-defined separator, in which
case the values will be assigned to the fields in the proper order and then the next field
for which no data was found will be used as the prompt.

Data Entry Levels

Fields with a data entry level of zero are set to zeroes or blanks depending on type.
These fields cannot be entered. Fieids with a data entry level of two will be prompted
for only once at the beginning of the command. All fields with a data entry level
greater than two will be prompted for continually until "//'s" are entered. When the
command begins, all fields with a data entry level greater than one are listed in
increasing order of data entry level and within each level in the order in which they were
structured. After all fields that need to be entered are printed, the first field is
prompted for. The user may then enter as many fields as exist on the first level,
separating them with commas or the user-specified separator.

Entering Adjacent Separators, //, RETURN, or "."

If two adjacent separators are found or if only a RETURN s entered. the corresponding
fieid is set to blanks or zero depending on its type.

If a "//" is entered in the first field in a level, the user will be prompted for the next

lower level that has enterable fields. If the user was at a level three. or no fields with
a lower level exist, the command is terminated.

2-5

ADD

If a "//" is entered for any field on a ievel except for the first field, the data previously
entered on that level is discarded and the user is prompted for the level again.

A "." may be entered to carry the previous value of a field down to the current line.

Input for alphabetic fields
Data for alphabetic fields may consist of any printable characters. If more data is

entered than can be placed into an alphabetic field a warning is issued and the
information is right truncated.

Checking keys

For RELATE files, as each field is entered, the index structure is checked to determine
if the current field is the last field required to complete a unary key. If it is, the key
is created and checked against the data file. If a duplicate key is found, an error occurs
and the field is prompted for again.

Invalid Values

If an invalid value is entered into a field, the remaining input is discarded and the user
will be prompted for the field again.

Trailing Spaces and Zeroes
It i1s not necessary to enter trailing spaces or zeroes. RELATE/3000 will place them into

the file and provide them on printed output when appropriate. Leading zeroes are ignored
on ail numeric fields.

Trailing Separators

A trailing separator will be treated as though blanks or zeros depending on the type of
the following field. were entered after the separator.

Filling the File to Capacity

If the current file is filled during the command. the command s terminated with a

message to that effect. No further additions are allowed untii the file is expanded. This
can easily be accomplished with a COPY or REORGANIZE command.

EXAMPLES:

A file must be current in order to ADD to it. Get the INVOICE file, permanently change
the entry levels (see the MODIFY command) and then add some data to the file.

)JSET PATH INVOICE

26

JMODIFY:K FIELD NAME,NUMBER,ST;
INVNO,AMOUNT ,TAX;

JMODIFY:K FIELD

JMODIFY FIELD SALES_MAN;

)ADD

LEVEL=3
LEVEL=4
LEVEL=2

ADD

ENTER SALES_MAN,NAME NUMBER,ST,INVNO,AMOUNT TAX

SALES_MAN? 36
NAME?
NUMBER?
ST? CA
INVNO? 10221
AMOUNT? 627 .01
TAX? 88.07

1200

INVNO? 10455,335,40.2

INVNO? //

NAME?
NUMBER?
ST? CA
INVNO?

CUPERCO
400

INVNO? //

NAME? [/

See what the file contains.

NATIONAL AIRLINES

2738,948.6,32.40

JPRINT

$LINE INVNO NAME NUMBER ST
1 19221 NATIONAL AIRLINES 1000 CaA $
2 19455 NATIONAL AIRLINES 1900 CA §
3 2738 CUPERCO 420 CA %

3 LINES PRINTED.

Change the separation character.
NAME.

JADD SEPARATOR=";"

This enables a comma to

AMOUNT TAX SALES
627 .01 88 .07 36
335.00 40 .20 36
948 .60 32.409 36

be entered as part of a

ENTER SALES_MAN ;NAME ; NUMBER, ST, INVNO,AMOUNT ; TAX

SALES_MAN? 99
NAME? DEXMACH,
NUMBER? 1080
ST? CA
INVNO?
TAX”? 18

INC.

33.348.7

INVNO? //

2-7

ADD

NAME? //
JPRINT
$LINE INVNO NAME

4
)

12221 NATIONAL
19455 NATIONAL
2738 CUPERCO

33 DEXMACH,

SN

LINES PRINTED.

AITRLINES
AIRLINES

INC.

2-8

NUMBER

1000
1000
400
129

ST

CA
CA
CA
CA

A B A A

AMOUNT

627.
335.
3948 .
348 .

21
00
69
70

88 .
40.
32.
18.

TAX SALES

97
29
49
09

36
386
36
99

ADD FIELD

ADD FIELD fieldname, type, printlength [.decimals] [:options]

Adds a new field to the structure of the current file.

fieldname Required. A fieldname must be between 1 and 10 characters in
length, contain only capital letters, digits, or underscores ("_") and
start with a letter. Fieldnames must be unique within a file.

Keywords such as TO, ERRORS, WITH, USING, and BY should not be
used as fieldnames.

type Required. The type of the field. The type must be one of the
following:

ALPHABETIC
DOUBLE
INTEGER
LONG
PACKED
REAL
UNSIGNED
ZONED

printiength Required. The printlength determines the printing width of the field.
For ALPHABETIC, PACKED, and ZONED fieids, it also determines the
number of words stored in the file. The limitations on the size of
each field appears in the FIELD SIZE LIMITATIONS table in the
CREATE FILE command. The printiength is the total print length of
the fieid. including the sign. decimal point, and decimal positions.
[.decimals] is an optional number of decimal positions within the total
print length.

options Optional. Any options described in the FIELD OPTIONS table in the
CREATE FILE command may be specified.

The current file must be a RELATE/3000 file to which the user has exclusive access. To
add a field to a file in a secured group, the user must be the file's creator or the
account librarian.

The new field cannot be added if the current file already contains 127 fieids. The
addition of a field is a logical operation which is performed very auickly. Individual
records are not adjusted until some other operation forces them to be rewritten. The
addition of fields to a file may cause the file to fill before its stated capacity is
reached. To increase the physical space alloted to the file by MPE the file should be
REORGANIZEQd.

EXAMPLES:

Add a date field to the customer file.

JOPEN FILE CUST

ADD FIELD

)SHOW STRUCTURE

FILE NAME =CUST . DCC73.RDB
T C
Y PRINT 0 E
NAME P LEN $ M SPECIAL v
1 NAME A 20 3
2 NUMBER I 5 3
3 ADDRESS A 26 3
4 CITY A 14 3
S ST A 2 3
6 PHONE A 8 3
PRINT LINE WIDTH = 86 CHARACTERS.

JADD FI1ELD STARTDATE,D,8;FORMAT="M/D/Y"
)SHOW STRUCTURE

FILE NAME =CUST . DOC79 .RDB
T c L
Y PRINT 0 3
NAME P LEN $ M SPECTAL \"
1 NAME A 20 3
2 NUMBER I S 3
3 ADDORESS A 26 3
4 CITY A 14 3
S5 ST A 2 3
6 PHONE A 8 3
7 STARTDATE D 8 M/D/Y 3
PRINT LINE WIDTH = 95 CHARACTERS.

)

o o

< < < < =< <

O o

< < < < < < <

O v

<« < < < < <

O T

<« <« < < < < =<

INT

BEG

END

SIZE WORD WORD

208
1w
268
148
2B
8B

INT
SIZE

208
1w
268B
148B
28
88
2w

0
1@
1
24
31
32

BEG
WORD

10
1t
24
31
32
36

9
10
23
39
31
35

END
WORD

9
10
23
Jo
31
35
37

ALLOW

ALLOW functionlist
[BY userlist]

[IN grouplist]
[;DEFAULT]

Creates or adds to a capability matrix that indicates what operations a user can perform
in a particular group.

functionlist Reauired. Specifies the functions that can be performed by the given
users in the given groups. The following functions may be allowed:
ALL Allow all functions.
SF-PERMANENT Create permanent or temporary files.
SF-TEMPORARY Create temporary files.
IA-ClI Interactive Command interpreter access.
tA-PROG Interactive programmatic access.
BA-CI Batch Command interpreter access.
BA-PROG Batch programmatic access.

BY userlist Optional. Specifies the user names to which operations will be

granted. If the BY keyword is used, the list must contain one or
more user names separated by commas. if the keyword is not used,
an atsign ("@") is assumed.

IN grouplist Optional. Specifies the groups in which user can perform the given
functions. If the IN keyword is used, the list must contain one or
more group names separated by commas. If not used, an atsign ("@")
1S assumed.

DEFAULT Optional. If specified, each user-name/group—name combination listed

is adjusted so that their access to the specified functions matches the
general case ("@") for their group/user.

This command can only be executed by an account librarian (a user with AL capability)
executing in the PUB group.

When functional restrictions are applied, the following search order is used:

1) An entry with a matching user name and group name s searched for.

2) An entry with an atsign as the group name s searched for.

3) An entry with an atsign as the user's name is searched for.

4) f«n entry with an atsign as both a user name and a group name is searched
or.

5) If a particular capability has not been ALLOWed, it is DISALLOWed.

2-11

ALLOW

The DISALLOW command can be used to remove capabilities that have previously been
ALLOWED.

Command RCBDD person RD 1
ALLOW RUN @ Y
ALLOW RUN BY FRED @ Y
FRED Y
DISALLOW RUN BY JOHN @ Y
FRED Y
JOHN N
DISALLOW RUN BY FRED @ Y
FRED N
JOHN N
ALLOW RUN BY FRED: DEFAULT @ Y
JOHN N
EXAMPLES:

The command functions by searching for each user-name group—name combination in the
ROBDD file. If a record is found, all functions specified are enabled. If a record is not
found, a new record is added. If the BY or IN keywords are not supplied, they represent
a user named “atsign” and a group named “atsign’, respectiviey. Thus, the following
command would attempt to locate a record with a user group combination of "@", "DEV",
and, failing to find such a record, would add a new record to the file.

JALLOW ALL IN DEV

The system allows the DBA to create a default function list for each group or user.
These default capabilities can then be overridden either positively or negatively
(DISALLOW) on an as needed basis. For example:

JALLOW SF-PERMANENT BY USER1 IN DEVI
JALLOW SF-TEMPORARY,1A-Cl BY USER?1

After the first ALLOW command, USER1 can create permanent files in the DEV1 group.
After the second ALLOW command, USER1 can create temporary files and access the
Command Interpreter interactively in all groups but can still only create permanent files
in the DEV1 group. If the DBA wants to allow USER1 to perform the other functions in
DEV1, an ALLOW containing the DEFAULT keyword could be used to remove the first
entry or another ALLOW could be used specifically for the functions in the group DEV1.

BEGIN
BEGIN TRANSACTION

Begins a logical transaction.

Once a transaction begins. all data modifications are saved in a holding file until the
transaction completes. |f the transaction is ABORTed then the changes are discarded. |If
the transaction is COMMITted the changes are posted to the appropriate files.

BEGIN TRANSACTION commands may be nested in order to allow sub-transactions within
a larger transaction. This nesting allows a transaction to be checkpointed such that a
correctable error in one part of the transaction does not force the entire transaction to
be repeated. Each BEGIN TRANSACTION command must subsequently be followed by a
COMMIT or an ABORT TRANSACTION command.

if a BEGIN TRANSACTION command has never been issued the transaction level is zero.
For each BEGIN TRANSACTION command the level increases by one. For each COMMIT
command the level decreases by one. When the level drops from one to zero the files
taking part in the transaction are updated. |f an ABORT TRANSACTION command is
entered ail changes made at the current transaction level (or deeper levels embedded in
the current level) are ignored and the transaction level is decreased by one.

For more information on transactions see the Transaction Processing section.

EXAMPLES:

The BEGIN TRANSACTION command informs RELATE to place all file update requests
into a logging file until the issuer can be sure of the wvalidity of the complete
transaction. Once the validity of the transaction is determined it can be COMMITed
(which makes the changes a part of the data base) or ABORTed (which causes the
changes to be ignored).

When the BEGIN TRANSACTION command is issued, the transaction level is increased by
one (1) and any pending locks are acaquired.

JLOCK FILE CUSTTMP
)SHOW FILES

L
0]
c
K FILE NAME DATABASE NAME

CUSTTMP CUSTTMP .DOC79 RDB

2-13

BEGIN

JBEGIN TRANSACTION
THE TRANSACTION LEVEL IS NCW 1
JSHOW FILES

L
0
c
K FILE NAME DATABASE NAME

CUSTTMP CUSTTMP .DOC79 .RDB

File changes are now logged into a temporary holding area until the transaction
completes.

YPRINT NAME

$LINE NAME

HASLETREX INC.
DEXMACH, INC.
CUPERCO

AMERICAN TIRE CO.
FINCH, FINCH, & OTT7O
NATIONAL AIRLINES
ALEXANDER HALE & CO.
PERFECT SOUND

[« GRS BT I 7 I S

8 LINES PRINTED.
)3 DELETE
1 LINE DELETED.

A transaction can operate on several files (if the user can lock them at the same time)
and can perform several operations on each file.

)ADD
ENTER NAME.NUMBER.ADDRESS.CITY.ST,PHONE

NAME? INTERIOR LIGHTING

NUMBER? 11080

ADDRESS? 6952 OAK ROAD,SANTA PAULA.CA
PHONE? 662-1259

NAME? //

JPRINT NAME

$LINE NAME

HASLETREX INC.
DEXMACH, INC.
CUPERCO

AMERICAN TIRE CO.
FINCH, FINCH, & OTTO

L N O R

2-14

BEGIN

6 NATIONAL AIJRLINES
7 ALEXANDER HALE & CO.
8 PERFECT SOUND

8 LINES PRINTED.
When the transaction is COMMIiTed the changes are reflected in the data base.

YCOMMIT TRANSACTION
ALL TRANSACTIONS HAVE BEEN POSTED
JPRINT NAME

$LINE NAME

HASLETREX INC.
DEXMACH, INC.
AMERICAN TIRE CO.
FINCH, FINCH, & OTTO
NATIONAL AJRLINES
ALEXANDER HALE & CO.
PERFECT SOUND
INTERIOR LIGHTING

O 0 ~NdO? AN -

8 LINES PRINTED
)

BEGIN

2-16

CHANGE

{[range] CHANGE [fie!dspecs] [FOR condition]

Selectively modifies data in a file. The user need not have exclusive access to the file
to use this command.

range

:S

fieldspecs

LOCALS

FOR condition

Optional. If used, only records in the specified range are made
available for changes. See the RANGE section.

Optional global switch. If a CHANGE command is used in a procedure,
the changes are requested from the user’s terminal ($STDINX) unless a
global "1" switch is used. If the global "I”" switch is used, data is
obtained from the procedure file(s). The switch is ignored if a
procedure is not executing.

Optional global switch. Prints the line number regardless of the
current key.

Optional global switch. Suppresses the printing of the current key.

An optional list of fields whose values are to be made available for
changes. If not supplied, or all fields in the fieldiist contain a local
“P" switch. all fields are available for changes.

Each fieildspec in the list is of the format:

field
or
(field [;PROMPT="text"] [[DEFAULT=YES/NO])

PROMPT If specified, the keyword must be followed by text
enciosed in quotes. This text. rather than the fieldname.
will be used as a prompt when a new value is reguested.

DEFAULT If specified, the keyword must be followed by either YES,
indicating that the existing value of the field will appear
as the default value in the prompt: or NO, for no default
value. |f DEFAULT 1s not specified, YES is assumed.

Optional switch which, if used, is appended to one or more of the
field names in the fieidlist.

P Prints the value of the field and does not request a new value.
Optional. If used, only records satisfying the specified condition are

made available for changes. See the EXPRESSION EVALUATION
section.

2-17

CHANGE

The command functions by locating the first record to be changed and displaying the key
value (if a global :S is not used) or the line number (if a global :L is used). The system
then prompts for the new value of the first field. If a RETURN is entered, the fieid
will retain its original value.

Entering "//" returns the user to the command mode, ignoring any changes made to the
current line and terminating the change command.

For a RELATE file, as each field is entered, the index structure is checked to determine
if the current field is the last field required to complete a unary key. If it is, the key
is created and checked against the data file. If a duplicate key is found, an error occurs
and the field is reprompted.

If an alphabetic field needs to be blanked out (set to spaces), enter a space and then
RETURN.

EXAMPLES:

A file must be current in order for its data to be changed. List the current data.
Generate change prompts for customers beginning with the letters "D" through "M’ who
operate out of the state of "CA”". The local "P" switch on the CITY field wiil force it to
print (along with NAME which is the current key) even though we only want to change
the ADDRESS field.

YSET PATH CUST

YSET INDEX NAME

INDEX #2 1S NOW THE CURRENT INDEX.
YJPRINT NAME, ADDRESS, CITY, ST

NAME ADDRESS ClTy ST
ALEXANDER HALE & CO. 83A SAN PEDRO ATLANTIC CIiTY NJ
AMERICAN TIRE CO. 7052 EL CAMINO REAL MOUNTAIN VIEW CA
CUPERCO 18802 WILKINSON AVENUE CUPERTINO CA
DEXMACH, INC. PO BOX 1567 SAN JOSE CA
FINCH., FINCH, & OTTO 87 NORTH FIRST, SUITE 243C LOS ANGELES CA
HASLETREX INC. 839 BEST wAY SUNNYVALE CA
NATIONAL AIRLINES SAN FRANCISCO INTL AIRPORT BURLINGAME CA
PERFECT SOUND 415 FAIR AKS AVENUE LAWRENCE VA

8 LINES PRINTED.
)"D"/"M" CHANGE CITY:P, ADDRESS FOR ST="CA"
DEXMACH, INC. SAN JOSE

ADDRESS [PO BOX 1567]? BOX 877 RD1

FINCH, FINCH, & OTTO tOS ANGELES

ADDRESS [87 NORTH FIRST, SUITE 243C]~
HASLETREX INC SUNNYVALE

ADDRESS [89 BEST WAY]?

2-18

CHANGE

)*0"/"M" PRINT NAME, ADDRESS, CITY, ST

NAME ADDRESS ClTy ST
DEXMACH, INC. BOX 877 RD? SAN JOSE CA
FINCH, FINCH, & OTTO 87 NORTH FIRST, SUITE 243C LOS ANGELES CA
HASLETREX INC. 839 BEST WAY SUNNYVALE CA

3 LINES PRINTED.

When requesting changes from a procedure file, the ability to specify a more descriptive
prompt than the fieldname is especially useful, as is the ability to suppress the printing
of the current value of the field (the default).

JU"AA"/"AZ" CHANGE (NUMBER: PROMPT="NEW CUSTOMER #"). &
x) (PHONE;DEFAULT=NO)

ALEXANDER HALE & CO.

NEW CUSTOMER ¢ [700]7

PHONE?

AMERICAN TIRE CO

NEW CUSTOMER # [500]?

PHONE?

)

CHANGE

2-20

CLOSE

CLOSE
[DATABASE database]
[FILE filename[;DATABASE=databasename]]
[PATH pathname]

Closes paths, files, or databases so that further access is not aliowed. If no parameters
are supplied, all paths, files, and databases are closed.

DATABASE Optional. If used, this keyword should be foilowed by the name of the
database to be closed. Before closing the database, the system will
close any files in the database and any paths to those files. If a
CLOSE DATABASE is issued from the Host Language Interface
routines, the database may not actually be closed if other cursors have
files open in the database.

FILE Optional. If used, this keyword should be followed by the name of the
file or set to be closed. {f any paths are open on the file, these are
closed first. If a CLOSE FILE is issued from the Host Language
Interface routines, the file will no longer be accessible from the
passed cursor but may not physically be closed if it is referenced by
some other cursor.

If an IMAGE dataset is being closed, the DATABASE in which the set
resides must be specified.

PATH Optional. Indicates that the path with the following name should be
closed. If the path closed is the last path on a file, the file is also
closed.

The CLOSE command will cause any pending SELECT command to be cancelled. |f the
CLOSE command is issued from the Host Language Interface routines, only paths and files
associated with the current cursor are closed.

A file cannot be closed while a transaction is in progress.

EXAMPLES:

Open files are closed automatically by RELATE when RELATE is exited. However, it
may be necessary or desirable to close a file while still in RELATE. {f a CLOSE PATH
1s executed and more than one path exists for that file only the indicated path will be
closed. [f, however, a CLOSE FILE is executed while more than one path is open for
that file. all paths for that file will be closed.

)SHOW PATH
PATH NAME FILE NAME DATABASE NAME
DATEMASTER DATE-MASTER INVDB.DOC79.RDB (CURRENT PATH)

2-21

CLOSE

INV INVOICE
INVOICE INVOICE
C CusT
CusT CuUsT
CUsST CusT?
MPECUST MPECUST

YCLOSE PATH CUST
)SHOW PATH
PATH NAME FILE NAME

DATEMASTER

INV INVOICE
INVOICE INVOICE
C CUST
CUSTH CUST1
MPECUST MPECUST

JCLOSE FILE INVOICE

)SHOW PATH
PATH NAME FILE NAME

DATEMASTER

C CuUsST
CUsST cusT1
MPECUST MPECUST

DATE-MASTER

DATE-MASTER

2-22

INVOICE DOC79 .RDB
INVOICE.DOC79 .RDB
CUST .DOC79 .RDB
CUST .DOC79.RDSB
CUST1 .DOC79 .RDB
MPECUST DOC79 .RDSB

DATABASE NAME
INVDB.DOC79.RDB (CURRENT PATH)
INVOICE DOC79.RDB
INVOICE . DOC79 .RDB

CUuST .DOC79 .RDB

CUST1 DOC79 .RDB

MPECUST DOC79 . RDB

DATABASE NAME
INVDB DOC79 .RDB (CURRENT PATH)
CusST . DOC79 RDB

CUST1 DOC79 RDB

MPECUST DOC79 .RDSB

CLOSE RDBLIST
CLOSE RDBLIST

Completes a set of multiple outputs to the file RDBLIST.

Causes all output directed to the file RDBLIST since the previous OPEN RDBLIST
command to print to RDBLIST (usually the printer).

After this command has been executed, all additional output to RDBLIST will be handled
as it was before OPEN RDBLIST was executed.

EXAMPLES:

Normally, output to the printer is spooled immediately and a message is displayed that it
has been done so. When RDBLIST is OPENed., however, output is grouped and not spooled

until RDBLIST is CLOSEd.

YOPEN FILE CUST
YPRINT : P

THE OUTPUT HAS BEEN PLACED IN SPOOL FILE #09@.
8 LINES PRINTED.

YOPEN RDBLIST

JPRINT:P

8 LINES FRINTED.

YOPEN FILE INVOICE

YPRINT: P

9 LINES PRINTED.

YCLOSE RDBLIST

THE OUTPUT HAS BEEN PLACED IN SPOOL FILE #0651

)

2-23

CLOSE RDBLIST

2-24

COMMIT
COMMIT TRANSACTION

Forces the changes made during the current transaction level to be saved in the holding
file and decreases the transaction level by one.

I1f the transaction level decreases from one to zero all file changes that have been
COMMITted will be made to the data file.

EXAMPLES:

The COMMIT TRANSACTION command informs RELATE to make any pending changes to
the data base permanent if the transaction leve! is one (1). If the transaction level is
higher, that portion of the transaction is sealed off.

)BEGIN TRANSACTION
THE TRANSACTION LEVEL IS NOW 1.
JPRINT NAME

$LINE NAME

HASLETREX INC
DEXMACH , K INC.
CUPERCO

AMER]ICAN TIRE CO
FINCH, FINCH, & OTTO
NATIONAL AIRLINES
ALEXANDER HALE & CO.
PERFECT SOUND

X N DN s W N -

8 LINES PRINTED
)3 DELETE
1 LINE DELETED.

Because a transaction is in progress, record three still exists in the data base. |f the
transaction is COMMITted at this point only record three would be affected. If this
change represented some logically complete portion of a larger transaction a
sub~transaction should now be started.

)BEGIN TRANSACTION
THE TRANSACTION LEVEL 1S NOW 2.
)S DELETE

1 LINE DELETED

If an error i1s made in the next section of the transaction it can safely be ABORTed
without affecting the prior operations.

JABORT TRANSACTION
TRANSACTION LEVEL 2 HAS BEEN ABORTED.

2-25

COMMIT

When the transaction is COMMITted only record three will be deleted.

JCOMMIT TRANSACTION
ALL TRANSACTIONS HAVE BEEN POSTED.
JPRINT NAME

$LINE NAME

HASLETREX INC.
DEXMACH, INC.
AMERICAN TIRE CO.
FINCH, FINCH, & O0TTO
NATIONAL AIRLINES
ALEXANDER HALE & CO.
PERFECT SOUND

Lo R NI LG T N

7 LINES PRINTED.
)

2-26

COMPARE

COMPARE fieidlist WITH filename1[;options]
[MATCHES [TO] filename2[;options] [ERRORS [TO] filename3d|:options}]
[BY keylist]

Compares two RELATE or KSAM files by key and outputs a file containing matching
records and/or a file containing invalid records.

fieldlist Required. A list of fields to be compared. Any fields listed here,
which do not have local switches, must exist in both the current file
and the WITH file. These fields are compared when a matching key is
found. The fields must be of the same data type and in the case of
alphabetic fields the same size.

LOCALS Optional switches to be used on one or more items in the fieldlist. All
fields with local switches must exist in filename3.

:E Will contain a generated error message or error number. The
local "E" switch may appear on a field of any type. If it
appears on an alphabetic field, a text error message is
generated and placed in the field. If it is on a numeric field, a
number indicating the error will be generated. A numeric error
code greater than zero is the field number that caused the
error. An "E" switch may appear on an alphabetic and a
numeric field at the same time. The possible errors are
detailed in the table below.

Numeric Alphabetic
-2 NOT IN MASTER
-1 NOT IN WITH
0 fieldname DIFFERS
.F Will contain the file name or number that the error occurred

on. The local "F" switch may appear on a field of any type.
If it appears on an alphabetic field, the filename that contained
the error is output. If it appears on a numeric field, the file
number (1 for the current file and 3 for the "WITH" file) is
output. The local "F" switch may appear on an alphabetic and
a numeric field at the same time.

4| Will contain the index number on which the error occurred.
The local "I" switch may only be used on a numeric field. If
either the current file or the "WITH" file is an MPE file, zero
wili be output in error records from that file.

‘R Wil contain the record number in which the error occurred. The
local "R" switch may only be used on a numeric field.

2-27

COMPARE

WITH filename1 Required. File to which current file is compared. Filenamel must
exist when the command is given. It must be a RELATE or KSAM
file containing an index with at least either the fields in the current
index or those in the "BY" clause. Any options listed in the OPEN
command needed to access the file must be appended to the filename,
whether or not the file is already open.

MATCHES TO filename?
Optional. File to which matching records are output. If specified and
it does not exist, it will be created in the same format as the current
file. It may be any type of file. Any options given in the "TO
filename" section needed to access the file must be appended to the
filename, whether or not the file is already open.

ERRORS TO filename3
Optional. The file to which non-matching records are output. Hf
specified and it does not exist, it will be created in the same format
as the current file. It may be any type of file. Any options given in
the "TO filename" section needed to access the file must be appended
to the filename, whether or not the file is already open.

BY keylist Optional. An ordered set of the fields in the current index to be used
as the key. A key value should not be duplicated within each of the
files. The fields used as the key must be of the same data type and,
in the case of an alphabetic, zoned, or packed field, the same size in
both the current file and the "WITH" file.

The command functions by reading serially down both the current file and the "WITH"
file. The keys are compared and, if unequal, the record with the smaller of the two keys
Is output to the "ERRORS TO" file. The file that contained the key in error is read
again and the new keys are compared. When a matching pair of keys is found the fields
In the fieldlist that don't contain any local switches are compared. |f any differ, error
records are output and both input files are read again. |f all fields have the same value,
the records are output to the "MATCHES TO” file and both input files are read again.

The values for fields in the "MATCHES TO" file and the "ERRORS TO" file are obtained
from the current file, if the fieldnames match. Fields not contained in the current file
are located in the "WITH" file. The fields not located in either file are set to zeroes or
bianks depending on type.

Either a "MATCHES TO" file or an "ERRORS TO" file. or both. should be used, as there
is no default for either. If neither is specified. no output will be produced.

The current file should be set to the index containing the fields that wiil be used as
keys. If no BY clause is specified, all fields in the current index will be used. The BY
clause can only specify a subset (starting with the most major key field) of these fields.
Both files must contain sorted indexes. This command will not function on IMAGE
datasets or MPE files. However, several SELECT command sequences may be used to
obtain similar information on all file types.

2-28

COMPARE

EXAMPLES:

Compare the CUST files NAME and ADDRESS to those in the file CUST1. Output matching
records to a file called CUSTMAT which has not yet been created. OQutput mismatches to a
file called CUSTERR which will also contain information on the error. The current file must
have a current index other than the line number. The "WITH" file must have available to it
an identical index, in this case, "NAME".

JCREATE FILE CUSTERR
ENTER FIELDNAME ,TYPE,LENGTH[.DECIMALS]

17 NAME A, ,26
2? ADDRESS . A.26
3?2 CITY A, ,14
4? ERRNUM,IT1 .3
5?7 FILENA,A.8
62 //
THE "CUSTERR" FILE HAS BEEN CREATED AS A PERMANENT RELATE/3200 FILE.
YSET PATH CUST1
JCREATE INDEX BY NAME
INDEX #1 HAS BEEN CREATED.
6 LINES INDEXED
INDEX #1 1S NOW THE CURRENT INDEX.
JPRINT NAME, ADDRESS, CITY

NAME ADDRESS CIlTyY
ALEXANDER HALE & CO 83A SAN PEDRO ATLANTIC CITY
AMERICAN TIRE CO. 7052 EL CAMINO REAL MOUNTAIN VIEW
CUPERCO 10802 WILKERSON AVENUE CUPERTINO
DEXMACH, INC. PO BOX 1568 SAN JOSE
HASLETREX, INC. 89 BEST WAY GRUMPTON
NATIONAL AJRLINES SAN FRANCISCO INTL AIRPORT SOUTH SF

6 LINES PRINTED.
YSET PATH CUST

YSET INDEX NAME

INDEX #2 1S NOw THE CURRENT INDEX .

2-29

COMPARE

JPRINT NAME, ADDRESS, CITY

NAME ADDRESS ClTy
ALEXANDER HALE & CO. 83A SAN PEDRO ATLANTIC CITY
AMERICAN TIRE CO. 7052 EL CAMING REAL MOUNTAIN VIEW
CUPERCO 10802 WILKINSON AVENUE CUPERTINO
DEXMACH, INC. BOX 877 RD:? SAN JOSE
FINCH, FINCH, & OTTO B7 NORTH FIRST, SUITE 243C LOS ANGELES
HASLETREX INC. 89 BEST WAY SUNNYVALE
NATIONAL AIRLINES SAN FRANCISCO INTL AIRPORT BURLINGAME
PERFECT SOUND 415 FAIR OAKS AVENUE LAWRENCE

8 LINES PRINTED.

JCOMPARE NAME, ADDRESS, ERRNUM:E, FILENA:F WITH CUST1 &

£)MATCHES TO CUSTMAT ERRORS TO CUSTERR

THE "CUSTMAT" FILE HAS BEEN CREATED AS A PERMANENT RELATE/3000 FILE.
8 MASTER LINES READ.

6 WITH LINES READ.

6 VALID LINES OUTPUT .

8 ERROR LINES OUTPUT.

The CUSTMAT file contains ALL records which matched on the indicated comparison fields
(NAME and ADDRESS) which means that there will be one record from each of the current
and "WITH" files for each match found; eg each record will be duplicated in NAME and
ADDRESS although other fields may differ.

JOPEN FILE CUSTMAT
JPRINT NAME, ADDRESS

$LINE NAME ADDRESS

ALEXANDER HALE & CO. B83A SAN PEDRO

1

2 ALEXANDER HALE & CO. 83A SAN PEDRO

3 AMERICAN TIRE CO. 7052 EL CAMINO REAL

4 AMERICAN TIRE CO. 7052 EL CAMINO REAL

S5 NATIONAL AIRLINES SAN FRANCISCO INTL AIRPORT
6 NATIONAL AIRLINES SAN FRANCISCO INTL AIRPORT

6 LINES PRINTED

The local "E” switch on the ERRNUM fieid will print the error number of the mismatch into
ERRNUM. The local "F" switch prints the name of the file in which the error occurred.

JSET PATH CUSTERR
JPRINT:S NAME, ADDRESS, ERRNUM, FILENA

NAME ADDRESS ERR FILENA
CUPERCO 1e8@72 WILKINSON AVENUE 3 CusT
CUPERCO 10802 WILKERSON AVENUE 3 CUST1
DEXMACH, INC. BOX 877 RD1 3 CusST
DEXMACH, INC. PO BOXx 15868 3 CusST
FINCH, FINCH, & OTTO 87 NORTH FIRST, SUITE 243C -1 CUST

2-30

HASLETREX INC.
HASLETREX, INC
PERFECT SOUND

8 LINES PRINTED.

)

89 BEST wAY
83 BEST WAY
415 FAIJR CAKS AVENUE

2-31

-1

COMPARE

cusT

-2 CusT!

-1

CUST

COMPARE

2-32

COMPILE

COMPILE CATALOG source INTO destination
[[WARN]
[:OLD=0ldmaster]

Allows the user to create a message catalog in his own language.

source Reaquired. The name of an EDITOR file containing the source
catalogue to be compiled. The file should contain records of 88 bytes.
The file should be a numbered EDITOR file.

destination Required. The name to give the file into which the compiled
catalogue will be placed.

WARN Optional. If specified, prints information about how the catalog is
being compiled in cases that may not be standard. Errors will always
be printed.

OoLD Reaquired. If compiling a non-master catalog for any system other

than RELATE (eg. accounting package catalogs), must be followed by
the name of the current compiled Master Catalog for that system. If
not specified, the currently open catalog will be used.

in order to set the language with the SYSTEM command. the user must add the language
to his catalog. before compilation, in two steps. First. add the name of the language to
SET 6. message zero (0). Message zero should look tike this initially:
OB 1."ENGLISH" 0.1
For each language that will have a catalog, add the language before the -1 as follows:
num “language”.O,
where “num” 1s a positive integer between 1 and 99, previously unused in message zero,
and "language” Is the name of the language enclosed in quotes. A catalog that could

access English, German, and French, might have:

0B 1,"ENGLISH",0,2,"GERMAN",0,3,"FRENCH",0,-1

COMPILE

Then, add the name of the compiled catalog ("destination”). with group and account if
needed, to SET 6. To ascertain what message number to give it, multiply "num” (from
step 1) by 100. Hence:

$SETB

0B 1,"ENGLISH".0,2,"GERMAN",0,3,"FRENCH",0,-1
$ English catalog

100 RDBECAT.PUB.SYS

$ German catalog

200 RDBGCAT.PUB.SYS

$ French catalog

300 RDBFCAT.PUB.SYS

Translation procedures

When transiating the catalog source file into another language, some rules must be

foliowed.
1)

2)

3)

Nothing enclosed in quotes shouid be translated.

Messages may be lengthened or shortened in the translation. Any additional
lines of a message must be indented at least as far as the message number
plus one space. For example:

3206 THIS IS THE FIRST LINE.
NOTHING SHOULD BE FURTHER LEFT THAN THIS.
THIS LINE IS OK.
THIS IS TOO FAR LEFT.

If a continuation character ("&") appears at the end of a message line, the
system will attempt to move words of the message around to fill each line
based on the width of the output device.

Do not add any additional messages or remove any existing messages.
The source file must be a numbered 88-character width EDITOR file. In
order to achieve this, when first entering the EDITOR to create the new

source catalog, give the commands:

SET LENGTH=80
SET RIGHT=80

All lines with a $ in the first column are either:

al comments, which do not have to be transiated, as the user will
never see them., but should be included in the catalog for
readability.

b) SET numbers, which MUST be included in the new catalog.

COMPILE

Accessing the New Language

After the appropriate entries have been made to SET 6 of the catalog and the catalog
has been compiled, use the $SLANGUAGE parameter in the SYSTEM command in order to
access the new language.

What the Catalog Is

The message catalog is a collection of data used by RELATE/3000. This data includes
error messages, comments, and HELP messages, (which may be translated) and command
names and device specifications (which cannot be transiated). The catalog is divided into
SETs of data, each set having its own purpose. A SET beginning is denoted by a $SETn
line. A copy of this catalog is provided with RELATE as RDBCAT.

When the catalog is compiled, ali of this data is packed into a format easily read by
RELATE. The catalog is also given a directory based on set number and message number
that enables RELATE to have virtually direct access so that a call for any data (e.g. an
error message) takes almost no time. The compiled version provided with RELATE is
called RDBECAT.

The catalog cannot be used by RELATE unless it has been compiled.

COMPFILE

2-36

CORSCLIDATE

[range] CONSOLIDATE [fieldlist]
TO filename{;options] [BY keylist]
[FOR condition]

Creates a summary of the current path.

range

D

fieldlist

LOCALS

TO filename

Optional. If specified, only records in the specified range are used in
the consolidation. See the RANGE section.

Optional global switch. If used, deletes each record used in the
consolidation.

Optional list of fields upon which to perform operations. Aill fields in
the fieldlist must exist in the output file. Fields in the output ("TO")
file which are not included in the fieldlist and exist in the current file
default to an "F* switch (first value). Groups of fields may be
specified using the patterm-matching feature. No more than 127 fieids
may be requested for the consolidation.

Optional switches which, if used, are appended to items in the
fieldlist. If a switch is not used on a field in the list, numeric fields
default to a "T" (total) and aiphabetic fields default to an “F" (first)
switch. “T", "A" and "C" may not be used on an alphabetic field. |If
the average is requested, the sum is calculated as a long number and
then divided by the number of records in the current key. The result
is then converted to the destination field's data type.

A Averages the field. May not be used on an alphabetic field.

:C Counts the number of records used. May not be used on an
alphabetic field.

F Takes the first value.
G Takes the greatest {maximum) value.
L Takes the last value.
:S Takes the smallest (minimum) value.

:T Totals the field. May not be used on an alphabetic field.
Reauired. The file to which the input is consolidated. Any options

given in the "TO filename"” section needed to access the file must be
appended to the filename, whether or not the file is already open.

2-37

CONSOLIDATE

BY keylist Optional. If the "BY keylist” clause is omitted, the current key will
be used to determine when record breaks will occur

lf the "BY keylist” clause is provided, all fields in the list must exist
in the current data file and should also be in the current index (unless
it is known that the file is sorted by those fields). The fields
provided will determine when record breaks will occur.

FOR condition Optional. If used, only records meeting the specified condition will be
used in the consolidation. See the EXPRESSION EVALUATION section.

The CONSOLIDATE command will only function correctly on sorted indexes or files and
will not work on IMAGE datasets. To generate a consolidation on IMAGE datasets, a
SELECT command containing aggregates or a BY clause must be used.

EXAMPLES:

Consolidate the INVOICE file to a previously nonexistent file called SUM. The local "C”
switch counts the number of lines used. The local "F" switch takes the first value of
the field. The local "T" switch totals the field. Since the BY NUMBER clause is
included and the file is indexed by NUMBER (index #3) , record breaks in the SUM file
are by NUMBER.

YSET PATH INVOICE
YSET INDEX 3
INDEX #3 1S NOW THE CURRENT INDEX.

YPRINT
NUMBER INVNO NAME ST AMOUNT TAX SALES
100 33 DEXMACH, INC. CA § 348.70 22.67 99
100 105 DEXMACH, INC. CA $ 86.32 5.61 83
100 106 DEXMACH, INC. cAa % 76 .40 4 97 87
400 2738 CUPERCO CA $ 948 60 61.66 36
460 10044 CUPERCO CA $ 500 .00 32.58 99
400 23557 CUPERCO CA $ 37 00 2. 48 86
see 727 AMERICAN TIRE CO. CA % 314 .20 g7
500 747 AMERICAN TIRE CO. CA § .97 2.06 83
500 8663 AMERICAN TIRE CO CA' $ 86.00 5.59 3
700 10002 ALEXANDER HALE & CO. NJ $ 999.99 90 00 45
800 33 PERFECT SOUND VA $ 677.77 o 00 83
1260 18221 NATIONAL AIRLINES CA $ 627.21 40 76 36
1000 10455 NATIONAL AIRLINES CA $ 335 .80 21.77 36

'3 LINES PRINTED.
JCONSOLIDATE INVNO:C,NUMBER:F NAME:F,AMOUNT:T,TAX:T TO SUM &
&£)BY NUMBER
THE "SUM" FILE HAS BEEN CREATED AS A PERMANENT RELATE/3080 FILE
13 LINES INPUT.

LINES OUTPUT.

CONSOLIDATE

YOPEN FILE SUM
JPRINT INVNO,NAME , NUMBER,AMOUNT TAX

$LINE INVNO NAME NUMBER AMOUNT TAX
1 3 DEXMACH, INC. 190 $ 511 .42 33.24
2 3 CUPERCO 400 $1485.680 96 .56
3 3 AMERICAN TIRE CO. 500 % 90 11 5.86
4 1 ALEXANDER HALE & CO 700 $ 999 99 S0 .00
5 1 PERFECT SOUND 8o0e $ 677.77 0.00
6 2 NATIONAL AIRLINES 1000 $ 962.01 62.53

6 LINES PRINTED.
)

2-39

CONSOLIDATE

2-40

CoPY

[range] COPY [assignmentl,...]] TO filename|;options} [FOR condition]
Copies information from the current path to the TO file.

range Optional. If used, only records in the specified range are copied. See
the RANGE section.

:D Optional global switch. Deletes each record from the current file as
it is copied. An assignment cannot be made to any fields in the
current path, if this switch is used.

assignment Optional. Assignments may contain fields from either the current path
or the output ("TO”) file. Fields in the output file must be qualified
by the name of the path as specified with the TO file options. If any
assignments are given, they are evaluated after the input record has
been converted to the format of the output record.

TO filename Required. The file into which the information is copied. Any options
given in the "TO filename” section needed to access the file must be
appended to the filename, whether or not it is already open.

FOR condition Optional. If used, only records meeting the specified condition are
copied. See the EXPRESSION EVALUATION section.

The command functions by reading records from the current file, copying information
from fields with identical names from the input to the output, and then evaluating the
assignments. Any type conversions required are done automatically. Any fields that exist
in the output but not In the input are set to zeroes or blanks depending on type.

If any of the assignments are made to a field in the current path, each record is
rewritten after the assignments are evaluated.

EXAMPLES:

Copy all fields that exist in both CUST and MPECUST from CUST to MPECUST. The
NUMBER field should have 2000 added to it in the MPECUST file.

YSET PATH CUST
JPRINT NAME, NUMBER, ST

$LINE NAME NUMBER ST
1 HASLETREX INC 200 CA
2 DEXMACH, INC 1¢@ CA
3 CUPERCO 439 Cha
4 AMERICAN TIRE CO. 590 CA
5 FINCH., FINCH., & 0T70 g€ Ca
6 NATIONAL AIRLINES 1000 CA

2-41

CcorPY

7 ALEXAMDER HALE & CO 798 NJ
8 PERFECT SOUND 800@ VA

8 LINES PRINTED.

JCOPY MPECUST.NUMBER=NUMBER+290980 710 MPECUST; TYPE=MPE; &
&)DOMAIN=TEMPORARY; FIELDS=(NAME,A,26),(NUMBER,1.,6),&

&) (ADDRESS,A,26),(CITY,A,14), (DATE_UPD,R,8.8)

8 LINES COPIED

JSET PATH MPECUST

JPRINT NAME, NUMBER

$LINE NAME NUMBER
1 HASLETREX INC. 2260
2 DEXMACH, INC. 2100
3 CUPERCO 2400
4 AMERICAN TIRE CO. 25090
5 FINCH, FINCH, & OTTO 26080
6 NATIONAL AIRLINES 3000
7 ALEXANDER HALE & CO. 2700
8 PERFECT SOUND 2800

8 LINES PRINTED.

Now make a second copy of records whose state is "CA". Since the "TO" file was not
erased, records are added to the file.

JSET PATH CUST

JCOPY TO MPECUST FOR ST="CA"
6 LINES COPIED.

JSET PATH MPECUST

JPRINT NAME, NUMBER

$LINE NAME NUMBER
1 HASLETREX INC. 2200
2 DEXMACH, INC. 2100
3 CUPERCO 24080
4 AMERICAN TIRE CO. 2500
5 FINCH, FINCH, & OTTO 26080
6 NATIONAL AIRLINES Jooeo
7 ALEXANDER HALE & CO. 2700
8 PERFECT SOUND 2800
9 HASLETREX INC. 200
19 DEXMACH, INC. 100
11 CUPERCO 400
12 AMERICAN TIRE CO. 500
13 FINCH, FINCH, & OTTO 6oe
14 NATIONAL AIRLINES 19e0

14 LINES PRINTED.
)

242

CREATE DICTIONARY

CREATE DICTIONARY

Creates the data dictionary used to store the security and view information used in a
secure environment by RELATE/3000.

This command can only be executed by an account librarian executing in the PUB group.
It must be done before the CREATE:D VIEW, PURGE:D VIEW, ALLOW, DISALLOW,
ENABLE, DISABLE, PERMIT, or DENY commands will function.

The command creates a file called RDBDD with the following format:

FIELD TYPE SIZE CONTENTS

TYPE ALPHABETIC 12 Contains the type of an entry.

ITEM ALPHABETIC 18 Contains a specific occurrence name
for the TYPE.

QUAL ALPHABETIC 18 Qualifies the ITEM to a specific case.

SEQ INTEGER 3 A sequence number for entries that

comprise more than one record.
DATA ALPHABETIC 40 Contains the security information.
In order for the RELATE security system to function the account librarian must enable

lock access to the PUB group of the account for any account users with the ALTGROUP
command.

EXAMPLES:

Create the data dictionary for the account. The dictionary need only be created once.

JCREATE DICTIONARY
THE DATA DICTIONARY ("RDBDOD") HAS BEEN CREATED.
)

243

CREATE DICTIONARY

244

CREATE FILE

CREATE FILE filename [keyfilename]
[:TYPE=RELATE IMPE!KSAM]
[;STRUCTURE=pathname]
[:RECORDS=recordcount]
[;RETENTION=PERMANENTITEMPORARY’NONE]
[:CODE=filecode]

[;PATH=pathname]
{,FIELDS=fieldnamelist]
[;INDEXES=indexlist]
[;PRIVILEGED]

Explicitly creates a new RELATE/3000, KSAM/3000, or MPE file. Many of the commands
in the Command Interpreter may also create new files as a result of the operation of the

command.

filename

keyfilename

TYPE

STRUCTURE

RECORDS

Optional global switch. If the CREATE FILE command is used in a
procedure, data is requested from the user's terminal ($STDINX) unless
a global "I" switch is used. If the global "I” switch is used,
information on fields in the file will be taken from the prodedure file.
The switch is ignored if a procedure file is not executing.

Required. This is the name of the file to be created. The filename
may include a lockword. Files may only be created in the user's
log-on account. Filenames that duplicate RELATE keywords {such as
TO, ERRORS, WITH, USING, and BY) should be avoided.

Reguired when a KSAM file is created. The parameter cannot be
specified when a RELATE or MPE file is created. The fiie may not
presently exist.

Optional. If specified, a file of the given type will be created. By
default, a RELATE file is created.

Optional. |If specified, and the FIELDS keyword is not specified, the
new file Is created with the same format as the file referenced by
the pathname. |f the FIELDS keyword is specified, the format of the
file 1s assumed to be that of the current file (if one exists), and
STRUCTURE needs not be specified. |f CREATE FILE is issued in the
Host Language Interface routines. the pathname must exist in the
passed cursor.

Optional. If specified the new file wili be created with room for the
specified number of records. By default. a new file has room for
4096 data records. {f a RELATE file is created, the record count Is
logically maintained by RELATE and will not correspond to the file
limit as given in MPE. There is nc practical limit to the number of
records in a RELATE file. Extents are allocated only as the addition
of data requires them. so the file can be given a large limit without
using excess disc space.

2-45

CREATE FILE

RETENTION

CODE

PATH

FIELDS

INDEXES

PRIVILEGED

Optional. If specified, it determines the domain into which the file is
saved after it is created. By default, a new file is saved
permanently. The user may specify that the file should be saved
temporarily or not at aill. Temporary files are purged by MPE when
the user logs off. Files with a retention of NONE are purged when
the user closes the file. A file with the same name must not
currently exist in the given domain.

Optional. This keyword can only be specified if a KSAM or an MPE
file is being created. The file created will be given this MPE file
code. Codes reserved by HP (those greater than 1024) and any code
in the 620 to 639 range (these are used by RELATE) should be
avoided.

Optional. |f specified, the newly created file will be accessed through
this path name. If not specified, the path name will be the filename
excluding the group and account name. Each path name in the
Command Interpreter must be unigque. If CREATE FILE is called from
the Host Language Interface routines, the path name must be unique
in the passed cursor. The file cannot be created if the assumed or
given path name duplicates an existing name.

Optional. If specified, the fieldnamelist must be of the format given
in the SPECIFYING FIELDNAMES section. If the STRUCTURE of the
current file is being used, groups of fields may be specified with the
patternr—matching feature. In addition to the standard pattern
matching, a minus sign ("-") may be included as the first character to
indicate NOT fitting this pattern. If not specified, the user is
prompted for the fields that should be included in the file. One
fieldname and its format should be specified in response to each
prompt. After all fields have been entered, a "//" will create the file.
if the CREATE command is executed from the Host Language
Interface routines or a KSAM file is being created, the STRUCTURE
or the FIELDS keyword (or both) must be given.

Required if a KSAM file is created. Optional when a RELATE file is
created. The keyword is ignored when an MPE file is created. The
keyword must be followed by one or more index specifications
(separated by commas) in the following formats:

(fieldname [....] [;UNARY])
number
@

If a fieldname s given the name must exist in the new file. If a
number or an atsign is used. the STRUCTURE keyword must have been
specified. When a number s given an index containing the fields
from the index of the same number in the structure file is created.
If the atsign is used, all indexes from the structure file are created.

Optional. This keyword can only be specified if a RELATE file is
being created by a user with Account Librarian (AL) capability. It 1s
ignored for MPE and KSAM files. A file created as a PRIVILEGED
file can only be accessed through RELATE.

2-46

CREATE FILE

A file cannot be created while a transaction is in progress.

Once the file has been created, the MODIFY FILE command can be used to alter defaults
for data COMPRESSION, CRASH PROOFING, primary key CLUSTERing, and logical or

physical DELETES.

2-47

CREATE FILE

SPECIFYING FIELDNAMES

Each item in the fieldnamelist must be in one of the following two formats:

[(Ifieldname[.type printlength]{;options][)]
@‘

Each item describes a single field except for the atsign("@”). If the atsign is used the
STRUCTURE keyword must have been specified. The atsign includes all fields from the
structure file that have not yet been specified in the new file. Multiple fields may be
soecified. if separated by commas. A maximum of 127 fields, totaling no more than 512
words, may exist in any one file.

fieldname

type

printlength

options

Required. A fieldname must be between 1 and 10 characters in
length. contain only capital letters, digits, or underscores ("_") and
start with a letter. Fieldnames must be unique within a file.
Keywords such as TO, ERRORS, WITH, USING, and BY should not be
used as fieldnames. If the STRUCTURE keyword is used, only the
name of the field need be specified. In this case. the name must not
be in parenthesis and the type, printiength, and options are obtained
from the existing field definition. If the STRUCTURE keyword is
used, the special fieldname "@" may be used to obtain all fields from
the structure file that are not yet in the new file.

Optional. The type of the field. The type must be one of the
following:

ALPHABETIC
DOUBLE
INTEGER
LONG
PACKED
REAL
UNSIGNED
ZONED

Required if the type was specified. The printlength determines the
printing width of the field. For ALPHABETIC, PACKED, and ZONED
fields. 1t also determines the number of words stored in the file. The
limitations on the size of each field appears in the FIELD SIZE
LIMITATIONS table. The printlength is of the format total
length|.decimals], where total length is the total print length of the
field, including the sign and decimal point. and decimals is the number
of decimal positions.

Optional. Any options described in the FIELD OPTIONS table on the
following pages may be specified.

2-48

The table below summarizes the data

CREATE FILE

FIELD SIZE LIMITATIONS

types available in RELATE/3000. See the Data

Types Interface description in Section 3 for comparisons with other data types.

TYPE

ALPHABETIC

DOUBLE

INTEGER

LONG

PACKED

REAL

UNSIGNED

ZONED

MAXIMUM DECIMALS

250

250

250

250

28

250

28

NO

NO

NO

YES

YES

YES

NO

YES

COMMENTS

The system allocates two characters per
word. If an odd number of characters s
requested, an extra blank is added by the
system.

A double may contain whole number vatlues
from -2147483648 to 2147483647. Two words
are used to store a double integer; the
leftmost bit of the first word is 1 for
negatives.

An integer may contain whole number values
from -32767 to 32767. One word is used to
store an integer number; the leftmost bit is
1 for negatives.

A long field will maintain up to 16 digits of
accuracy. Four words are used to store a
long value with the format: one sign bit
and a ninebit exponent followed by a 54-bit
mantissa.

A packed decimal field will maintain up to
28 digits of accuracy. Four digits are stored
per word. An additional digit position s
required for the sign. If the printsize
requested plus one (for the sign) is not a
multiple of four. an extra word is allocated.
All packed numbers are signed.

A real field will maintain up to 7 significant
digits of accuracy. Two words are used to
store a real value with the format: one sign
bit and a ninebit exponent followed by a
22-bit mantissa.

An unsigned field may contain whole number
values from O through 6£535. One word s
used to store an unsigned gquantity.

A zoned decimal field will maintain up to 28
digits of accuracy. Two digits are stored
per word. If an odd number of digits is
requested, an extra word is allocated. All
zoned numbers are signed.

249

CREATE FILE

FIELD OPTIONS

Additional field options include:

FORMAT

formatnumber

datestring

[;FORMAT=formatnumber | “datestring” | UPPERCASE | LOWER CASE]
[;INTERNAL=internal#|

[{LEVEL=entrylevel]

[[DOLLAR=FIXED!FLOATINONE]

[;COMMAS=YESINO]

[:NAME=fieldname]

[;TYPE=type]

[:SIZE=printsize]

If specified, determines the printed appearance of the field. A format
number cannot be specified for ALPHABETIC fields.

O=leading sign, only minus prints (default). Cancels any existing
FORMAT.

1=leading sign. forced.

2=trailing sign, only minus prints.

3=trailing sign. forced.

4="{)" around negative numbers.

5=CR for negative numbers.

6=CR for negative, DR for positive numbers.

Can only be specified for DOUBLE, UNSIGNED or REAL fields. The
field cannot have DOLLAR signs, COMMAS, or decimal places in the
printsize when the date type i1s assigned. Unsigned date fields are
stored internally in the same format as system dates (bits 06 are the
year, bits 7-15 are the Julian date). Rea! date fields are stored as
YYMMDD. Double date fields are stored as: word (1).{1:12)=year with
century, word (2).(0:4)=month, word (2).{4:8)=day. The print length of a
field is automatically adjusted to fit the indicated date format. The
datestring consists of some combination of the following characters:

C Indicates the year position. including the century. Printed as
CCCCcC.

D Indicates day-of-the-month position. Printed as DD.

J Indicates Julian date position. Printed as JJJ.

M Indicates month position. Printed as MM.

N Indicates the name of the month position. Printed as NNN.

Y Indicates year position. Printed as YY.

2 lf used as the first character. leading zeroes will be forced on

the following date element (M D. or J).

2-50

UPPERCASE/
LOWERCASE

INTERNAL

LEVEL

DOLLAR

COMMAS

NAME

TYPE

SIZE

CREATE FILE

The C and Y codes, M ard N codes, and the M, D and J codes may
not be used in the same date format.

tf no D or J is provided in a date format, the day 1s assumed to be
the first of the month.

A slash {“/"), dash ("-"}, blank {" "), or a period {"."}) can be used to
separate the types.

Once a field has been assigned a date format, all dates entered for
that field must be valid in the format which has been assigned. All
constants compared to dates should be enclosed in quotes. Date
formatted fields should not be used arithmetically in expressions.

The UPPERCASE and LOWERCASE keywords can only be specified for
ALPHABETIC fields. UPPERCASE forces all information subsequently
ptaced in the field to be shifted to uppercase. LOWERCASE leaves
all data exactly as entered. The default is LOWERCASE.

Sets the internal field number. This number must be between 0 and
32767, inclusive. Zero is the default. An internal number other than
zero cannot be duplicated. The internal number can only be
referenced from the Host Language Interface routines.

Determines the data entry level for this field (see ADD). This number
must be O, or between 2 and 9. inclusive. Three (3) is the default
(see ADD).

Determines whether or not a dollar sign should be printed. FIXED
places the dollar sign in the left-most print position for the field.
FLOAT places it immediately to the left of the first nonblank
character. NONE. the default specifies that no doilar sign should be
printed. This keyword cannot be used on ALPHABETIC or date fields.

Determines whether or not commas should be used to format numbers
(e.g., 23.483.327.84). NO is the default. This keyword cannot be used
on ALPHABETIC or date fields.

Changes the fieldname. This keyword is only valid in the MODIFY
command or the Host Language Interface BIND procedure.

Changes the type of the field. This keyword is only valid in the Host
Language Interface BIND procedure.

Changes the printsize of the field. This keyword is only valid in the
MODIFY command and the Host Language Interface BIND procedure.

CREATE FILE

EXAMPLES: -

Create a RELATE/3000 file called SALES.

JCREATE FILE SALES; FIELDS=(NAME A, 208), (NUMBER,1,6), (SALES,1,5)
THE "SALES" FILE HAS BEEN CREATED AS A PERMANENT RELATE/30€e FILE.

Create a RELATE/3000 file called CUST.

JCREATE FILE CUST; TYPE=RELATE
ENTER FIELDNAME ,TYPE,LENGTH[. DECIMALS]

17 NAME , A, 20

27?7 NUMBER,1,6
3? ADDRESS,A,26
47 CITY A, ,14

5? ST,A,2

6? PHONE,A,S8

77 //
THE "CUST" FILE HAS BEEN CREATED AS A PERMANENT RELATE/30020 FILE.

Create a temporary MPE file with the same structure as the CUST file without state or
phone number and including a fieid cailed DATE_UPD.

JCREATE FILE MPECUST; TYPE=MPE; RETENTION=TEMP; STRUCTURE=CUST; &
&)FlELDS=NAME,NUMBER.ADDRESS,CITY.(DATE_UPD,R,B.G;FORMAT="MM/YY/DD")"
THE "MPECUST" FILE HAS BEEN CREATED AS A TEMPORARY MPE FILE.

Create a RELATE file called INVOICE.

JCREATE FILE INVOICE
ENTER FI1ELDNAME TYPE,LENGTH[.DECIMALS]

1?7 INVNO,1,6

2? NAME A, ,20

3?7 NUMBER,1.6

47 ST,A,2

5?7 AMOUNT ,REAL,.8.2;DOLLAR=FIXED
6?7 TAX,R,6.2

7?7 SALES_MAN,INT,S

82 [//
THE "INVOICE" FILE HAS BEEN CREATED AS A PERMANENT RELATE/39@® FILE

Create a RELATE file called CUST1 with the same fields as CUST and a LOCATION field.

JCREATE FILE CUST1; STRUCTURE=CUST,; FIELDS=0, (LOCATION,A, ,12)
THE "CUST1” FILE HAS BEEN CREATED AS A FERMANENT RELATE/3000 FILE.

Create a RELATE file called TMPCUST with retention=NONE containing fields from CUST

that begin with the letter N (Name and Number). See the Pattermmatching section for
further information. -

252

CREATE FILE

JCREATE FILE TMPCUST; RETENTION=NONE; STRUCTURE=CUST; FIELDS=XN
THE "TMPCUST"™ FI1LE HAS BEEN CREATED AS AN OPEN TEMPORARY RELATE/3020

FILE.

)SHOW

FILE NAME =TMPCUST .DOC79 RDB
T
Y PRINT INT

NAME P LEN SIZE

NAME A 20 208

NUMBER I 6 1W

PRINT LINE WIDTH = 33 CHARACTERS.

)

2-53

CREATE FILE

254

CREATE INDEX

CREATE INDEX [rumber] BY fieldlist [[UNARY]

Creates a new index for the current file. The current file must be a RELATE/3000 file
to which the user has exclusive access. If the file exists in a secured group, the user
must be the creator to index it.

number Optional. If the index number desired is not specified, the next
available number is used. Zero is reserved for the line number. Up
to thirty additional indexes, numbered 1 through 30, may be created

for the file.

fieldlist Reauired. A list of one or more fields by which the file should be
indexed.

LOCALS Optional switches appended to any fieldname in the fieldlist.

:A Ascending field (default).
:D Descending field.

UNARY Optional. If specified, a key may not be dupicated in the index. Any
attempt to add a record with a duplicate key will generate an error.
If duplicate keys already exist, the unary index will not be created.

Each index may contain muitiple fields and the fields need not be contiguous in the data
record or of the same data type. An index can be a maximum of fifty words in length.
A maximum of eight fields may be included in any one index. A field may exist in as
many indexes as desired.

tf the value of a field that exists in one or more Indexes is changed, all appropriate
indexes will be automatically updated to reflect the change.

Indexes may be created regardless of the amount of data in the current file. If a large
file 1s being created i1t is more efficient to create the index structure after the file has
been loaded.

EXAMPLES:

A file must be current to create an index. Index the INVOICE file by NAME and
NUMBER. Create an index numbered 3 by NUMBER and INVNO. Show the indexes.
Create a descending index by AMOUNT: if no index number is specified, the lowest
available number is used.

)SET PATH INVOICE

JCREATE INDEX BY NAME, NUMBER
INDEX #1 HAS BEEN CREATED

13 LINES INDEXED

INDEX #1 1S NOW THE CURRENT [NDEX
JCREATE INDEX 3 BY NUMBER, INVNO

2-55

CREATE INDEX

INDEX #2 HAS BEEN CREATED.

13 LINES INDEXED.

INDEX #3 IS NOW THE CURRENT INDEX.
)SHOW INDEXES

FILE NAME =]INVOICE.DOC79 .RDB

INDEX 1 BY NAME NUMBER

WORDS IN KEY (+NODE) : 13 (+1)
DISTRIBUTION c2.2

LEVELS IN TREE co

NUMBER OF USED NODES : 1

INDEX 3 BY NUMBER,INVNO (CURRENT INDEX)

WORDS IN KEY (+NODE) : 4 (+1)
DISTRIBUTION N

LEVELS IN TREE ©

NUMBER OF USED NODES : 1

JCREATE INDEX BY AMOUNT:D

INDEX #2 HAS BEEN CREATED.

13 LINES INDEXED.

INDEX #2 1S NOW THE CURRENT INDEX.

Create a unary index for customer NUMBER in the CUST file. If any duplicate NUMBERs
exist, this would be disallowed. In the future, entry of any dupiicates will be prohibited.
Then create an index by NAME and print NAME and ADDRESS. (Note that NAME need
not be specified as it is the current key and will print automatically.)

)SET PATH CUST
JCREATE INDEX BY NUMBER; UNARY
INDEX #1 HAS BEEN CREATED

8 LINES INDEXED.

INDEX #1 1S NOW THE CURRENT INDEX.
JCREATE INDEX BY NAME

INDEX #2 HAS BEEN CREATED.

8 LINES INDEXED.

INDEX #2 1S NOW THE CURRENT INDEX.
YPRINT ADDRESS

NAME ADDRESS

ALEXANDER HALE & CO. 83A SAN PEDRO

AMERICAN TIRE CO. 7052 £EL CAMINO REAL
CUPERCO 10802 WILKINSON AVENUE
DEXMACH, INC PO BOX 1567

FINCH, FINCH, & OTTO 87 NORTH FIRST, SUITE 243C
HASLETREX INC. 89 BEST WAY

NATIONAL AIRLINES SAN FRANCISCO INTL AIRPORT
PERFECT SOUND 415 FAIR OAKS AVENUE

8 LINES PRINTED.
)

2-56

CREATE ViEw

CREATE VIEW viewname
viewcommands

Creates a view and stores it permanently.

2 Optional global switch. If a CREATE VIEW command is used in a
procedure, the view commands are requested from the user's terminal
($STINDX) unless a global “I" switch is used, view commands are
obtained from the procedure file(s). The switch 1s ignored if a
procedure is not executing.

:D Optional global switch. [If used, the VIEW is added to the RDBDD
file. Otherwise, it is added to the log-on group as a file. This switch
can only be specified by an account librarian executing in the PUB
group.

viewname Required. The name of the view. The name must be from 1 to 8
characters long, start with a letter, and contain only letters and
digits. The name cannot duplicate the name of an existing view or
file.

viewcommands Reaquired. A sequence of one or more OPEN commands followed by a
SELECT command. The REDO command can be used to edit a
viewcommand which caused an error. The REDO command does not
become part of the view definition.

A view is a logical file created by a user or the DBA to simplify access to data. VIEWS
can also be used to impose additional security restrictions on IMAGE datasets and to
isolate users and applications from most changes to a database format.

A view s composed of one or more OPEN commands followed by a SELECT command.
The OPEN commands are executed when the view is created. The SELECT command is
checked for proper syntax and to ensure that the required path names exist. The files
opened during the creation of the view are closed when the view is complete if the
global D switch has not been specified.

Virtually no time is taken constructing a view since no data i1s accessed until a view is
used. When a view 1s OPENed or CLOSEd the files underlying the view are OPENed or
CLOSEd. Wnhen the view is queried, the files that comprise the view are referenced.

When the DBA defines a view. any security provisions attached to the underlying files are
ignored when the view is accessed. Thus, the DBA can aliow a user access to different
information than would normally be allowed by a users security provisions. When a user
creates a view the security conditions from the underlying files are enforced.

A view is a dynamic window on the database and 1s not a copy of its contents. Changes

to the database immediately affect the contents of the view. To access data through a
view the OPEN FILE command is used.

2-57

CREATE VIEW

EXAMPLES:

Create a view using fields from the INVOICE and CUST files. We want to know the
SALES_MAN, the customer NUMBER, the customer NAME and PHONE number, and the
INVOICE number. We link the files using the customer NUMBER.

JCREATE VIEW ACTIVE
-OPEN FILE INVOICE; PATH=IN

~OPEN FILE CUST; PATH=CU

-SELECT IN.SALES_MAN, CU.NUMBER, CU.NAME, CU.PHONE., &
&— IN.INVNO UNIQUE BY NUMBER, INVNO &

&- WHERE CU.NUMBER=IN.NUMBER

THE "ACTIVE" VIEW HAS BEEN CREATED.

)SHOW PATH

PATH NAME FILE NAME DATABASE NAME

ACTIVE ACTIVE (CURRENT PATH)
CUST CuUsST CUST.DOC79 .RDB

CUST1 CusT1 CUST1 .DOC79 .RDB

)SHOW CURRENT
SELECTION
MAXIMUM RECORDS =4096

FILE TYPE =SELECTION
RECORDS CANNOT BE ADDED., UPDATED, OR DELETED.

YPRINT

NUMBE INVNO SALES NAME PHONE
100 33 99 DEXMACH, INC. 800-2111
100 105 83 DEXMACH, INC. 800-2111
100 106 87 DEXMACH, INC. 80@-2111
500 727 87 AMERICAN TIRE CO. 941-0000
500 747 83 AMERICAN TIRE CO. 941-0000
500 8663 36 AMERICAN TIRE CO. 941-0000
700 10002 45 ALEXANDER HALE & CO. 712-1385
1000 10221 36 NATIONAL AIRLINES UNLISTED
1000 10455 36 NATIONAL AIRLINES UNLISTED

9 LINES PRINTED.
)

2-58

DELETE

[range] DELETE [FOR condition]

Deletes records from the current file.

range Optional. If used, only records in the specified range wiil be deleted.
See the RANGE section.

FOR condition Optional. If used, only records meeting the specified condition will be
deleted. See the EXPRESSION EVALUATION section.

Either a range or a condition must be specified if executed interactively from the
Command Interpreter. Both the range and condition may be left off when the command
is executed through the Host Language Interface routines.

Records are not physically removed from a RELATE/3000 file during a delete unless the
DELETE=PHYSICAL option has been specified with the MODIFY FILE command.
Otherwise, records are flagged so that they are ignored in subsequent processing. These
flagged records can be made usable again with the RECOVER command.

Records may not be deleted from MPE files.
EXAMPLES:
Delete records from the INVOICE file where NUMBER is between 500 and 1000 and TAX
iIs less than one hundredth of the AMOUNT.
JSET PATH INVOICE

JSET INDEX 3
INDEX #3 1S NOW THE CURRENT INDEX.

JPRINT
NUMBER INVNO NAME ST AMOUNT TAX SALES
100 33 DEXMACH, INC. CA $ 348.70 18 9o 99
100 105 DEXMACH, INC . CA % 86 .32 4 81 83
100 126 DEXMACH, INC . cCA % 76 40 1 10 87
400 2738 CUPERCO CA 3$ 948 690 32 .40 36
40@ 10044 CUPERCO CA $ 50 @@ 35 99 99
400 23557 CUPERCO CA $ 37 00 3.00 86
500 727 AMERICAN TIRE CO. CA % 3 14 1.59 87
500 747 AMERICAN TIRE CO. CA % .97 2.00 83
500 8663 AMERICAN TiRE CC. CA $ 86.00 1,32 16
760 186002 ALEXANDER HALE & CO NJ $ 995 99 9.99 a5
800 33 PERFECT SOUND VA $ 877 77 3 33 83
1000 10221 NATIONAL AJRLINES CA $ 627 81 88 07 36
1606 10455 NATIONAL AIRLINES CA $ 335 00 40 20 36

13 LINES PRINTED.

2-59

DEiLCTE

})560/1966 DELETE FOR TAX<AMOUNT. 01

3 LINES ODELETED.
JPRINT
NUMBER INVNO NAME ST AMOUNT TAX SALES
tee 33 DEXMACH, INC. CA $ 348.70 18.00 99
100 15 DEXMACH, INC CA % 86 .32 4 . 81 83
1eQ 106 DEXMACH, INC. CA § 76 .40 t1.10 87
400 2738 CUPERCO CA $ 948 .60 32.40 36
400 19044 CUPERCO CA $ 500 .00 35.99 99
400 23557 CUPERCO ca ¢ 37 .00 3.00 86
500 727 AMERICAN TIRE CO. CA % 3.14 1.59 87
500 8663 AMERICAN TIRE CO. CA 3 86 09 1.32 36
10080 10221 NATIONAL AIRLINES CA $ 627 .01 88 .07 36
1000 19455 NATIONAL AIRLINES CA $ 335.00 40 .29 36

19 LINES PRINTED.

)

2-60

DENY READIDELETEIADDICHANGE!IALL ON file
[BY userlist]

Allows the DBA to revoke previously permitted file operations.

file Reaquired. The name of a RELATE, MPE, or KSAM file or the name
of a view that exists in the log-on account.

BY userlist Optional. If the BY keyword is used, this must be one or more user
names separated by commas. If not included, an atsign ("@") is
assumed.

The command can only be executed by an account librarian (a user with AL capability)
executing in the PUB group.

If a DENY is issued for a file and user combination that does not exist, no error is given
and the request is ignored.

The PERMIT command can be used to counteract the DENY command.
EXAMPLES:

The DENY command can be used in conjunction with the PERMIT command to create the
desired security structure. For instance, to deny all users except MGR access to the file
SECURE, both the PERMIT and DENY commands must be used. Note that if BY is not
specified, the default is all ("@").

JDENY ALL ON SECURE
JPERMIT ALL ON SECURE BY MGR

In addition, the DENY command can be used to revoke previously PERMiTted access. If
specific users had been PERMITted certain access capabilities to a file, that user must be

again specified In order to affect his access. For instance, the following command will
have no effect as ALL capabilities are already denied for all users. and the user MGR is
not specified so his access is not changed. The second command would be needed to

alter access capabilities for MGR.

}JDENY CHANGE ON SECURE
JDENY CHANGE ON SECURE BY MGR
)

2-61

DENY

2-62

DISABLE DATA LOGGING

DISABLE DATA LOGGING
[IN grouplist)

Instructs RELATE to discontinue logging changes to RELATE files in the indicated groups.

IN grouplist Optional. Specifies the groups in which fogging will no longer be
performed. When specified, this list must contain one or more group
names separated by commas. If the keyword "IN" is not specified,
logging in all groups will be discontinued.

This command can only be executed by an account librarian (a user with AL capability)
executing in the PUB group. The RELATE dictionary must have previously been created.

The command will not have any effect on any file previously opened.

For more detailed information on logging see the TRANSACTION PROCESSING section.

2-63

DISABLE DATA LOGGING

2-64

DISABLE EVENT LOGGING

DISABLE EVENT LOGGING
[BY userlist]

Instructs RELATE to discontinue logging event data for the indicated users.

BY userlist Optional. Specifies the users for which the events should no longer be
logged. When specified, the userlist must contain one or more user
names separated by commas. |If the list is not provided the special
items will be logged for all users.

This command can only be executed by an account librarian (a user with AL capability)
executing in the PUB group. The RELATE dictionary must have previously been created.

This command will not affect users currently running RELATE.

For more detailed information on logging see the TRANSACTION PROCESSING section.

2-65

DISABLE EVENT LOGGING

2-66

DISABLE SECURITY

DISABLE SECURITY
[IN grouptist]

Reinstates a non-secure environment in the groups specified. After the security system is
disabled in a group, access to files in the group is no longer restricted in any way by
RELATE.

IN grouplist Optional. Specifies the groups in which security will be suspended. |If
the list is specified, it must contain one or more group names
separated by commas. If the keyword is not specified, an atsign {"@")
is assumed.

The command can only be executed by an account librarian (a user with AL capability)
executing in the PUB group. The RELATE dictionary must have previously been created.

The command will not have any affect on users running in the groups until RELATE s
restarted. The command takes effect the next time a particular group’s security status is

required.

Use of the DISABLE SECURITY command does not modify any lower level provisions
issued by the ALLOW or PERMIT commands: it simply causes them to be ignored. This
command can be used to suspend the provisions in a set of groups to allow file
reorganization without regard to the capabilities ALLOWed individual users. After the
reorganization has been completed, the ENABLE SECURITY command can be used to
restore the secure environment.

EXAMPLES:

The DISABLE SECURITY command causes RELATE to ignore all security provisions
created with the PERMIT, DENY, ALLOW, and DISALLOW commands. If no GROUP is
specified, all ("@") are assumed to be DISABLEd. If a specific group was ENABLEd, its
name must be specified to DISABLE it.

JDISABLE SECURITY
JDISABLE SECURITY IN THISONE
)

2-67

DISABLE SECURITY

268

DISALLOW

DISALLOW functions
[BY usertist]
[IN grouplist]

Removes capabilities from a matrix that indicates what operations a user can perform in
a particular group.

functions Required. Specifies the functions that can no longer be performed by
the given users in the given groups. The following functions may be
disallowed:
ALL Disallows all functions.
SF-PERMANENT Create permanent or temporary files.
SF-TEMPORARY Create temporary files.
|A-Cl Interactive Command Interpreter access.
IA-PROG Interactive programmatic access.
BA-CI Batch Command Interpreter access.
BA-PROG Batch programmatic access.

BY userlist Optional. Specifies the user names for which the functions will be

disallowed. If the BY keyword is used, the list must contain one or
more user names separated by commas. |f the keyword is not used,
an atsign ("@") is assumed.

IN grouplist Optional. Specifies the groups in which the users can no longer
perform the given functions. |f the IN keyword is used, the list must
contain one or more group names separated by commas. If the
keyword is not used, atsign ("@") is assumed.

This command can only be executed by an account librarian (a user with AL capability)
executing in the PUB group.

The record for each user-name group-name combination is searched for in the
RDBDD.PUB file. If the record is not found, one is added that inhibits the functions
specified. If the record is found, the record is changed so that all functions specified are
disabled.

The DISALLOW command will not affect the users and groups specified until RELATE is
restarted.

The ALLOW command can be used to reinstate capabilities which have been
DISALLOWED.

2-69

DISALLOW

EXAMPLES:

To ensure that a certain function will be available to a group or user, the ALLOW
command is used.

JALLOW BA-PROG BY RADNOR

If GROUP is not specified, an atsign ("@") is assumed. The same is true for USER. In
this example, batch programmatic access would be disallowed for everybody except for
the User RADNOR, as the specified function capability for him overrides the general
case.

)DISALLOW BA-PROG

2-70

ENABLE DATA LOGGING

ENABLE DATA LOGGING [IN grouplist] TO iogfile

Instructs RELATE to begin logging changes to permanent RELATE files in the indicated
groups. The log can subsequently be used to recover files and changes to files after a

system failure.

IN grouplist

TO logfile

Optional. Specifies the groups in which logging will be performed. If
the list is specified it must contain one or more group names
separated by commas. If the group list is not specified the system
will log file changes in all groups.

Required. The name of the log file which should be used. The file
must have previously been created using MPE commands.

This command can only be executed by an account librarian (a user with AL capability)
executing in the PUB group. The RELATE dictionary must have previously been created.

The command will not have any effect on users or files running in the specified groups
until RELATE is restarted.

For more information on logging see the TRANSACTION PROCESSING section.

2-71

ENABLE DATA LOGGING

2-72

ENABLE EVENT LOGGING

ENABLE EVENT LOGGING [OF events] [BY userlist] TO logfile

Instructs RELATE to begin logging the events specified for the users specified.

OF events

BY userlist

TO logfile

Optional. Specifies the special events which should be logged. If the
items are specified the list must be composed of one or more of the
following keywords:

COMMANDS Log commands issued by the wuser or the user's
application.

STARTUP Logs initializations and termination of RELATE.

ACCESS Logs the names of files and data bases which the user
has accessed.

Optional. Specifies the users for which the events should be logged.
The iist must contain one or more user names separated by commas.
If the list is not provided the special items will be logged for all
users.

Reaquired. The name of the log file which should be used. The file
must have previously been created using MPE commands.

This command can only be executed by an account librarian (a user with AL capability)
executing in the PUB group. The RELATE dictionary must have previously been created.

The command will not have any effect on users currently running RELATE.

For more information on logging see the TRANSACTION PROCESSING section.

2-73

ENABLE EVENT LOGGING

2-74

ENABLE SECURITY

ENABLE SECURITY
[IN grouplist]

Creates a secure RELATE/3000 environment in the groups specified. After the security
system has been enabled., access to all files in the group is restricted to users who have
specifically been granted access.

IN grouplist Optional. Specifies the groups in which a secure environment will be
enforced. If the list is specified it must contain one or more group
names separated by commas. |If the keyword is not specified, atsign
("@") will be assumed.

This command can only be executed by an account librarian {a user with AL capability)
executing in the PUB group. The RELATE dictionary must have previously been created.

The command will not have any affect on users running in the groups until RELATE is
restarted. The command takes effect the next time a particular group's security status is
required.

Because of security provisions within MPE, users who have not logged-on to the secured
group or who do not have the secured group as their home group may be unable to access
any information within the group. It may be necessary to alter the security provisions on
the group to allow access to any user. Unfortunately, this then allows users who have a
knowledge of the system to perform unauthorized operations (e.g., copying) with the files.
This problem can be partially resolved by assigning different users different capabilities
which can be screened by MPE.

The DISABLE SECURITY command will cancel the effect of ENABLE SECURITY.
EXAMPLES:

The ENABLE SECURITY command puts into effect all security provisions created with the
PERMIT, DENY, ALLOW, and DISALLOW commands. If the ENABLE command is never
executed, the data dictionary will never be checked and no security will be provided. The
following command will ENABLE security in only the ONLYONE group.

JENABLE SECURITY IN ONLYONE
)

2-75

ENABLE SECURITY

2-76

END, EXIT, OR //

END, EXIT, or //

Terminates access to RELATE/3000.

:C Optional global switch. Prints the total CPU time used in this run.

T Optional global switch. Prints the connect time used since
RELATE/3000 was run.

When END or EXIT is executed, the user is returned to the MPE executive where he can
log off the system. If the command is executed in the Host Language Interface routines,
all files are closed and all cursors are released.

When RELATE/3000 is executed in a job, the CPU time and connect time used are always
printed when RELATE terminates.

2-77

END, EXIT, OR //

2-78

ERASE FILE

ERASE FILE filename [:DATABASE=databasename]

Erases (deletes all of the records from) the indicated file. If the file is in a secure group,
the user must be the creator of the file in order to erase it.

filename

databasename

The name of the file to be erased. The file must have an open path.
An IMAGE master set can only be erased if no detail sets contain
entries that reference the set. An MPE file can be erased even though
records may not be deleted on an individual basis. A VIEW cannot be
erased.

The database in which the file resides. This parameter must be
specified to erase an IMAGE dataset.

The ERASE FILE command will cause any pending SELECT command to be cancelled.

A file cannot be erased while a transaction is in progress.

Once a file has been erased, the RECOVER command will no longer have any effect.

EXAMPLES:

Erase CUST1 and try printing it to verify that it is indeed empty.

YSET PATH C
YPRINT NAME

$LINE NAME

1 LSIT A
2 10wa

2 LINES PRI
YERASE FILE
JPRINT NAME
NO LINES PR

)

UsST1

EROSPACE
STORM DOOR CO.

NTED .
CUST1

INTED.

2-79

ERASE FILE

2-80

EXECUTE

EXECUTE filename
[:SHOW[=YESiINOiSAME]]

Executes RELATE/3000 commands from a file.

filename Required. The file must exist in either the permanent or temporary
domain, and must be a numbered or unnumbered ASCIl MPE file. The
file can be created with the HP EDITOR. The file should contain the
RELATE/3000 commands to be executed. The command lines (not the
entire command} should be a maximum of 250 characters.

SHOW Optional. If specified, the keyword may be followed by YES, NO, or
SAME. If YES is specified {or SHOW is not followed by a keyword)
the commands will be shown as they are executed. if SAME is

specified, SHOW will be set to the same status as the calling
procedure file. If SHOW is not specified, NO is assumed.

EXECUTE commands may appear in procedure files. Files may be nested until memory
space cannot be obtained for reauired buffers.

All informational and warning messages generated by RELATE/3000 are suppressed when a
procedure is executing uniess the SHOW option is used.

I¥f an error occurs during a procedure, and the user did not reguest that the error be
ignored, the error is reported and all procedure files are closed.

Commands that accept data from the user {ADD, CHANGE, CREATE FILE, and CREATE
VIEW) will still request data at the standard input device unless these commands contain
a global "I" switch.

Procedure files may also be invoked by enclosing them in braces (“{" and "}"). A
procedure file may be invoked at any prompt. If the SHOW option is desired. it must
appear inside the braces.

If a file called RDBIN exists in the user's log-on group. the commands in this file are
executed before RELATE/3000 prompts the user for commands at the terminal.

A procedure file may be cancelied by entering a Control-Y.

Commands in procedure files may extend onto more than one line. As when using
RELATE directly. each command line that will be continued on the next line must end
with an ampersand ("&"). The HP EDITOR will allow the user to add a line with an
ampersand if the last character on the line is a blank (eg., the last two characters are
"&).

Commands in a file may extend over up to 100 lines and contain up to 1500 characters.

If the continuation lines are indented for readability, the spaces at the beginning of the
line are included in the 1500-character count.

2-81

EXECUTE

EXAMPLES:

Execute a procedure file containing RELATE commands. First, execute it using the
EXECUTE statement and not showing the commands as they execute; then, execute it by
enclosing it in braces and also show the commands as they execute.

):EDITOR
HP32201A.7.08 EDIT/3000 FRI, SEP 24, 1982, 10:36 AM
(C) HEWLETT-PACKARD CO. 1988

/JTEXT DOITY

JLIST ALL

1 NOTE PROCEDURE FILE BEGINS

2 SHOW PATH

3 NOTE PROCEDURE FILE ENDS
JEND

JEXECUYE DOIT

PATH NAME FILE NAME DATABASE NAME
CusST CusT CUST . DOC79 RDB
CUST1 ' CUsST1 CUST1.DOC79.RDB

){DOIT;SHOW}
JNOTE PROCEDURE FILE BEGINS
)SHOW PATH

PATH NAME FILE NAME DATABASE NAME
CuUsST cusT CUST.DOC79.RDB
CUSTH1 CUST1 CUST1.DOC79.RDB

JNOTE PROCEDURE FILE ENDS
)

282

FIX FILE
FIX FILE filenameifileset [[CREATOR]

Converts files from the RELATE 4.4 format to the RELATE 4.5 format.

filename Required if a fileset is not given. If specified., this must be the name
of a file in the logon account. The filename may contain a lockword.

The indicated file will be converted.

fileset Required if a filename is not given. |If specified, the fileset must be
a valid MPE file template referencing files in the current account.
All RELATE files in the template will be converted. Any file with a
lockword will be skipped.

CREATOR Optional. If specified, only files created by the current user will be
converted. This keyword should be used when files converted in
secured groups or application programs depend on specific creator
names.

As each file is accessed, i1ts name s displayed followed by the current MPE end of file
and the name of the creator of the file. An asterisk ("*") is diplayed as successive
tenths of the file are copied. As each index is created the index number is displayed.
Finally, the sectors of storage used by the original file and the resulting file are
displayed. Converted files generally use less disc space than the original if the original
file had a wide record size. contained many records, or was indexed. If the original file
was not indexed or the data could not be compressed significantly the new file will use
more space than the original file.

EXAMPLES:

You may specify one file or a fileset to convert at one time. An asterisk is printed as
each tenth of the file is converted, then the index numbers are displayed as they are
converted.

JFIX FILE OLDCUST

CREATOR oLD NEW
FILENAME RECORDS NAME PROGRESS SECTORS SECTORS
OLDCUST .DOC7¢9 253 DOC79 LI I I A RN 71 56

)

283

FIX FiLE

2-84

FiX FORMAT

FIX FORMAT MAP=mapfile
‘FROM-=inputfile [(EBCDIC]
TO outputfile

The FIX command copies information from the input file to the output file and reformats
each record according to the specifications in the mapfile. The purpose of the FIX
command is to align and translate the data in existing tape, KSAM, or MPE files onto
word boundaries.

MAP Reaquired.

mapfile An editor file containing a description of the input file. One record
should exist for each field or filler that exists in the input file. The
format for each record should be:

[fieldname], datatypel. length|[decimals]]

fieldname The fieldname should be the name of a field that exists
in the output file. If the field does not exist a warning
will be issued. if a fieldname is not given, the
information occupying the space indicated by the data
type and length will be ignored.

datatype The datatype is the first letter of a RELATE/3000 data
type.

length The length should represent the number of bytes (or
nibbles in the case of packed numbers) that comprise the
input field. (This should ALWAYS be 2 for integer and
unsigned, 4 for Double and Real. 8 for Long). If the
data type is packed or zoned the number of decimals
shouid aiso be given. If not specified. the data type
must be I, D, R. L, or U.

FROM Required. Specifies the name of an existing MPE or KSAM file that
will be reformatted. The file must contain fixed length records. The
file may be a tape {serial) file.

EBCDIC Optional. If specified, this causes alphabetic and zoned fields in the
input to be translated from EBCDIC to ASCIL.

TO Reauired. Specifies the name of the file into which the inputfile wil!
be translated. The file must already exist and may not be open In
the current cursor.

FIX FORMAT

EXAMPLES:

The FIX command copies information from a source file (which may be a tape file) into
an existing RELATE file. The command can align fields that exist on byte boundaries,
translate from EBCDIC to ASCIH, skip fiiler, and do data type conversion.

To use the command an output file is required.

JCREATE FILE FIXOUT; RETENTION=TEMPORARY
ENTER FIELDNAME,TYPE,LENGTH[.DECIMALS]

1?2 PART,A, 4

2? DESC,A,15

372 QTY, 1,4

42 //
THE "FIXOUT" FILE HAS BEEN CREATED AS A TEMPORARY RELATE/3000
FILE.
JCLOSE FILE FIXxOUuT

A map file is required to inform RELATE of the relationship between the fields in the
source file and those in the output file. The missing fieldname (in the second line of the
map) indicates a filler item which should not exist in the output file.

:EDITOR

HP322@1A.7 12 EDIT/30000 FRI, MAR 19, 1982, 11:93 AM
(C) HEWLETT-PACKARD CO. 1981

/ADD

PART ,A,3

LA, 2

DESC A, 12

QTY, A3

//

N b wWN =

/KEEP FIXMAP
JEXIT

The source file for this example is an unnumbered EDITOR file containing inventory
information in an out of date format.

:EDITOR

HP32201A.7 .10 EDIT/30000 FRI, MAR 19, 1982, 11:04 AM
(C) HEWLETT-PACKARD CO. 1981

JTEXT OLDINVEN

/LIST ALL

1 16@02VISE GRIPS 001

2 10102HAMMER 2e3s

3 1@302SCREWDRIVER 034

4 10504 LEVEL 223
JEXIT

2-86

HELP

HELP [commandname] [requests]
HELP ERROR errorrange

Displays information concerning RELATE/3000 commands or errors.

commandname

requests

ERROR

Optional global switch. Form-feeds the output. The HELP command
will attempt to prevent the output from overlapping page boundaries.

Optionai giobal switch. if used, output is directed to the file
RDBLIST. If RDBLIST cannot be opened, the output is directed to the
device class "LP". Also sets the global "F” switch.

Optional. A RELATE command about which information is desired.
One or two keywords of the command name may be specified (eg:
OPEN or OPEN FILE). If only one keyword is supplied and it is
ambiguous, the user will be prompted for the second keyword.

Optional. If a commandname is specified, one or more of the
following may be regquested in addition:

ALL Enables SYNTAX, PURPOSE, KEYWORDS,
EXAMPLES, and DESCRIPTION.

DESCRIPTION Displays miscellaneous information about the
command.

EXAMPLES Displays examples of the command's use.

KEYWORDS Displays explanations of the parameters in the
command.

PURPOSE Dispiays the purpose of the command.

SYNTAX Displays the complete syntax of the command.

If a commandname 1s not specified, one of the following may be
requested:

COMMANDS Lists all RELATE/3000 command names.

FUNCTIONS Displays the names of all functions and
system—defined fields which can be used in
RELATE.

Optional. If used, the keyword must be followed by a RELATE error
number or range of error numbers whose text should be displayed.

2-89

HELP

EXAMPLES:

The HELP command can be entered to obtain further information about user actions and
command formats and functions.

JHELP
FORMAT :

HELP ERROR e

or

rreornumber | st

HELP [commondname] [requests]

wher

[

[.

— i — —

JHELP COMMANDS

ADD
COMPARE
DENY

END

HELP

LOCK

PLOT
REORGANIZE
SUM

e "requests"” =
SYNTAX]
PURPOSE])
,KEYWORDS]
,DESCRIPTION]
L EXAMPLES])

JALL]
ALLOW BEGIN CHANGE
COMPILE CONSOLIDATE cCoPY
DISABLE DISALLOW DRAW
ENDIF ERASE EXECUTE
IF IGNORE LABEL
MODI1FY NOTE OPEN
PRINT PURGE QuU1lzZ
REPORT SELECT SET
SYSTEM TERMINAL UNLOCK

If no requests are specified, SYNTAX is assumed.

YHELP ADD

OPTIONS: SYNTAX,
JHELP ADD PURPOSE

Adds

dota

OPTIONS: SYNTAX,

CLOSE
CREATE
ELSE
EXIT
LET
PAUSE
RECOVER
SHOW
UPDATE

ADD [SEPARATOR="chorccter")

PURPOSE, KEYWORDS., DESCRIPTION. EXAMPLES.

to the current fiie

PURPOSE, KEYWORDS, DESCRIPTION. EXAMPLES

If the first keyword is ambiguous, the alternatives for the second keyword are displayed.

JHELP SET

OPTIONS: INDEX,

WINDOW

JHELP SET PATH

PATH, DEFAULT, DEVICE, FRAME. SIZE,

SET PATH pathname

2-90

SPEED.

UNITITS,

COMMIT
DELETE
ENABLE
F1X
LIST
PERMIT
REDO
SORT

OPTIONS: SYNTAX., PURPOSE,
JHELP SET PATH KEYWORDS

prev
longer be the
pothname Regqu
that has
prev
tonger be the
cur

OPTIONS. SYNTAX, PURPOSE.
JHELP ERROR 1342/1345

1342 INVALID CHARACTER 1IN
1343 NUMBER 700 LARGE FOR

1344 NUMBER 7CO LARGE FOR

KEYWORDS, DESCRIPTION, EXAMPLES.
tously been opened but might
ired This is the pathname of

rous iy been opened but might
ent f i le

KEYWCRDS. DESCRIPTION, EXAMPLES.
NUMBER .

ITS TYPE.

1TS FIELD.

1345 MISSING DIGIT(S) AFTER SIGN.

2-91

HELP

file

HELP

2-92

IF [condition]

Allows conditional execution of commands.

If a condition is not specified, the command attempts to read a record from the current
path. f a condition is specified, the command can be interpreted as "IF there are any
records where the condition is true”. The condition may contain all items that are legal
in the WHERE clause of the SELECT command. The command attempts to read a record
from the path or file referenced by the condition, NOT from the current path or
selection (if there is one). This may sometimes appear to give results inconsistent with
what the user is trying to achieve.

if a record i1s found. execution of commands continues until an ELSE or ENDIF is found.
If a record is not found, commands are ignored until an ELSE or ENDIF is found. IF
commands may be nested.

ELSE

If a record was found which meets the IF conditions, commands between the ELSE and
ENDIF are ignored. Otherwise, execution resumes with the command following the ELSE
and continues until an ENDIF is found.

ENDIF

Marks the end of a set of commands to be executed conditionally. Commands following
the ENDIF will be executed regardiess of the result of the IF command. Exactly one
ENDIF must exist for each If.

EXAMPLES:

If there is a single value from some function that applies to the entire current path, you
can evaluate that value as true or false.

JSET PATH CUST

)IGNORE ALL ERRORS

JCOPY TO CUSTT,; TYPE=MPE; RETENTION=NONE

THE "CUSTT" FILE HAS BEEN CREATED AS AN OPEN TEMPORARY MPE FILE.
8 LINES COPIED.

J)IF $ERROR<>®

*#s+s RECORD NOT FOUND, CCMMAND EXECUTION SUSPENDED.

) NOTE:D The CUSTT file couldn't be created.

JENDIF

#*+» COMMAND EXECUTION RESUMED

2-93

IF

If you want to verify that your current path has at least one record in it, you can use
the {F function with no parameters.

JSELECT © WHERE ST="CA"

)IF

s+ss RECORD FOUND, COMMAND EXECUTION PROCEEDING.

) COPY TO CALCUST; RETENTION=NONE

THE "CALCUST" FILE HAS BEEN CREATED AS AN OPEN TEMPORARY
RELATE/30020 FILE.

6 LINES COPIED.

JELSE

s+«»+ COMMAND EXECUTION SUSPENDED.

) NOTE:D There are no customers in California.
YENDIF

»s+s COMMAND EXECUTION RESUMED.

The condition on the IF command has the effect of performing an internal SELECT with
the condition in the WHERE clause, so any current SELECTion has no bearing on the
evaluation of that condition.

JSELECT © WHERE ST="NJ"“

JPRINT

NAME NUMBE ADDRESS CITY

ST PHONE

ALEXANDER HALE & CO. 700 83A SAN PEDRGO ATLANTIC

ClTy NJ 712-1305

t LINE PRINTED.

YIF $MAX(NUMBER)>=1e0@

sess RECORD FOUND, COMMAND EXECUTION PROCEEDING.

JNOTE THIS HAS EVALUATED THE ENTIRE CUST FILE, NOT THE
CURRENT SELECTION.

YENDIF

)

2-94

IGNORE

IGNORE [ALL] ERRORI|S] |errornumber]

Allows the user to ignore errors on the next command and proceed in RELATE.

AlLL Optional. If specified, all RELATE errors will be ignored on the
following command only. If ALL s specified, no additional
errornumber may be specified.

errornumber Optional. If specified, this must be a RELATE error number to be
ignored on the following command only.

Either ALL or an errornumber must be specified. If an ignored error occurs on the
following command, the message "ERROR #num HAS BEEN IGNORED.” is printed but no
error condition results.

If an error was detected, the SERROR system—defined field will be set to the error
number of the ignored error. 3ERROR will remain set to this number until another error
is encountered or another IGNORE ERROR is executed. IGNORE ERROR resets $SERROR
to zero.

EXAMPLES:

The IGNORE ERROR command will ignore any specified errors that might occur on the
foliowing command.

JHELP ERROR 15

'S5 A CURRENT PATH DOES NOT EXIST (A FILE MAY NOT BE OPEN).

JIGNORE ERROR 15

JPRINT X

ERROR #15 HAS BEEN [GNORED.

JNOTE [f this same commond were to be entered again right
JNOTE now, error 15 would no longer be ignored.

)

2-95

IGNORE

2-96

LABEL

- [range] LABEL [modifiers] USING formatfiie[;options] [FOR condition]

Displays output in a user-specified format.

range

modifiers

Optional. If specified, only lines in the specified range will have
labels printed. See the RANGE section.

Optional global switch. If used, a forms alignment will not be
requested prior to labels being generated.

Optional global switch. If used, output is directed to the file RDBLIST.
If RDBLIST cannot be opened, the output is directed to the device
class "LP".

Optional. Can be any one or more of the following separated by
semicolons (";"):

Modifier Description Default
ACROSS=num Number of labels across the 1

page.
DOWN=num Number of labels down the unlimited

page. |f specified in
conjunction with a global ":P",
the FORMATTED option is
assumed. |f ":P” is not used,
printing will stop after each
set of labels to allow the
operator to insert a new form.

If ":P" is not used and
FORMATTED is specified,
output will be form-fed

(instead of pausing) after each
set of labels.

LINES=num Number of lines per label. 6

REPEAT=num Number of times a data record 1
is to be re—used.

WIDTH=num Width of each label in 40
characters.
SUPPRESS Suppresses the printing of not suppressed

blank lines in labels.

297

LABEL

formatfile

FORMATTED Formats the output in pages. not formatted
If specified in conjunction with
a global ":P", and DOWN s
not specified, the value of
DOWN is assumed to be the
configured number of lines per
page divided by the number of
lines per | a be | . | f
FORMATTED to the line
printer, 3 lines will be left at
the top and bottom of each
page.

The value of a modifier can be changed by records obtained from the
format file or by inclusion of the modifier in the command line.
Modifiers specified in the command line take precedence over those
obtained from the format file.

The final value of all modifiers must be greater than or equal to one.

Required. Any options listed in the OPEN command needed to access
the file must be appended to the filename, whether or not the file is
already open. The formatfile must contain output formatting
specifications. No more than 70 specifications may be included. The
first four fields of the file must be of the type indicated below:

FIELD TYPE USE

1 A The first character indicates the code of the
record. The code may be the first letter of any
of the local modifier switches (except
FORMATTED) or "C" or "F" indicating a constant
or a field. A "C" code indicates that field number
four contains a constant to be printed. An "F”
code indicates that field four contains a field name
and the data in that field is to be printed. See
modifiers, above, for other codes.

2 | The value of a modifier, or the line number on the
label where the data will appear for "C" and "F*
codes. If this is a line number, it must be less
than or equal to the number of lines on the label.

3 I The position on the label where the data wil] be
placed for "C" and "F" codes. This field is ignored
for all other codes.

4 A Contains an alphabetic constant if the code was a

“C", or a fieldname if the code was an "F". The
field is ignored for all other codes.

298

LABEL

The position field in the format file (field number three) may be any
value less than or equal to the WIDTH modifier. It may also be zero

or negative as described below:

VALUE ACTION

0 The next data value is positioned one space after
the last non-blank character.

-1 The next data value is positioned just after the
last nonblank character.

-2 Same as 0, but the data has all leading blanks
removed before it is used.

-3 Same as -1,

but the data has all leading blanks

removed before it is used.

The order of records in the format file is significant for the data that

will be output on any given line.

The system will place information

on a line in the order in which the data is read from the format file.

FOR condition Optional. If used, only records meeting the specified condition will
have labels printed. See the EXPRESSION EVALUATION section.

The command attempts to align odd-sized forms by spacing past the first form. This
simplifies form-loading by allowing odd-sized forms forms to be loaded as if they were 11

inches in length.

if the output file for the labels i1s an interactive device the user wiil be requested to

align the forms prior to the labels being generated.

EXAMPLES:

Create a format file for address labels.

JCREATE FILE FORMAT

ENTER FIELDNAME TYPE,LENGTH[.DECIMALS]

1?7 CODE, LA,

27 LINE, 1,2
32 POS.1,2
47 DATA,A,20
52 //

THE "FORMAT" FILE HAS BEEN CREATED AS A PERMANENT RELATE/3000

FILE

The format file will print "TO:" on line 1, position 1 of the address labei, NAME on line

2. position 1 followed by NUMBER at position 22.

2-99

ADDRESS will be on line 3. CITY on

LABEL

line 4, followed by a comma, then a space and STATE. The labe! WIDTH is specified as
being 40 characters.

)ADD SEPARATOR="/*
ENTER CODE/LINE/POS/DATA

CODE? C/1/1/T0:
CODE? F/2/1/NAME
CODE? F/2/22/NUMBER
CODE? F/3/1/ADDRESS
CODE? F/4/1/CITY
CODE? C/4/-1/.
CODE? F/4/0/ST
CODE? w/4@//

CODE? //

YPRINT

$LINE C LI PO DATA

1 C 1 1 70:

2 F 2 1 NAME

3 F 2 22 NUMBER
4 F 3 i ADDRESS
5 F 4 1 CITy

6 C 4 -1

7 F 4 e ST

8 W 490 [

8 LINES PRINTED

Now print the address labels using the information from the CUST file and the format in
the FORMAT file. Print the labels two across, making 3 copies of each, and overriding
the format file's WIDTH to 30. Print labels onty for customers outside of California.

YSET PATH CUST
JPRINT NAME, ADDRESS, ST

$LINE NAME ADDRESES ST
1 HASLETREX INC 89 BEST WwAY CA
2 DEXMACH, INC BOX 877 RD1 CA
3 CUPERCO 10802 WILKINSON AVENUE CA
4 AMERICAN TIRE CO. 7052 EL CAMINO REAL CA
S FINCH, FINCH, & OTTO 87 NORTH FIRST, SUITE 243C CA
6 NATIONAL AIRLINES SAN FRANCISCO INTL AIRPORT CA

2-100

8

)L
T0
AL
83
AT

TO0
AL
83
AT

TO
PE
41

7 ALEXANDER HALE & CO
8 PERFECT SOUND

LINES PRINTED.
ABEL ACROSS=2; REPEAT=3;
EXANDER HALE & CO. 700

A SAN PEDRO
LANTIC CITY, NJ

EXANDER HALE & CO. 700
A SAN PEDRO
LANTIC CITY, NJ

RFECT SOUND 800
S FAIR OAKS AVENUE

LAWRENCE, VA

2
6

DATA LINES USED.
LABELS PRINTED.

83A SAN PEDRO NJ
415 FAIR OAKS AVENUE VA

WIDTH=3® USING FORMAT FOR ST<>"CA"

T0:

ALEXANDER HALE & CO. 700
83A SAN PEDRO

ATLANTIC CITY, NJ

T0O:

PERFECT SOUND 800
415 FAIR OAKS AVENUE
LAWRENCE, VA

TO:

PERFECT SOUND 800
415 FAIR OAKS AVENUE
LAWRENCE, VA

2-101

LABEL

LABEL

2-102

LET

[range] LET assignment!,...] [FOR condition]

Makes arithmetic or alphabetic assignments to fields in the current path.

range Optional. If specified, only records in the range can be assigned. See
the RANGE section.

assignment Required. Has the format fieldname=expression, where the fieldname
must exist in the current file and the expression must be a valid
expression.

To make multiple assignments in the same command, separate the
assignments with a comma (",”). Multiple assignments are evaluated
from left to right.

FOR condition Optional. If used, only records meeting the condition will be changed.
See the EXPRESSION EVALUATION section.

Performing an assignment on a field that is either in the current index or in the
condition of the FOR clause may produce spurious results.

EXAMPLES:
Zero out all tax fields. Set tax to eaqual six and a nalf percent of AMOUNT for

California. and 9% of AMOUNT for New Jersey. All other states should remain at zero.

JSET PATH INVOICE

JPRINT
$LINE INVNGO NAME NUMBER ST AMOUNT TAX SALES
1 19221 NATIONAL AIRLINES 1e0@ CA $ 627 o1 88.07 36
2 10455 NATJIONAL AIRLINES 1000 CA § 335 00 40 .20 36
3 33 DEXMACH, INC. 1060 CA $ 348 70 18.009 99
4 2738 CUPERCO 490 CA $ 948 69 32.409 36
5 23557 CUPERCO 400 CA 3 37 .00 3.20 86
6 10044 CUPERCO 420 CA 3 500.00 35.99 99
7 195 DEXMACH, INC. 100 CAa ¢ 86 .32 4 .81 83
8 196 DEXMACH, INC. 190 CA % 76 .40 1.10 87
9 10002 ALEXANDER HALE & CO 70@ Ny $ 999 .99 9.99 45
10 33 PERFECT SOUND 8ee va $ 677.77 3.33 83
11 727 AMERICAN TIRE CO 50@ CA § 3.14 1.59 87
12 747 AMERICAN TIRE CO 5@ CaA §$ 0.97 ©.00 83
13 8663 AMERICAN TIRE CO. see Cca ¢ 86 .@¢0 1.32 36

13 LINES PRINTED

JLET TAX=0

13 LINES ASSIGNED

JLET TAX=AMOUNTs 865 FOR ST="CA"

2-103

LET

11 .LINES ASSIGNED.
JLET TAX=AMOUNTs .89 FOR ST="NJ"
1 LINE ASSIGNED.

JPRINT

$LINE

(o IR NI B & B R O R S

w0

10
11
12
13

INVNO

10221
10455
33
2738
23587
10044
15
106
100082
33
727
747
8663

NAME

NATIONAL AIRLINES
NATIONAL AJRLINES
DEXMACH, 1INC.
CUPERCO

CUPERCO

CUPERCO

DEXMACH, 1INC.
DEXMACH, INC.
ALEXANDER HALE & CO.
PERFECT SOUND
AMERICAN TIRE CO.
AMERICAN TIRE CO.
AMERICAN TIRE CO.

13 LINES PRINTED.

)

2-104

NUMBER

1200
1000
100
400
400
400
100
100
720
800
500
500
500

ST

CA
CA
CA
CA
CA
CA
CA
CA
NJ
VA
CA
CA
CA

G P P BB P PR B P R R

AMOUNT

627
335

348 .
348 .
37 .
500.
86 .
76 .

9989

677 .
3.
0.

86

. e
29
70
€9
20
00
32
49
99
77
14
97
.00

40 .
21

272
61

32.

90.

o o

TAX SALES

76
77
.67
.66
.40
Se
.61
.97
00
.00
.20
.06
.59

36
36
g9
36
86
99
83
87
45
83
87
83
36

LIST COMMANDS

LIST COMMANDS [rangelist]
[TO filename|;RECORDS=records}{;WIDTH=width]]

Lists the indicated RELATE commands.

P Optional giobal switch. Directs output to the file RDBLIST (usually

the printer). If RDBLIST cannot be opened, the output

the device class "LP".

is directed to

rangelist Optional. Specifies a range of RELATE command numbers to be
listed. If not specified, ail commands executed thus far will be listed

in the order of execution.

TO filename Optional. If specified, the indicated RELATE commands will be listed
to the file with this name. If the file does not already exist, it will
be created as a permanent ASCHl MPE file. Commands listed to a file

will be listed without command numbers.

RECORDS Optional. If specified, the keyword must be followed by an integer

WIDTH

indicating the number of records to allocate for the file referenced by
filename. If filename already exists, this parameter is ignored. If
filename does not exist and RECORDS is not specified, the number of
records defaults to 1024.

Optional. If specified, the keyword must be followed by an integer
indicating the width in bytes (characters) of the records for the TO
file. If filename already exists, this parameter 1s ignored. If
filename does not exist and WIDTH is not specified, the record width
defaults to 72 bytes.

This command can not be executed from the Host Language Interface routines.

EXAMPLES:

You can list previously executed commands either to your session or to a file. See the

LIST FILE command for the contents of the output file.
JLIST COMMANDS 2/6

JNOTE ssses These commands demonstrate LIST COMMANDS.
) :PURGE COMLIST

JCLOSE

JIGNORE ALL ERRORS

JOPEN FILE MPECUST, TYPE=MPE; STRUCTURE=CUST; FIlELDS=&
&) NAME, NUMBER, ADDRESS, CITY, (DATE_UPD.R,h8)

JLIST COMMANDS 2/6 TO COMLIST;RECORDS=180

THE "“COMLIST" FILE HAS BEEN CREATED AS A PERMANENT ASCII

)

2-105

FI1LE.

LIST COMMANDS

2-106

LIST FILE
LIST FILE filename

Lists the contents of the indicated text file.

P Optional global switch. Directs the output to the file RDBLIST
(usually the printer). if RDBLIST cannot be opened, the output is
directed to the device class "LP".

filename Required. The name of any file containing ASCIl (text) information.
The file may be numbered or unnumbered.

EXAMPLES:

The LIST FILE command can list the contents of any MPE text file (including EDITOR
files). Here, we list the contents of the file created with the LIST COMMANDS

command.
LIST FILE COMLIST

NOTE ssese These commands demonstrote LIST COMMANDS.
:PURGE COMLIST
CLOSE

IGNORE ALL ERRORS
OPEN FILE MPECUST,; TYPE=MPE; STRUCTURE=CUST; FIlELDS=¢&

NAME, NUMBER, ADDRESS, CITY, (DATE_UPD,R,8)

2-107

LIST FILE

2-108

LOCK

LOCK DATABASE databasename
LOCK FILE filename [:DATABASE=databasename]

indicates to RELATE what resources should be locked for the next transaction. The
LOCK command cannot be issued if a transaction IS in progress.

databasename Required if the DATABASE keyword is specified. This option will lock
the entire database indicated. The option can only be used on IMAGE
data bases.

filename Required if the FILE keyword is specified. The name of a file that is
currently open.

DATABASE Can only be specified when the file listed exists in an IMAGE data
base.

The LOCK command is used to inform RELATE of any files that will be changed in
subsequent commands. When the command is issued, RELATE verifies that the requested
jocks can be obtained. The locks cannot be obtained if the file is not open with a
locking option and is open with shared access or if multiple file locks are requested. The
LOCK command cannot be issued if a transaction is in progress.

The locks are not actually obtained from the operating system until an attempt is made
to read or write to one of the files for which locks are pending or untii a BEGIN
TRANSACTION command is executed.

Once locks are explicitly obtained through the LOCK command these must be released by
the user. Locks obtained by RELATE are held only for the duration of a command unless
the command is within a transaction. The locks automatically obtained are released when
the transaction completes. If a tramsaction is just beginning, RELATE may obtain more
locks. These locks are added to any the user may have requested and are not released
until the user issues an UNLOCK command.

EXAMPLES:
The LOCK command allows the user to place locks on specific files prior to the

execution of a sequence of commands.

YJOPEN FILE CUST; MODE=SHARE
YLOCK FILE CUST

2-109

LOCK

A SHOW FILES command can be used to determine what files have locks pending (which
is indicated by a "P") and which files are presently locked (which is indicated by a "Y").

)SHOW FILES

L

0

c

K FILE NAME DATABASE NAME
INVOICE INVOICE .DOC79 .RDB

P CuST CuUST.DOC79 .RDB

Once locks have been manually obtained the user must explicitly release them.

JUNLOCK
YSHOW FILES

L

o]

C

K FILE NAME DATABASE NAME
INVOICE INVOICE .DOC79 .RDB
CusT CUST.DOC79 .RDB

2-110

MODIFY

MODIFY FIELD fieldlist:formatlist

Alters the structure of a file by changing the format of existing fields.

fieldlist

formatlist

EXAMPLES:

Optional global switch. Keeps the changes permanently. This switch
can only be used on RELATE/3000 files. The user must be the creator
of the file or an account librarian and have exclusive access to the
file to use this switch.

Required. A list of one or more existing fieldnames, separated by
commas, that are to be modified. An atsign ("@") may be used to
represent all fields in the current file,

Reaquired list of one or more of the options described in the CREATE
FILE's FIELD OPTIONS section with the following exceptions:

1) The TYPE cannot be changed and must not be specified.

2) The NAME and INTERNAL keywords must not be specified if
more than one fieldname is included in the fieldlist.

3) A field cannot be changed to FORMAT="datestring” if it
currently has a numeric format specification, decimal places in
the print tength, or DOLLAR or COMMAS specified. The
reverse is also true.

4) [f NAME is given, it must be a valid fieldname that does not
already exist in the file.

5) if INTERNAL is given, it must be followed by an internal field
number that 1s not already in the file unless zero is specified.

6) The SIZE cannot be changed on an alphabetic field.

Change the name of the ST field to STATE. Change the print length of the NUMBER
field from 6 characters to 5. Note that where the global "K" (keep) switch is not used,
the changes will only be in effect until the CUST file is closed or RELATE is exited.

JSET PATH CUST

2-111

MODIFY

)SHOW STRUCTURE

FILE NAME =CUST DOC79.RDB

T c
Y PRINT 0
NAME P LEN $ M SPECIAL
1 NAME A 20
2 NUMBER I 6
3 ADDRESS A 28
4 CITyY A 14
5 ST A 2
6 PHONE A 8
PRINT LINE WIDTH = 87 CHARACTERS.

JPRINT NAME, NUMBER, ST

$LINE NAME NUMBER ST
1 HASLETREX INC. 200 CA
2 DEXMACH, INC. 120 CA
3 CUPERCO 420 CA
4 AMERITZTAN TIRE CO. 500 CA
5 FINCH, FINCH, & OTTO 600@ CA
6 NATIONAL AJRLINES 1000 CA
7 ALEXANDER HALE & CO. 790 NJ
8 PERFECTYT SOUND 8008 VA

8 LINES PRINTED.

JMODIFY:K FI1ELD ST; NAME=STATE
JMODIFY FIELD NUMBER: SIZE=5
)SHOW STRUCTURE

FILE NAME =CUST.DOC79 .RDB

T c
Y PRINT)
NAME P LEN $ M SPECIAL
1 NAME A 20
2 NUMBER 1 5
3 ADDRESS A 26
4 CITyY A 14
5 STATE A 2
6 PHONE A 8
PRINT LINE WIDTH = 86 CHARACTERS.

JPRINT NAME, NUMBER, STATE

$LINE NAME NUMBE ST
1 HASLETREX INC. 200 CA
2 DEXMACH, INC. 19 CA

2-112

< m

LTI VTR O I I TR O]

< m

(VoI VR ¢ I TR P)

o O

< < < < < <

o O

-« < <« < <

O U

“< < < < < <

U
p

D

<« < < < < <

INT
SIZE

208
1w
268
148
2B
88

INT

BEG

END

WORD WORD

2]
10
11
24
31
32

BEG

9
10
23
3e
31
35

END

SIZE WORD WORD

2908
1w
268
148
2B
8B

%]
10
11
24
31
32

9
1@
23
30
31
35

MODIFY

3 CUPERCO 400 CA
4 AMERICAN TIRE CO 500 CA
S5 FINCH, FINCH, & OTTO 600 CA
6 NATIONAL AIRLINES 1eoe CA
7 ALEXANDER HALE & CO. 700 NJ
8 PERFECT SOUND 800 VA

8 LINES PRINTED.
)

2-113

MODIFY

2-114

MODIFY FILE

MODIFY FILE filename
[:CLUSTER=index]
[;COMPRESS=YESINO]
[;CRASHPROOF=YESINQO]
[;DELETE=LOGICALIPHYSICAL]
[:SCAN=blocks]

Alters the manner in which data is handled in a particular file.

filename

CLUSTER

COMPRESS

CRASHPROOF

DELETE

Reauired. The name of an open RELATE/3000 file. The parameters
following the filename will be permanently adjusted to reflect the new
values specified.

Optional. If specified, the keyword must be followed by the number
of an existing index. Data will be stored clustered by this index.
Sequential retrieval of data through this index will be significantly
quicker than all other indexes. The default clustering index is the
first unary index created on the file if the user has not previously
assigned a clustering index.

Optional. If specified, the keyword must be followed by YES or NO.
¥ YES is specified, data compression will be attempted on individual
data records. The compression benefit will be greatest when data
records contain large partially filled text fields or contain completely
blank alphabetic fields or numeric fields containing zeroes. If NO is
specified, data records will not be compressed. All session temporary
(RETENTION=TEMP) and permanent (RETENTION=PERM) files default
to YES. All open temporary files {RETENTION=NONE) default to NO.

Optional. If specified, the keyword must be followed by YES or NO.
If YES is specified, all updates are forced to disc on a record by
record basis. |If NO is specified. data is only forced to disc when a
command completes. All session temporary (RETENTION=TEMP) and
permanent (RETENTION=PERM) files defauit to YES. All open
temporary files (RETENTION=NONE) default to NO.

Optional. If specified, the keyword must be followed by LOGICAL or
PHYSICAL. The mode may always be changed from PHYSICAL to
LOGICAL. It may be changed from LOGICAL to PHYSICAL only if

no logically deleted records exist in the file. if records are
LOGICALLY deleted, they can be RECOVERED. To remove logically
deieted records the file must be REORGANIZED. If records are

PHYSICALLY deleted they are removed from the file and the space
used by the record can be used by another record. This will have no
effect on $LINE. The default is LOGICAL.

MODIFY FILE

SCAN

EXAMPLES:

Optional. If specified, the keyword must be followed by a value
between O and 100 inclusive. If a record cannot be clustered, this
value (which is taken as a percentage) determines when a scan should
be done to find a partially full data block. |If a suitably large space
cannot be found in the blocks scanned, the record is placed at the
jogical end of the file. Larger wvalues of this parameter will
encourage better utilization of file space at the expense of more disc
activity during the addition (and in certain cases updating) of data.
Smaller values increase speed during these operations. It zero is
specified, no scanning is performed and records which cannot be
Clustered are immediately placed at the logical end of the file. In
this case (and particularly if the key values in the clustering index are
not random with respect to deleted records) periodic reorganizations
will be required to reuse the file space efficiently. A value of 3 is
used by default.

This command is the only one that can aiter crashproofing and data compression.

YSET PATH CUST
)SHOW CURRENT

FILE NAME

=CUST.DOC79 .RDB

FILE (OR SET) NAME =CUST

CURRENT RECORDS =8 (EOF=8)

MAXIMUM RECORDS =4096

FILE TYPE =RELATE/3200
DISPOSITION,RETENTION =PERMANENT,PERMANENT
ACCESS MODE =EXCLUSIVE,NOLOCK
CLUSTERING INDEX =1

DATA COMPRESSION =YES

CRASHPROOF ACCESS =YES

DELETE =LOGICAL

SCAN =10

RECORDS CAN BE DELETED,UPDATED,ADDED

JMODIFY FILE CUST; COMPRESS=NO; CRASH=NO
)SHOW CURRENT

FILE NAME

=CUST .DOC79 .RDB

FILE (OR SET) NAME =CUST

CURRENT RECORDS =8 (EOF=8)

MAXIMUM RECORDS =4096

FILE TYPE =RELATE/300@0
DISPOSITION,RETENTION =PERMANENT ,PERMANENT
ACCESS MODE =EXCLUSIVE NOLOCK
CLUSTERING INDEX =1

DATA COMPRESSION =NO

2-116

CRASHPROOF ACCESS

DELETE
SCAN
RECORDS CAN BE

=NO
LOGICAL

DELETED UPDATED,ADDED

10

2-117

MODIFY FILE

MODIFY FILE

2-118

NOTE

NOTE l[any text]

The NOTE command acts as a comment only. It performs no action whatsoever.
Anything at all may be included on the same line as the NOTE command.

:D Optional global switch. If used, the text following the NOTE
command will be displayed. This only affects commands executing in
a procedure with the SHOW option turned off.

The command is useful for docurmmenting RELATE/3000 procedure files.

EXAMPLES:

The NOTE command acts as a comment only. It performs no action at all.

JNOTE THIS 1S A NOTE.
JNOTE NOTES ARE USEFUL FOR DOCUMENTING PROCEDURE FILES.

JNOTE EXIT
)

2-119

NOTE

2-120

OPEN DATABASE

OPEN DATABASE databasename
:TYPE=IMAGE
[;INFORMATION]
[;PASSWORD=password]
:MODE=accessmode

Opens an |MAGE database so that sets can be accessed.

databasename
TYPE

INFORMATION

PASSWORD

MODE

Required. The name of the IMAGE database to be opened.
Required. Indicates the type of the database to be opened.

Opticnal. |If specified when an IMAGE database is opened, the names
of the sets in the database will be displayed.

Optional. The password must be specified when the requested IMAGE
database has a password. |f not specified, a null password is assumed.
If the user is the creator of the database, a semicolon {";") can be
used as the password. The semicolion must be enclosed within quotes.

Reauired for IMAGE databases. The accessmode must be specified by
number when an IMAGE database is opened. The IMAGE modes are as
follows:

MODE TYPE CONCURRENT LOCKING
ACCESS

1 Modify Modify Yes

2 Update Update

3 Modify None

4 Modify Read

5 Read Modify Yes

6 Read Modify

7 Read None

8 Read Read

2-121

OPEN DATAEBASE

EXAMPLES:

Open an IMAGE database. Use the INFORMATION parameter to obtain a list of available
datasets within the database. Open the database with read access only and assume that
this user was the creator (hence the password of “;"). Use the OPEN FILEISET command
to open one of the sets.

JOPEN DATABASE INVDB; TYPE=IMAGE; MODE=8; PASSWORD=";"; &
t) INFORMATION

THE FOLLOWING SET(S) CAN BE ACCESSED:
DATE-MASTER

JOPEN SET DATE-MASTER; DATABASE=INVDB; INFORMATION
INDEX #0© UNARY (RECORD NUMBERS) t FIJELD(S).

$LINE
INDEX #1 UNARY (HASHED) 1 FIELD(S).

DATE

)JSHOW PATH

PATH NAME FILE NAME DATABASE NAME

DATEMASTER DATE~-MASTER INVDB.DOC79.RDB (CURRENT PATH)
MPETXUN MPETXUN MPETXUN.DOC79 RDB

MPETEXT MPETEXT MPETEXT DOC79 . RDB

INV INVOICE INVOICE . DOC79 .RDB

INVOICE INVOICE INVOICE DOC79 RDB

c CusT CUST . DOC79 .RDB

CUST CusT CUST DOC79 .RDB

CUSTH CUsST1 CUusST1 . DOC79 . RDB

MPECUST MPECUST MPECUST DOC79 . RDB

2-122

OPEN FILE

OPEN FILEISET filename
[[TYPE=RELATE IMPEIKSAM IMAGE]
[;STRUCTURE=pathname]
[:DATABASE=databasename]
[;INFORMATION]

[:ERASE]
[:DOMAIN=PERMANENTITEMPORARY]
[:RETENTION=PERMANENTITEMPORARY NONE]
[:PATH=pathname]

[:FIELDS=fieidlist]
[;MODE=accessmodes])

Opens a dataset or file.

filename

TYPE

STRUCTURE

DATABASE

INFORMATION

ERASE

DOMAIN

RETENTION

Reauired. This i1s either the name of an IMAGE dataset or a
RELATE. KSAM, or MPE file as determined by the TYPE parameter.

Optional. Indicates the type of the file to be opened. A RELATE
file is the default.

Required when a KSAM or a MPE file is opened and FIELDS is not
specified. The parameter cannot be specified when a RELATE or
IMAGE dataset is opened. The newly opened file will have the format
of the file referenced by the given pathname.

Reqguired to access an IMAGE dataset The parameter is used 1o
specify the database in which the dataset is located. The database
must have previously been opened.

Optional. f specified when a file is opened, information regarding
index structures and fieldname changes will be displayed. This should
be used when accessing an IMAGE dataset, as RELATE will remove all
special characters from the fieldnames and truncate the result to ten
characters.

Optional. If specified. the file or set is erased after it is opened. If
an IMAGE master dataset i1s opened, the set is only erased if no detaii
entries referencing the set exist. [IMAGE automatic masters, VIEWSs,
and MPE files cannot be erased. The file cannot be erased uniess the
appropriate access mode is used, and. if the file resides in a secured
group, the user is the creator of the file. A file cannot be erased if
a transaction is in progress.

Optional. Indicates the present domain of the file. The file may be
a temporary or permanent file. If not specified, the file is assumed
to exist in the permanent domain.

Optional. If specified, the file I1s saved in the specified domain when
it is closed. f NONE s specified, the file i1s purged. This parameter
may not be specified for an {MAGE dataset. |If not specified, the file
ts saved In the domain in which it currently exists. A file cannot be

2-123

OPEN FILE

PATH

FIELDS

MODE

moved from the PERMANENT domain to the TEMPORARY domain.

Optional. If specified, the newly opened file will be given this path
name. |f not specified, the path name will be the filename (or
setname) excluding any group or account names supplied and exciuding
all special characters on IMAGE dataset names. Each path name in
the Command Interpreter must be unique. If OPEN FILE is used from
the Host Language Interface routines, the path name must be unique
in the passed cursor. The file cannot be opened if the assumed or
given path name duplicates an existing name.

Optional. This keyword may only be specified when the TYPE of the
file being opened is MPE or KSAM. The keyword must be followed by
a fieldlist of the format described in the Specifying Fields section of
the CREATE command. If the STRUCTURE of the current file is
being used, groups of fields may be specified with the
pattermmatching feature. In addition to the standard pattern
matching, a minus sign ("-") may be included as the first character to
indicate NOT matching this pattern.

Optional. If specified, the file i1s opened in the access mode that
follows. If a RELATE, KSAM, or MPE file is opened, the mode may
be specified by number or by keywords. This is ignored for IMAGE
datasets. The numeric modes are as follows:

MODE TYPE CONCURRENT LOCKING
ACCESS

1 Modify Modify Yes

2 Update Update

3 Modify None

4 Modify Read

5 Read Modify Yes

6 Read Modify

7 Read None

8 Read Read

The keywords available are as follows:

UPDATE Allows records in the file to be changed but
records cannot be added or deleted.

MODIFY Records can be added, deleted, or changed.

READ Records can only be read.

2-124

CPEN FILE

The user may also specify EXCLUSIVE, SEMI-EXCLUSIVE, or SHARED
access. EXCLUSIVE access prevents any other user from accessing
the file. SEMI-EXCLUSIVE access prevents another user from writing
to the file but does not prevent reading. SHARED access allows other
users to read from or write to the file.

If the access mode is SHARED or SEMI-EXCLUSIVE, the system wili
perform locking to ensure database integrity when changes are made.
If the user has exclusive access to the file or database, the system
assumes NOLOCK.

For RELATE, KSAM, and MPE files, the default mode is EXCLUSIVE,
MODIFY.

EXAMPLES:

A file can be opened more than once if different path names are assigned to it. This is
useful for recursive data structures such as a bill of materials file.

JOPEN FILE CUST

JOPEN FILE CUST; PATH=C
JOPEN FILE INVOICE

YJOPEN FILE INVOICE; PATH=INV
)SHOW PATH

PATH NAME FILE NAME DATABASE NAME

INV INVOICE INVOICE D0OC79 . RDB (CURRENT PATH)
INVOICE INVOICE INVOICE DOC79 RDB

C CusT CUST.DOC79 .RDB

cusT cusT CUST .DOC73 RCSB

Cus T CusT? CUST1 . DOC79 .RDB

MPECUST MPECUST MPECUST .DOC79 .RDB

Open an 80-byte MPE Editor file with 72 characters of text and an 8-digit line number on
the right end of each record. This can be done either by giving the name of an open path
with the same structure or by listing the field specifications explicitly.

JOPEN FILE RELTEXT

YSHOW

FILE NAME =RELTEXT DOC79 RDB
T
Y PRINT INT

NAME P LEN S17ZE

TEXT A 72 72B

LINE_NUM A 8 88

PRINT LINE WIDTH 87 CHARACTERS

2-125

OPEN FILE

JOPER FILE WMPETEXT: TYPE=MPE, STRUCTURE=RELTEXT

JCLOSE F!LE RELYEXT

JCLOSE FILE MPETEXT

YOPEN FILE MPETEXT; TYPE=MPE,; FIELDS=(TEXT,A,72),(NUM,A . 8)

Open an MPE file with 72 bytes per record. This can be done either by listing the field
specifications or by giving a structure file and listing the names of the desired fields.
Notice we can use an open MPE file for the structure.

JOPEN FILE MPETXUN, TYPE=MPE; STRUCTURE=MPETEXT; FIELDS=TEXT

YSHOW

FILE NAME =MPETXUN.DOC79.RDB
T
Y PRINT INT

NAME P LEN SIZE

TEXT A 72 728

PRINT LINE WIDTH = 78 CHARACTERS.

)

2-126

OPEN RDBLIST
OPEN RDBLIST

Sets up the file RDBLIST for multiple output.

After the OPEN RDBLIST command has been executed, all RELATE output scheduled to
go to the file RDBLIST (usually the printer) will be spooled into a single file until a
CLOSE RDBLIST command is encountered or RELATE is terminated.

Normally when a command is executed with a global :P switch (direct output to printer),
the output from the command is printed immediately. If an OPEN RDBLIST has been
executed, however no output will be printed until a CLOSE RDBLIST is executed. At that
point, the output from ali commands since the OPEN RDBLIST that were executed with a
global :P will be printed.

EXAMPLES:

Normally, output to the printer is spooled immediately and a message is displayed that it
has been done so. When RDBLIST is OPENed, however, output is grouped and not spooled
unti! RDBLIST is CLOSEd.

YOPEN FILE CUST
YPRINT:P

THE OUTPUT HAS BEEN PLACED IN SPOOL FILE #OB8B.
8 LINES PRINTED.

YJOPEN RDBLIST

YJPRINT : P

8 LINES PRINTED.

YOPEN FILE INVOICE

YPRINT: P

9 LINES PRINTED

JCLOSE RDBLIST

THE OUTPUT HAS BEEN PLACED IN SPOOL FILE #089.

)

2-127

OPEN RDBLIST

2-128

PAUSE
PAUSE ["comment”]

Causes RELATE to pause until RETURN is pressed.

:D Optional global switch. If used, the text following the PAUSE
command will be displayed and RELATE will pause. This only affects
commands executing in a procedure with the SHOW option turned off.

comment Optional. If used, this character string must be enclosed in quotes.
This is for informational purposes only.

PAUSE functions only if the user is executing a procedure file with the SHOW option.
PAUSE will not function from a job. The system will pause until the carriage return is
pressed.

EXAMPLES:

The PAUSE command, if used in a procedure file with a SHOW option, will prevent
RELATE from executing until RETURN is pressed.

JEXECUTE DOIT2;SHOW

JNOTE PROCEDURE FILE BEGINS

YNOTE This procedure file demonstrates the PAUSE command.
jPAUSE "PRESS RETURN WHEN READY"

JNOTE PROCEDURE FILE ENDS

J

2-129

PAUSE

2-130

PERMIT

PERMIT READIDELETEIADDICHANGE!IALL ON file
[:FIELDS=fieldlist]
[BY userlist]
[FOR condition]

Allows the DBA to authorize individual users to perform functions on files. In addition,
the DBA can restrict access at the field (column) or record (row) level.

file Required. The name of a RELATE, MPE, or KSAM file or the name
of a view that exists in the log-on account.

FIELDS Optional. If not included all fields in the file may be referenced
when a record i1s added, read, or changed. If included, this must be a
list of one or more fieldnames separated by commas. The fields

contained in the list are the only fieids that the user can reference
when records are read, added, or changed.

BY userlist Optional. If the BY keyword is used, this must be a list of one or
more user names separated by commas. If not included, an atsign
(@), representing all groups, is assumed.

FOR Optional. If specified, the condition following must be met when the
indicated operations are performed on the file. The FOR clause may
reference all of the fields in the file and is not limited by the
FIELDS keyword.

The command can only be executed by an account librarian (a user with AL capability)
executing in the PUB group.

The PERMIT command allows the DBA to apply different security provisions to different
users, based on the function being performed. The security provisions are only effective if
the file resides in a secured group. The DENY command can be used to revoke previously
PERMITted operations.

The FIELDS keyword is used to restrict the columns that can be accessed. It can be
specified when READ, ADD., CHANGE, or ALL permission is given. Fields can only be
ADDed or CHANGEd !f they can be READ.

The FOR clause restricts access on a record basis and can be used when any of the
permissions are given. The user may only DELETE and CHANGE records that can be
READ. Records may be ADDed that cannot later be READ.

The PERMIT command does not check for the existence of the file, users, or fields used

in the command. When the security restriction 1s used later. any fields that do not exist
in the file or that the user does not have READ access to are ignored.

2-131

PERMIT

EXAMPLES:

To illustrate how the PERMIT command controls access, a file and a typical set of
security restrictions will be set up. The file will be cailed EMPS and contains some of
the information that would exist in a payroll-personnel system: NAME, the employee
name; MANAGER, the employee's manager; SALARY: REVIEW, review date; and EXT, the
phone extension.

JCREATE FILE EMPS
ENTER FIELDNAME ,TYPE,LENGTH[. DECIMALS]

12 NAME,A,30
27 MANAGER,A,30
3?2 SALARY,R,1@.2
4? REVIEW,R,B;FORM="MM/DD/YY"
5?2 EXT,I1,4
62 //
THE "EMPS" FILE HAS BEEN CREATED AS A PERMANENT RELATE/300@ FILE.

Each user will be responsible for maintaining specific portions of the database.
Additionally, each user should be able to view as much information as would be
reasonable for the position of the user. Briefly, the users are as follows:

(1) JOHN and RICK are department managers.

(2) PRES is the president of the company.

(3) PAYROLL is used by all of the payroll clerks.
(4) PRSUPER is the payrol!l supervisor.

(8) PHONE 1s the teiephone operator.

The user PRES must be allowed to read any portion of the database. He is not allowed
to make any modifications. This capability can be assigned with a single PERMIT as
follows:

JPERMIT READ ON EMPS BY PRES

The user PHONE can only access the NAME and EXT fields. Additionally, the user should
be allowed to change the EXT fieid.

These capabilities can be assigned with two PERMIT commands. The first authorizes read
access to the two fields. The second authorizes the update of the EXT field.

JPERMIT READ ON EMPS; FIELDS=NAME, EXT BY PHONE
JPERMIT CHANGE ON EMPS; FIELD=EXT BY PHONE

The users JOHN and RICK should be aliowed to access any record for employees that

work in their departments. They should also be allowed to change the REVIEW dates in
those records.

2-132

PERMIT

Two PERMIT commands must be issued for each manager. The first authorizes the read:
the second, the update of the REVIEW field. A FOR clause is not required on the second
PERMIT since a user can only update records that can be read.

JPERMIT READ ON EMPS BY JOHN FOR MANAGER="JOHN"
JPERMIT CHANGE ON EMPS; FIELD=REVIEW BY JOHN

The user PAYROLL can read, add, and update all records in the file except for the
REVIEW, EXT and SALARY field of those earning more than $50,000 per year.

This capability can be assigned with a single PERMIT command:

YPERMIT ALL ON EMPS; FIELDS=NAME, MANAGER, SALARY &
£)BY PAYROLL &
&)FOR SALARY<500080

The user PRSUPER must be able to access all information in the file and change the
NAME, MANAGER, and SALARY fields. This takes two PERMIT commands. The first
command authorizes the user to read and delete any record in the file. The second
allows the user to only update and add the NAME, MANAGER, and SALARY fieids.

JPERMIT READ, DELETE ON EMPS BY PRSUPER

YPERMIT ADD, CHANGE ON EMPS; FIELDS=NAME, MANAGER, SALARY &
£)BY PRSUPER

2-133

PERMIT

2-134

PRINT

[range] PRINT [fieldiist] [FOR condition]

Displays information from the current file.

range

num

fieidlist

Optional. |If used, only records in the specified range are printed. See
the RANGE section.

Optional global switch. Skips a line after every "num” lines. If a global
“num” switch is used with break fields, the line count is reset after
any control break.

If a global “num” switch is used with a giobal "F" or "P" switch, the
line count is reset at the top of each page.

Optional global switch. |f used. the complete field name of each field
will print at the top of each page. If not specified, fieldnames will
be truncated to the print size of the field.

Optional global switch. If used. the filename, index number and
fieldnames. date, and the page number will be printed at the top of
each new page.

Optional global switch. Form-feeds the output. The print command
enters report mode if used. The report mode attempts to format the
output in pages matching the type of the user’'s terminal (as specified
with the TERMINAL command).

Optional global switch. Prints the line number.

Optional global switch. Suppresses the printing of the fieldnames in the
heading.

Optional global switch. Directs the output to the line printer. Also
sets the global "F” switch. Output is directed to the file RDBLIST.
If RDBLIST cannot be opened, the output i1s directed to the device
class "LP".

Optional global switch. Suppresses the current key.

Optional globa!l switch. If used, grand totals are printed for all
numeric fields that are printed. If local "7" switches are also used,
only these fields are totaled.

An optional list of fieids to be printed. [f not specified. or all items
in the list contain a local "B" switch all fields will be printed in the
order in which they were structured. The fieldname $LINE may be
inciuded in the fieldlist to print the line number at a position other
than the far ieft of the line, f the file is not a SELECTION. Groups
of fields may be specified using the pattern—matching feature.

2-135

PRINT

LOCALS Optional switches which. If used, appear on iterms in the fieldhst.

rum Skips "num” tines on a control break.

B Causes this field to be used to generate a control break. This
switch only affects the spacing of the output, not which fields
are printed.

:F Form-feeds on a contro! break. Aiso sets the global “F" switch

if used on a break field.

:H Indicates a field or text that should be used in the heading. It
may appear on an alphabetic field or on an alphabetic constant
enclosed in quotes. These items may also contain a local "C”,
"L", or "R" switch to center, left, or right justify the text. Left
justification is the default. The system ensures that no data is
lost when items are justified. Items that are centered or right
justified cannot be longer than the width of the output line.

'S Suppresses this field if it has not changed. If a local "S" switch
appears on a break field. and the field will also be printed,
values duplicated from one line to the next are suppressed
(blanked out). When a new page is started, all fields are
printed on the first line.

T Totals on the field or totals the field. |f a local "T" switch
appears on a break field (fields that contain a local "B" switch)
subtotals will be generated when the field changes. If a local
“T" switch appears on fields other than those with a local "B”
switch, those fields will be totaled.

FOR condition Optional. If used, only records meeting the condition are printed.
See EXPRESSION EVALUATION section.

If a number is too large to be printed, the field is filled with pound signs ("#").

The fieids that compose the current index are automatically printed on the left of any
output unless a giobal "S" switch is used.

If the PRINT command is issued without a fieldlist (or if all fields in the list contain a
local "B" switch), all fields in the file are printed.

The local "num”, "F", and "S" switches are only recognized on those fields that also
contain the local "B" switch. A total or subtotal is not printed if it is the total of only a
single line.

When a total or subtotal is printed, the field that caused the control break is printed
foliowed by an asterisk ("*").

2-136

EXAMPLES:

PRINT

Print the INVOICE file by customer NUMBER. The automatic printing of the index fieids

is suppressed by the global "S" switch. The NUMBER fieid

IS used as a break field,

suppressing printing until a break (change in value) occurs. and then printing two spaces.
The local "B” switch does not
included again in the

The INVNO and AMOUNT fields are printed for each line.
cause the field to be printed, so NUMBER and NAME must be

fieldlist.

JSET PATH INVOICE
JSET INDEX NUMBER, INVNO
INDEX #3 1S NOW THE CURRENT INDEX.

JPRINT:D:S NUMBER:B:S:2, NAME:B:S,
INVOICE MON, JAN 28, 1985,
NUMBER NAME INVNO
100 DEXMACH, INC 33
15

106

490 CUPERCO 2738
1ee4d4

23557

500 AMERICAN TIRE CO. 727
747

8663

700 ALEXANDER HALE & CO. 10002
8086 PERFECT SOUND 33
1920 NATIONAL AJRLINES 10221
10455

13 LINES PRINTED

2-137

NUMBER,

12

$

L B]

16

PM

AMOUNT

348
86 .
76 .

348
500
37

70
32
49

€0
(S5
(5

.14

.97

999 .

677.

627 .
335 .

00

g9

77

[
@0

NAME ,

INVNO,

AMOUNT

PRINT

Print NAME, AMOUNT, and TAX for all invoices where the SALES MAN was number 36,
total the AMOUNT and TAX fields, and do not print the fieldnames in the heading. The
current key is not suppressed, so NUMBER and INVNO will print before each record.

JPRINT:N:T NAME, AMOUNT:T, TAX:T FOR SALES_MAN=36

400 2738 CUPERCO $ 948 .60 32.49
500 8663 AMERICAN TIRE CO. $ 86 00 1.32
1000 19221 NATIONAL AIRLINES $ 627 .01 88 .07
1000 12455 NATIONAL AIRLINES $ 335.00 49 .29

$1996 .61 161.99

4 LINES PRINTED.
All functions (except aggregates) may be used in the condition of the PRINT command.
Print all companies whose name begins with "N”".
JPRINT NUMBER,NAME FOR $MATCH(NAME,"XN")
INVNO NUMBER NAME

10221 12000 NATIONAL AIRLINES
10455 1209 NATIONAL AIRLINES

2 LINES PRINTED.

Print all invoices for Cuperco, making sure you get the name whether it's in upper or
lower case.

JPRINT NUMBER,NAME L AMOUNT FOR $SUPS(NAME)="CUPERCO"

INVNO NUMBER NAME AMOUNT
2738 40@ CUPERCO $ 948.60
10044 400Q CUPERCO $ 500 .00
23557 4900 CUPERCO 3 37 .00

3 LINES PRINTED.
)

2-138

PURGE FILE

PURGE FILE filename

Purges the given filename. if the file is in a secured group, the user must be the
creator of the file.

filename The name of the file to be purged. The file must have previously
been opened. An IMAGE database or dataset cannot be purged from
within RELATE.

A file cannot be purged while a transaction is in progress.

EXAMPLES:

Show all existing paths. Purge some files. A system LISTF would have to be done to
verify that they have indeed been purged. The difference between a RELATE PURGE
and a system PURGE s that the RELATE purge automatically purges any existing index
files for the purged file, so the user need never touch the index files themselves.

)SHOW PATH

PATH NAME FILE NAME DATABASE NAME

SUM SUM SUM . DOC79 RDB

CUSTMAT CUSTMAT CUSTMAT DOC79 . RDB

CUSTERR CUSTERR CUSTERR DOC79 . ROB

INVOICE INVOICE INVOICE DOC79 RDB (CURRENT PATH)
cusT cusT CUST DOC79.RDB

cusT CusT CusT1 DOC79 RDB

MPECUST MPECUST MPECUST DOC79.RDB

YPURGE FILE MPECUST

THE "MPECUST" FILE HAS BEEN FURGED
YPURGE FILE SUM

THE "SUM®" FIiLE HAS BEEN PURGED
YJPURGE FILE CUSTMAT

THE "CUSTMAT" FILE HAS BEEN PURGED
YPURGE FILE CUSTERR

THE "“CUSTERR" FILE HAS BEEN PUFGED
YSHOW PATH

PATH NAME FILE NAME DATABASE NAME

INVOICE INVOICE INVOICE DOC79 RDB (CURRENT PATH:
CuUsT cusT CusST DOC79.RDB

CUST CuUsST1 CusST1 . DOC79 RDB

2-139

PURGE FILE

PURGE INDEX

PURGE INDEX number

Purges an existing index from the current file. Indexes can only be purged from
RELATE/3000 fiies to which the user has exclusive access. If the file exists in a secured
group, only the creator of the file may purge the index.

number Required. The index number of the index to be purged.

Indexes may be purged regardless of the amount of data in the current file.
If the current index is purged, the line number becomes the current index.

An index cannot be purged if a path to the file, other than the current path, exists.

EXAMPLES:

Purge indexes from the INVOICE file. First set index 2 and show all the indexes
avatlable. Purge an index that is not the current index and view the remaining indexes.
Purge the current index and note that the current index becomes the line number (index
0).

YSET PATH INVOICE
Y)SET INDEX 2

INDEX #2 1S NOW THE CURRENT INDEX

)SHOW INDEX

FILE NAME =INVOICE DOC79 RODB

INDEX 1 BY NAME ,NUMBER

WORDS IN KEY (+NODE) : 13 (+1)
DISTRIBUTION 2.2
LEVELS IN TREE N
NUMBER OF USED NODES : 1

INDEX 2 BY AMOUNT D (CURRENT INDEX)

WORDS IN KEY (+NODE) : 4 (+1)
DISTRIBUTION S
LEVELS IN TREE o
NUMBER OF USED NODES - 1

INDEX 2 8Y NUMBER INVNO
WORDS IN KEY (+NODE) 4 (+1)
DISTRIBUTION 201
LEVELS [N TREE 1
NUMBER OF USED NODES 1

JPURGE INDEX 1
INDEX #1 HAS BEEN PURGED.

2-141

PURGE INDEX

YSHOW INDEX
FILE NAME =INVOICE DOC79.RDB

INDEX 2 BY AMOUNT:D (CURRENT INDEX)

WORDS IN KEY (+NODE) : 4 (+1)
DISTRIBUTION coN
LEVELS IN TREE o
NUMBER OF USED NODES 1

INDEX 3 BY NUMBER,INVNO
WORDS IN KEY (+NODE) 4 (+1)
DISTRIBUTION Co21
LEVELS IN TREE 1
NUMBER OF USED NODES 1

YJPURGE INDEX 2

INDEX #2 HAS BEEN PURGED.

INDEX #@© 1S NOW THE CURRENT INDEX.
)SHOW INDEX

FILE NAME =INVOICE . DOC79.RDB

INDEX 3 BY NUMBER,INVNO
WORDS IN KEY (+NODE)
DISTRIBUTION
LEVELS IN TREE
NUMBER COF USED NODES

(+1)

L1

NI S

2-142

PURGE VIEW

PURGE VIEW filename

Purges an existing view.

D Optional global switch. If used, the VIEW is purged from the RDBODD.
Otherwise, it is purged from the log-on group.

filename Reaquired. The name of an existing view.

EXAMPLES:

JPURGE VIEW ACTIVE
THE "ACTIVE" VIEW HAS BEEN PURGED.
)

2-143

PURGE VIEW

2-144

QuiZ

QUIZ[:P] reportname
[.SOURCE=datafile]
[;PARM=parm]
[;MAXDATA=maxdata]

Invokes the QUIZ report writer to generate a report based on the data referenced by the
current path.

:P Optional global switch. Directs the output to the line printer. This
switch causes a file equation of the form

FILE QUIZLIST.DEV=LP
to be issued.

reportname The name of an existing QUIZ report. This filename is assigned the
formal designator QUIZUSE by RELATE.

SOURCE Optional. Indicates that the report normally expects input from a file
other than QUIZDATA (see below for more information). If used, this
keyword must be foliowed by the name of the file from which QUIZ
will normally read information for a report.

PARM Optional. If used, this keyword must be followed by a value indicating
the size, in words, of the internal table available to QUIZ to build a
report description. The default is 2000 words.

MAXDATA Optional. If used, this keyword must be followed by a value indicating
the maximum amount, in words, of virtual memory available to QUIZ.
This value must always exceed the workspace by at least 2000 words.
if sorting is reauired, MAXDATA must exceed the work area by at
least 4000 words. The default is 1200C words.

The interface to QUIZ is accomplished through the use of file equations, message files,
and process handling. RELATE/3000 first creates a message file in the temporary
domain. This file is called QUIZDATA and contains space for 100 records of information.
File equations are then issued for QUIZUSE and possibly QUIZLIST (if the giobal P switch
was used! and QUIZDATA (if the SOURCE keyword was used). QUIZ is now started as a
son process and RELATE suspends until the message file 1s opered by QUIZ. RELATE
then begins placing information into the file while QUIZ is simultaneously reading the
information and producing the report. When RELATE completes writing to the message
file. the file is purged and RELATE suspends until QUIZ complietes the generation of the
report, at which time RELATE prompts the user for a new command.

QUIZ 1s a product of COGNOS Incorporated.

2-145

QuUiZ

RELATE expects QUIZ to exist as QUIZ.PUR COGNOS. The actual actual location of the
program cannot be adjusted by a file equation. The user must have executed access to

the program.

If the report contains a sort option it is recommended that the keyword SORTED be used
instead of the keyword SORT. A BY clause should be placed on the SELECT command to
guarantee that RELATE will produce the data in the proper order.

EXAMPLES:

in order to use QUIZ a schema must be compiled that describes the elements and records
comprising the application data base. To interface RELATE/3000 to QUIZ, MPE files
must be defined that correspond to the format of the SELECT command output. This
information can be obtained by executing a SHOW command after the SELECT command
that will retreive the data.

JOPEN FILE CUST
JOPEN FILE INVOICE

JSELECT CUST.@, INVOICE.INVNO, INVOICE.AMOUNT

WARNING: ALL FILES IN SELECT COMMAND MAY NOT BE JOINED TOGETHER.
YSHOW

SELECTION

PRINT INT

NAME P LEN SIZE
NAME A 20 208
NUMBER I 5 1w
ADDRESS A 26 268
ClTy A 14 148B
ST A 2 2B
PHONE A 8 88
INVNO I 6 1w
AMOUNT R 8.2 2w
PRINT LINE WIDTH = 96 CHARACTERS

2-146

The schema below contains the definition of
circumstances the schema would contain

Under normal

record indicated above as
information on actual

the

addition to the dummy files required by the interface mechanism.

:RUN QSCHEMA . PUB.COGNOS

0 S C H E M A

SCHEMA "RELATE/30080

FILE
FILE

INPUT?1 TYPE MPE
INPUT2 TYPE MPE

ELEMENT
ELEMENT
ELEMENT
ELEMENT
ELEMENT
ELEMENT
ELEMENT
ELEMENT

NUMBER
NAME
ADDRESS
CITY
STATE
PHONE
INVOICE
AMOUNT

INPUT
NAME
NUMBER
ADDRESS
CITy
STATE
PHONE

ITEM
ITEM
ITEM
ITEM
ITEM
ITEM

INTEGER

RECORD
ITEM
ITEM
ITEM
ITEM
TTEM
ITEM
ITEM
ITEM

INPUT2
NAME
NUMBER
ADDRESS
CITY
STATE
PHONE
INVOICE INTEGER
AMOUNT REAL

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
> RECORD
>
>
>
>
>
>
>
>
>
> INTEGER
>

>

>

>

>

>

>

>

END OF PROGRAM

(1.04.F)

INTERFACE DEMONSTRATION"

"CUSTOMERtNUMBER™"
"CUSTOMERTNAME"

9(5) HEADING

X(2@) HEADING

X(26)

X(14)

X(2)

X(8)

9(5) HEADING

9(8)V9(2) HEADING
PICTURE "ttt ,t1¢.

"INVOICEtNUMBER"
"INVOJCE+AMOUNT™"
Tt

2-147

Quiz

INPUT?2.
files in
&

QuliZ

Once the schema has been created the repcrt can be defined. Because of the nature of
the interface, the CHOOSE and SELECT commands available in QUIZ should not be used.
Additionally, any sorting that is required should be done in RELATE instead of QUIZ. Al

SORT statements in QUIZ should be entered as SORTED.

:EDITOR
HP32201A.7 .10 EDIT/3000 MON, MAR 22, 1982, 2:43 PM
(C) HEWLETT-PACKARD CO. 1981
/ADD

1 ACCESS INPUT2

2

3 DEFINE LOCATION STRING*38 = PACK(CITY+", "+STATE)

4

5 REPORT &

6 TAB 15 INVOICE &

7 TAB 30 AMOUNT SCALE 2

8

9 PAGE HEADING &

10 "0 UTSTANUDTING I NV O1CES " &

11 "R E P OR T" SKIP 2

12

13 SORTED ON NUMBER &

14 HEADING &

15 NUMBER &

16 TAB 1@ NAME SKIP 1 &

17 TAB 10 ADDRESS SKIP 1 &

18 TAB 12 LOCATION SKIP 1 &

19 TAB 10 PHONE SKIP 2 &

20 FOOTING &

21 TAB 10 "CUSTOMER TOTAL" &

22 TAB 30 AMOUNT SUBTOTAL SCALE 2 SKIP 2

23

24 GO

25 EXIT

26 //

/KEEP REPORT2
JEXIT

END OF PROGRAM

The GO and EXIT commands must be included in the report definition
report to be produced correctly.

2-148

in order for the

Quiz

To generate the report, the appropriate data is SELECTed foliowed by the QUIZ
command. The command must specify the name of the file containing the report as well
as the name of the file in which QUIZ expects to find the information for the report.

:RELATE
RELATE/300@ V4 10A MON, MAR 22, 1982 2:57 PM (C) CRI

JOPEN FI1LE CUST
JOPEN FILE INVOICE

JSELECT CUST.@, INVOICE.INVNO, INVOICE.AMOUNT &
&) BY NUMBER, INVNO &

&) WHERE CUST . NUMBER=INVOICE . NUMBER AND ST="CA™"
JQUIZ REPORT2,; SOURCE=INPUT2

)

The resulting report is displayed on the following page.

2-149

QuiZ

o u T

400

500

teoo

T AND I NG I N Y O

DEXMACH, INC.
BOX 877 RD1
SAN JOSE, CA

geo-2111
33 348 .
105 86 .
106 76 .
CUSTOMER TOTAL 511
CUPERCO

190802 WILKINSON AVENUE
CUPERTINO, CA

257-8667
2738 948 .
10044 500
23557 37
CUSTOMER TOTAL 1,485

AMERICAN TIRE CO.
7052 EL CAMINO REAL
MOUNTAIN VI]IEW, CA

941-0000
727 3.
747
8663 86
CUSTOMER TOTAL 99 .

NATIONAL AIRLINES
SAN FRANCISCO INTL AIRPORT
BURLINGAME., CA

UNLISTED
19221 627
10455 335
CUSTOMER TOTAL 3962

2-150

70
32
40

.42

60
(X%

.00
.60

14

.97

Qe
1

.01

00
21

S

R £E P O R

RECOVER

[range] RECOVER [TO filename];options]]
[FOR condition]

Recovers previously deleted data from RELATE/3000 files.

range Optional. If used, only records in the specified range are recovered.
See the RANGE section.

TO filename Optional. If specified, all options in the "TO filename” section needed
to access the file must be appended whether or not the file is already
open.

if an output file is specified, all recovered iines will be copied into
the file and wiil exist in an undeleted state. Lines in the current file
will remain deleted.

FOR condition Optional. If used, only records meeting the condition are recovered.
See the EXPRESSION EVALUATION section.

The current file must have a current index of O (the line number) in order to perform a
RECOVER.

Records cannot be recovered if DELETE=PHYSICAL was specified for the file using the
MODIFY FILE command.

EXAMPLES:

User realizes that he/she may have deleted more lines than should have been, but doesn't
recall what was done. RECOVER command can only re-instate lines that have been
deleted but not REORGANIZEd or ERASEd. The file must be indexed by line number and
be a RELATE/3000 file in order to perform a RECOVER.

J)SET PATH INVOICE
JSET INDEX o
INDEX #@ 1S NOW THE CURRENT [NDEX

YJPRINT
$LINE INVNO NAME NUMBER ST AMOUNT TAX SALES
1 19221 NATIONAL AIRLINES 1000 CA $ 627 .21 88.07 36
2 10455 NATIONAL AIRLINES 1800 CA $ 335 00 40 20 36
3 33 DEXMACH., INC. 100 CA $ 348 70 18.00 99
4 2738 CUPERCO 400 CA § 948 .60 32.40 36
5 23557 CUPERCOQ 400 CA $ 37 .00 3 00 86
6§ 10044 CUPERCO 400 CA $ S08 00 35 99 99
7 105 DEXMACH. INC. 10@ CA $ 86 3 4 81 83
8 106 DEXMACH., INC 180 CA $ 76.40 1 10 87
i 727 AMERICAN TIRE CO. 500 CA $ 3.14 1 59 87
13 86663 AMERICAN TIRE CO 500 CA $ &6.0¢0 1.32 36

2-151

RECOVER

LINES PRINTED.

RECOVERED .

NAME

NATITONAL
NATIONAL
DEXMACH,
CUPERCO
CUPERCO
CUPERCO
DEXMACH,
DEXMACH,

ATRLINES
AIRLINES
INC.

INC.
INC.

ALEXANDER HALE & CO.
PERFECT SOUND

AMERICAN
AMERICAN
AMERICAN

10

JRECOVER

3 LINES

JPRINT

$LINE INVNO
1 19221
2 10455
3 33
4 2738
5 23557
6 10044
7 105
8 106
9 10002
10 33
11 727
12 747
13 8663

13 LINES PRINTED.

TIRE CO.
TIRE CO
TIRE CO.

2-182

NUMBER

1000
1000
100
400
400
400
100
1eeo
700
800
500
5e0
See

ST

CA
CA
CA
CaA
CA
CA
CA
CA
N J
VA
CA
CA
CA

B B A PP P PP PP

AMOUNT

627

335.
248.
948 .
37.
S500¢ .

86

76 .
399 .
677.

3.
9.

86

.o
20
70
60
<X
00
32
40
93
77
14
97
00

88.
40 .
18.
32.

398 .

- ® . 4O -

TAX SALES

87
20
X%
40
.00
99
. 81
.10
.98
.33
.59
. @0
.32

36
36
99
36
86
99
83
87
45
83
87
83
36

RECOVER DATA

RECOVER DATA FROM logfile [;INFORMATION]
[FILE fileset]

Performs data and structural recovery operations on a data base from a log file.

FROM logfile

INFORMATION

FILE fileset

Required. Indicates the name of the log file containing the data.
RELATE must be able to open the file with exclusive read access.

Optional. When specified. the data files are not recovered. The
information report generated by the recovery system is printed.

Optional. |f specified, the fileset must contain the names of the files
that should be recovered. If not specified, all files are recovered.
The fileset may contain actual file names or '@.group’ or '@.@' which
will recover all files in the indicated group or in the account. The
file names must be separated by commas. The recovery system must
be able to obtain exclusive access to all files.

For more information on recovery see the TRANSACTION PROCESSING section.

RECOVER DATA

REDO

REDO [commandnumber]

Allows the editing of previous command lines.

commandnumber Optional. If not specified, the first line of the previous command is
made available for modifications. If specified, the item must be
composed of a command number optionally including a decimal
indicating the line number to be edited.

The following edit operations may be performed on the command line:

D Deletes the character it is placed under. Multipie D's may be used at
the same time.

I Inserts the text following the | into the command line before the
character the | is under.

R Replaces the text in the command line with the text following the R.

S Splits the command line into two lines. The character over the S wiil
be the first character of the next line. The S command must be the
last command on the line. Any other edits made to the line prior to
the S are saved permanently and the subsequently displayed line will
be returned to If a // i1s entered.

/1 When entered after edits have been made on the command line, the
original command line Is returned. {f entered when no edits have been
made to the command line, the command in the edit buffer is not
executed and a new command is requested.

Allows editing of the indicated line number of the command. A line
may be added to the end of a command by referencing the next
unused number. If a new line s added. the system appends a blank to
the end of the previous line.

A carriage return causes the command line to be executed. The new command is
assigned the next command number and is then displayed on the user's output device
before execution. REDO commands and null commands are not saved.

2-155

REDO

EXAMPLES:

If an error is made in a prior command the command can be edited and then resubmitted.
When the command is resubmitted, RELATE assigns a new number to the command which
allows the newly created command to be edited as weil.

JPRINT:S NAME, NUMBER, CITY &
&) FOR ST="CA"

NAME NUMBE CITY
HASLETREX INC. 202 SUNNYVALE
DEXMACH, INC. 100 SAN JOSE
CUPERCO 400 CUPERTING
AMERICAN TIRE CO. 500 MOUNTAIN VIEW
FINCH, FINCH, & OTTO 600 LOS ANGELES
NATIONAL AIRLINES 1002 BURLINGAME

6 LINES PRINTED.
YREDO
PRINT S NAME, NUMBER, CITY
RNUMBER, NAME

PRINT S NUMBER, NAME, CITY

1

FOR ST="CA"

I"CUSTOMERS IN CALIFORNIA"
“"CUSTOMERS IN CALIFORNIA" FOR ST="CA"

JPRINT:S NUMBER, NAME, CITY &
¥)"CUSTOMERS IN CALIFORNIA" FOR ST="CA"

CUSTOMERS IN CALIFORNIA

NUMBE NAME ClTy
290 HASLETREX INC. SUNNYVALE
1e@ DEXMACH, INC SAN JOSE
400 CUPERCO CUPERTINO
50@ AMERICAN TIRE CO. MOUNTAIN VIEW
660 FINCH, FINCH, & OTTO LOS ANGELES
1000 NATIONAL AIRLINES BURLINGAME

6 LINES PRINTED.
)

2-156

REORGANIZE

REORGANIZE FILE filename
[:RESERVE=records]

Removes deleted records and rewrites the index structure of the given RELATE/2000 file.

filename Required. The name of the RELATE/3000 fiie that should be
reorganized. The file must not currently be open. The user must
have been the creator of the file and the file must exist in the log on
account. If the file contains a lockword, the lockword should be
placed on the filename. If the lockword i1s not placed on the file
name the new file will not contain the lockword.

RESERVE Optional. If used. this keyword must be followed by a value which
indicates the number of records apove the count of records currently
existing in the file which should be allowed in the new file. [f not
specified, the new limit will be 20% beyond the current record count,
or a total of 100, whichever is greater. Sectors are allocated only as
the addition of data reguires them, so the file can be given a large
reserve without wasting disc space.

The command functions by creating an open temporary file and copying the source file
into it. After the file is copied, the index structure is created. The original fiie is then
purged and the new file is renamed and saved in the same domain. |f the new file
cannot be saved in the permanent domain it will be saved in the temporary domain.
Care should be exercised if this command is used in a job as loss of data may result if
the file cannot be correctly saved.

The REORGANIZE command will not maintain the original record number ($LINE)
sequence.

EXAMPLES:

If a RELATE file's records are logically deleted (made invisible to the user) instead of
physically deieted (enabled with the MODIFY FILE command), they remain physically in
the file, which enabies the RECOVER command to recover them.

When the user wishes to physically remove these deleted lines, renumber the file adjust
the number of records available in the file, or rewrite the indexes, the REQORGANIZE
command shouid be used.

)SHOW CURRENT

FILE NAME =INVOICE DOC79.RDB
FILE (OR SET) NAME =]INVCICE
CURRENT RECORDS =13 (EOQOF=13)
MAXIMUM RECORDS =100

2-157

REORGANIZE

FILE TYPE =RELATE/3200
DISPOSITION,RETENTION =PERMANENT ,PERMANENT
ACCESS MODE =EXCLUSIVE ,NOLOCK
CLUSTERING INDEX =0
DATA COMPRESSION =YES
CRASHPROOF ACCESS =YES
DELETE =LOGICAL
SCAN =10
RECORDS CAN BE .DELETED.,UPDATED ,ADDED

JPRINT

$LINE INVNO NAME NUMBER ST AMOUNT TAX SALES
1 19221 NATIONAL AIRLINES 1908 CA §$ 627 .01 40.76 36
2 12455 NATIONAL AIRLINES 1000 CA $ 335.00 21.77 36
3 33 DEXMACH, [INC 1@ CA $ 348.70 22.67 99
4 2738 CUPERCO 400 CA $ 948 .60 61.66 36
5 23557 CUPERCO 420 CA $ 37 .00 2.40 86
6 10244 CUPERCO 409 CA § 500 .00 32.580 89
7 165 DEXMACH, INC. 1@ CA % 86 .32 5.61 83
8 106 DEXMACH, INC. 100 CA $ 76 .40 4 .97 87
9 10002 ALEXANDER HALE & CO. 700 NJ $ 999.99 90 .09 45
10 33 PERFECT SOUND 80@ VA $ 677 .77 @ .00 83
11 727 AMERICAN TIRE CO 500 CA $ 3.14 2.29 87
12 747 AMERICAN TIRE CO 500 CA $ 9.97 .06 83
13 8663 AMERICAN TIRE CO. 500 CA % 86 .0¢0 5.568 36

13 LINES PRINTED.
JDELETE FOR NUMBER=468 OR NUMBER=8080
4 LINES DELETED.

Even though 4 records have been deleted, a iook at the file's structure shows that there
are still 13 records physically in the file. A REORGANIZE command is the only way to
physically remove those records.

in the first reorganize, we want the file to take up as little space as possible when we
are finished, so we give it a RESERVE=0 keyword. The "MAXIiMUM RECORDS" shows
that we now have room for only 9 records. which was the number of non-deleted records
in the file before the REORGANIZE was performed.

If we later change our minds and wish to increase the available file area. we can

REORGANIZE the file again. We can either specify the number of additional records to
allow or let RELATE use its default sizes.

2-158

REORGANIZE

)SHOW CURRENT

FILE NAME =INVOICE.DOC79 RDB
FILE (OR SET) NAME =INVOICE
CURRENT RECORDS =9 (EOF=13)
MAXIMUM RECORDS =100
FILE TYPE =RELATE/300080
DISPOSITION,RETENTION =PERMANENT PERMANENT
ACCESS MODE =EXCLUSIVE ,NOLOCK
CLUSTERING INDEX =0
DATA COMPRESSION =YES
CRASHPROOF ACCESS =YES
DELETE =LOGICAL
SCAN =10
RECORDS CAN BE :DELETED ,UPDATED,ADDED

YCLOSE FILE INVOICE
JREORGANIZE FILE INVOICE;RESERVE=®
9 RECORDS REMAIN.

JOPEN FILE INVOICE

)SHOW CURRENT

FILE NAME =INVOICE DOC?79 RDB
FILE (OR SET) NAME =INVOICE
CURRENT RECORDS =9 (EOF=9)
MAXIMUM RECORDS =9
FILE TYPE =RELATE/20080
DISPOSITION . RETENTION =PERMANENT ,PERMANENT
ACCESS MODE =EXCLUSIVE NOLOCHK
CLUSTERING INDEX =0
DATA COMPRESSION =YES
CRASHPROOF ACCESS =YES
DELETE =LOGICAL
SCAN =10
RECORDS CAN BE :DELETED ,UPDATED ADDED

JCLOSE FILE INVOICE
JREORGANIZE FILE INVOICE
9 RECORDS REMAIN.

JOPEN FILE INVOICE

2-159

REORGANIZE

)SHOW CURRENT

FILE NAME =INVOICE.DOC79.RDB
FILE (OR SET) NAME =INVOICE
CURRENT RECORDS =9 (EOF=9)
MAXIMUM RECORDS =100
FILE TYPE =RELATE/3000
DISPOSITION,RETENTION =PERMANENT , PERMANENT
ACCESS MODE =EXCLUSIVE,NOLOCK
CLUSTERING INDEX =0
DATA COMPRESSION =YES
CRASHPROOF ACCESS =YES
DELETE =LOGICAL
SCAN =10
RECORDS CAN BE "DELETED,UPDATED,ADDED

2-1680

SELECT
SELECT [targetlist [[SORT] [UNIQUE] BY keylist] [WHERE condition]]

Indicates what information wiill be available toc the following command. All portions of
the command are optional. If none are used, the current SELECT command is dropped
and the data accessed reverts to the most recently set path (if any).

targetlist The target list must be in the following format:
name 1[=expression][,name2[=expression}]...

The target list indicates what fields should be returned and what
values they should assume. Each field name can be qualified with a
path name to indicate the source file of the field's value when an
expression 1s not given. If a path name is not used, the field must
exist in the file referenced by the current path. |If an expression is
specified, a new field name must be specified. The field's type is
determined by the type of the expression. A fieldname may not be
duplicated in the target list.

SORT Optional. If used, the BY keylist clause must also be included. This
removes Internal restrictions on how the BY clause is evaluated and
allows RELATE to choose the most efficient manner of evaluating the
request, which may include ignoring existing indexes and creating a
new temporary index. This keyword should not be used to create
updatable views.

UNIQUE Optional. If used, the BY keylist clause must also be included. The
system will only return to the user the records that contain unique
values in the keylist.

BY Optional. If used, a keylist must follow the “BY" keyword. The
results of the selection will be returned sorted by the keylist. The
keylist is a list containing the names of fields (without path names) in
the targetlist. The results of the selection will be sorted and returned
by these fields. 1f a ":D" is appended to any fieldname in the keylist,
that field will be sorted in descending order. Ranges can be specified
on commands following the SELECT command only if a BY clause is
specified.

WHERE Optionat. If used, this keyword must be followed by an expression
that. when evaluated, determines if the records used to create the
condition should be returned to the user. See the EXPRESSION
EVALUATION section for further details.

An expression may contain fieldnames from any currently open file
optionally qualified by a path name. If a path name is not used, the
field must exist in the file referenced by the current path.

The expression may be composed of virtually any number of alphabetic
or algebraic comparisons of fields or constants.

2-161

SELECT

The SELECT command is checked for syntax but is not executad until a subseaquent
command reads a record from a file.

To return all fields from a file an atsign ("@") may be used after a path name in the
targetlist. The atsign will add to the targetiist ail fieldnames that exist in the file
referenced by the path specified that do not yet exist in the targetiist. For example.
SELECT A.@, B.@ would return all fields in A and those fields from B that do not
duplicate those in A.

Once a file has been opened. the user may perform operations on or with the contents of
the file. The information used by a command is determined by the current path or by a
SELECT command.

RELATE/3000 makes many assumptions to simplify user interaction. The current path
assumption is of primary importance. The current path indicates to RELATE the file
from which information should be returned. In the absence of a SELECT command, only
records from the file referenced by the current path can be used.

To combine information from more than one file, the user may issue a SELECT commanc.
This command temporarily combines information into a single file. The file may never
physically exist but to the operation of the following command it appears to have been
created. Usually, a SELECT command 1s used to combine information for subsequent read
operations. It is also possible In some cases to add. delete, or update the contents of a
SELECTion. For more information on this please see the Update Views section.

After the SELECT command has been given, only the fields explicitly requested in the
targetlist can be referenced in the following command. For example:

JOPEN FILE INVOICES
JPRINT

This lists the entire contents of the INVOICES file.

JSELECT C_NO, INV_NO, AMOUNT WHERE AMOUNT100.00
JPRINT

This lists only the C_NO, INV_NO, and AMOUNT fieids tn records containing an AMOUNT
greater than 100.00.

2-162

An aggregate is a function
aggregates are defined:

$AVG

$SAVGU

SCOUNT

$COUNTU

$MAX
$SMEDIAN
$MIN
$STD_DEV
$SUM

$SUMU

Returns

Returns
values.

Returns

Returns
values.

Returns
Returns
Returns
Returns
Returns

Returns

SELECT

AGGREGATES

that returns summary information about a file. The following

the

arithmetic average of the qualified records.

the average of qualified records containing unique keyfield

the

the

the

the

the

the

the

the

count of the number of qualified records.

count of the number of records containing unique keyfield

maximum value of the qualified records.
median of the qualified records.

minimum value of the qualified records.
standard deviation of the qualified records.

sum of the expressions of the qualified records.

sum of the unique expressions of the qualified records.

2-163

SELeECT

The format of an aggregate is:
aggname ([expression] [BY keyfields] [WHERE condition])

Aggregates may be used in the condition clause of another aggregate, the expression
portion of an aggregate, the condition of a SELECT command. or the expression portion
of the targetlist. An aggregate may not appear in a keylist or take the place of a
fieldname in the targetlist.

The data type of an aggregate is determined by the expression clause. That is, if the
expression results in a LONG number, the aggregate will represent a LONG number. The
$COUNT and $COUNTU aggregates always return a DOUBLE quantity.

aggname Required. One of SAVG, SAVGU., S$SCOUNT, SCOUNTU, S$MAX,
SMEDIAN, $SMIN, SSTD_DEV, $SUM, sSUMU.

expression Optional. A numeric or alphabetic expression that is used to calculate
the value of the aggregate for each record qualified by the WHERE
clause. An alphabetic field can only be used in the $COUNT,
$COUNTU, SMAX, and $MIN aggregates.

BY Optional. Indicates that the resuits of the aggregate should be
generated for a specific field or fields. if a BY clause is not
included, the aggregate applies to the entire file. (See the examples on
the following pages.)

WHERE Optional. Indicates that the records to be used in the aggregate will
meet a specified condition.

2-164

EXAMPLES:

SELECT

Consider the following three files: EMP, DEPT, and MEMBER. These describe employees,
in each department. An entry
MEMBER file asserts that the employee with employee number E_NO is in the department

departments, and the membership of employees

numbered D_NO.

YSET PATH EMP

YPRINT

$LINE E_NO

Lo B O S
(oL B & I I N

6 LINES PRINTED
YSET PATH DEPT

JPRINT

$LINE D_NO

R 7R 5% B
W

NAME ADDRESS

BOB 1 MAIN ST CA
MARY 27 SPRUCE ST CA
SAM 4 LOCKWOOD CT M A
GEORGE 17 FERN DR MA
HORACE 1700 EXECUTIVE PL NY
KIM 38 BOX CT #3 CA
ONAME MGR_E_NO LOCATION
MANUFACTURING 4 BLDG &
ACCOUNT NG 5 NEW YCRK
RESEARCH 2 MOUNTAIN VIEW
FHANTOM 2 NOWHERE

4 LINES PRINTED
JSET PATH MEMBER

YPRINT

$LINE E_NO

~N O N e N
D h bR =

D_NO

[S T ¥ I N

7 LINES PRINTED

2-165

STATE SALARY

25000
350080
2500090
35000
75000
37000

in the

SELECT

The SELECT command can be used to perform a wide variety of functions and answer
many specific kinds of aquestions that are wvery difficult to answer with conventional
This is a simple seiection: print the names and addresses of all

database systems.
employees.

JSELECT EMP . NAME,

JPRINT
NAME

BOB
MARY
SAM
GEORGE
HORACE
KIM

ADDRESS

1 MAIN ST

27 SPRUCE ST
4 LOCKWOOD CT
17 FERN DR

EMP . ADDRESS

17060 EXECUTIVE PL

30 BOX CT §3

6 LINES PRINTED.

Here is a restriction on a relation:
than $35,000 a year.

print the names of all employees who make more

JSELECT EMP . NAME WHERE EMP.SALARY>35@00

YPRINT

NAME

HORACE
KIM

2 LINES PRINTED

One can also join two or more files:

all employees.

JSELECT EMP.NAME,

&)MEMBER . D_NO=DEPT.D_NO

YPRINT
NAME

BOB
SAM
GEORGE
BOB
HORACE
MARY
KIM

DNAME

MANUFACTURING
MANUFACTURING
MANUFACTURING
ACCOUNTING
ACCOUNTING
RESEARCH
RESEARCH

7 LINES PRINTED.

print the employee name and department names of

DEPT .DNAME WHERE EMP.E_NO=MEMBER.E_NO AND &

2-166

SELECT

“— The output can also be sorted by one or more keys, as in this example. Print the
department name and the members of each department in alphabetical order.

YSELECT DEPT .DNAME, EMP.NAME BY DNAME, NAME WHERE &

E)EMP . E_NO=MEMBER.E_NO AND MEMBER.D_NO=DEPT.D_NO

WARNING: BY CLAUSE WILL CAUSE OQUTPUT TO BE COMPUTED THEN SORTED.
JPRINT DNAME:B:S:1

DNAME NAME
ACCOUNTING BOB
HORACE
MANUFACTURING BOB
GEORGE
SAM
RESEARCH KIM
MARY

7 LINES PRINTED

To choose only one of several records that have duplicate values in a given field, the
UNIQUE clause can be used. Print the different salaries of all employees.

JSELECT EMP.SALARY UNIQUE BY SALARY
WARNING: TEMPORARY INDEX WILL BE CREATED TO SATISFY BY CLAUSE.

YPRINT
SALARY
250080
35000
37000
70080

4 LINES PRINTED

2-167

SELECT

Notice that the salaries 25000 and 35000 were not output twice. Now. find all employees
who make more than their managers.

Here, we need to open file EMP twice with different path names. This is because we
are comparing data in the EMP file to itseif. In other words. we are using the EMP file
for two different things: first, to find information about employees (path E1); and
secondly, to find information about their managers (who also happen to be employees:
path E2).

JOPEN FILE EMP; PATH=E1

JOPEN FILE EMP; PATH=E2

JOPEN FILE MEMBER; PATH=M

JOPEN FILE DEPT; PATH=D

YSELECT E1.NAME WHERE E1.SALARY>E2.SALARY AND &

&)E1 . E_NO=M.E_NO AND M.D_NO=D.D_NO AND D.MGR_E_NO=E2.E_NO
YPRINT

NAME

KM

1 LINE PRINTED.

Statistical information may also be acquired about the database or used in restricting the
queries. Aggregates play the role of aggregating or collecting data from several records
into a single number. With a BY clause on an aggregate you can separate the records
into groups. Print the average salary of all employees.

YSELECT AVG_SAL=8$AVG(EMP.SALARY)
JPRINT

AVG_SA
38667
1 LINE PRINTED.

Find how may employees there are.

YSELECT COUNT=$COUNT(EMP.E_NO)
YPRINT

COUNT

1 LINE PRINTED.

2-168

—

SELECT

With the $COUNT aggregate any field can be used as the argument. Restrictions can be
placed on which records are used in the aggregates. Find the sum of the salaries and the
number of employees making less than $36.000.

)SELECT SUM=$SUM(EMP . SALARY WHERE EMP.SALARY<360080), &
£)COUNT=$COUNT(WHERE EMP.SALARY<360080)
YPRINT

SUM COUNT

120000 4
1t LINE PRINTED.

The "unique” aggregates ($COUNTU. $SUMU, $AVGU) only use unique values of the field
when computing their results. Find how many different salaries there are.

YSELECT COUNT=$COUNTU(EMP.SALARY)
WARNING: TEMPORARY INDEX WILL BE CREATED TO SATISFY AGGREGATE BY

CLAUSE .
YPRINT

COUNT

1 LINE PRINTED.

Notice that with the SCOUNTU aggregate the field in the argument is important, whiie in
the $SCOUNT aggregate the field in the aggregate is just needed to specify which file to
count. In $COUNTU, the field is also used to determine uniqueness. Aggregates may also
be used with restrictions: Print the names of all employees who make less than the

average salary.

YSELECT EMP.NAME WHERE EMP.SALARY<$SAVG(EMP.SALARY)
YPRINT

NAME
BOB
MARY
SAM
GEORGE

KIM

5 LINES PRINTED

2-169

SELECT

Print the names of the employee(s) who have the highest salary.

)SELECT EMP.NAME WHERE EMP.SALARY=$MAX(EMP.SALARY)
YPRINT

NAME
HORACE
i LINE PRINTED.

Several conditions can be specified in the WHERE clause using logical operators. For
example, find everyone who lives in either New York or California and earns more than

the median salary.

JSELECT EMP.NAME WHERE (EMP.STATE="NY" OR EMP.STATE="CA") &

&) AND EMP.SALARY>$MEDIAN(EMP.SALARY)

WARNING: TEMPORARY INDEX WILL BE CREATED TO SATISFY AGGREGATE BY
CLAUSE.

YPRINT

NAME

KIM

HORACE

2 LINES PRINTED

All the aggregates so far used are simple aggregates that only return a single value. If a
BY clause i1s placed on the aggregate, the records are grouped and the aggregates are
performed successively on each group. For example. print the minimum salary of

employees in each state.

JSELECT EMP.STATE, SAL=$SMIN(EMP.SALARY BY EMP.STATE)
WARNING: TEMPORARY INDEX WILL BE CREATED TO SATISFY AGGREGATE BY

CLAUSE .
YPRINT

STATE SAL
CA 25000
M A 25000
NY 75008

3 LINES PRINTED.

2-170

SELECT

Find how many_people live in each state. A common approach to this type of problem
results in a command of the format:
SELECT CA=3COUNT(WHERE EMP.STATE="CA"), &

MA=$SCOUNT(WHERE EMP STATE="MA"), &

NY=SCOUNT(WHERE EMP.STATE="NY")
which will work (provided that it doesn’'t run out of memory in attempting to evaluate all
the different WHERE clauses), but has the disadvantage that the user has to know all the
states (or job categories or whatever is being counted) and runs the risk of forgetting
something. This solution is much faster.

YSELECT EMP.STATE, NUM=$COUNT(BY EMP.STATE)
WARNING: TEMPORARY INDEX WILL BE CREATED TO SATISFY AGGREGATE BY

CLAUSE
JPRINT

STATE NUM
CA 3
MA 2
NY

3 LINES PRINTED

The aggregates with BY clauses can also be used with conditions. Print the employees in
each state with the minimum salaries.

YSELECT EMP.STATE, EMP.NAME, EMP.SALARY WHERE EMP.SALARY= &

E)SMIN(EMP . SALARY BY EMP.STATE)
WARNING: TEMPCRARY INDEX WILL BE CREATED TO SATISFY AGGREGATE BY

CLAUSE

YPRINT

STATE NAME SALARY
CA BOB cseee
MA SAM csee0
NY HORACE 75000

3 LINES PRINTED.

2-171

SELECT

Some potentially difficult problems can be easily solved with aggregates. The next two
problems are cases of what is sometimes referred to as a "semi-outer-join”. For example:
print the names of departments with no people in them.

)SELECT DEPT.DNAME WHERE $COUNT(BY MEMBER.D_NO)=0 AND &

&)DEPT .D_NO=MEMBER.D_NO

WARNING:. TEMPORARY INDEX WILL BE CREATED TO SATISFY AGGREGATE BY
CLAUSE

YPRINT

DNAME
PHANTOM
t LINE PRINTED.

A similar problem is to list all the departments and, if there is a manager, the manager'’s
name, otherwise print blanks.

JSELECT DEPT.DNAME, MGRNAME=$SMAXIMUM(SMAX (EMP.NAME &

x) BY DEPT.MGR_E_NO WHERE EMP.E_NO=DEPT.MGR_E_NO)," *)
WARNING: TEMPORARY INDEX WILL BE CREATED TO SATISFY AGGREGATE BY
CLAUSE.

YPRINT

DNAME MGRNAME

MANUFACTURING GEORGE

ACCOUNTING HORACE

RESEARCH MARY

PHANTOM

4 LINES PRINTED

Aggregates can also be used with joins, as in: Print the sum of the salaries for each
department.

JSELECT DEPT.DNAME, SAL=$SUM(EMP_.SALARY BY DEPT.D_NO WHERE &
E)DEPT . D_NO=MEMBER.D_NO AND MEMBER . E_NO=EMP.E_NO)
WARNING: TEMPORARY INDEX WILL BE CREATED TO SATISFY AGGREGATE BY

CLAUSE.

YPRINT

DNAME SAL
MANUFACTURING 85000
ACCOUNTING 100000
RESEARCH 72000
PHANTOM 4]

4 LINES PRINTED.
)

2-172

SET INDEX

SET INDEX number/fieldlist

Makes the indicated index the current index.

number

fieldlist

Optional. The index number of the index desired to become the

current index.

Optional. If specified, the first index that contains at least the fields
specified is selected. If any of the fields in the fieldlist are
descending in the index, a local "D" switch must be appended to the
fieldname.

Either an index number or a fieldlist must be specified.

To set the
used.

EXAMPLES:

List all the existing indexes for the file.

print the file. Then

YSET PATH 1
)SHOW INDEX

FILE NAME

index back to the

line number index, a "SET INDEX 0" command should be

Set an index by the number of the index and
set an index by the first key element and print again.

NVOICE

=INVOICE.DOC79 RDSB

INDEX 1 BY NAME,NUMBER
WORDS IN KEY (+NODE) 13 (+1)
DISTRIBUTION 2,2
LEVELS IN TREE 1
NUMBER OF USED NODES 1

INDEX 3 BY NUMBER,INVNO
WORDS IN KEY (+NODE) 4 (+1)
DISTRIBUTION 2.1
LEVELS I[N TREE 1
NUMBER OF USED NODES 1

INDEX 2 BY AMOUNT: D (CURRENT INDEX)
WORDS IN KEY (+NODE) 4 (+1)

DISTRIBUTION
LEVELS IN TREE
NUMBER OF USED NODES

1
1
1

2-173

SET INDEX

)SET INDEX 3
IS NOW THE CURRENT INDEX.

INDEX
YPRINT

NUMBER

100
100
100
400
400
400
S5eo
500
500
700
goo
10080
1000

$3

INVNO

33
105
106

2738
10044
23557

727
747

8663
10002

33

10221
10455

NAME

DEXMACH, INC.
DEXMACH, INC.
DEXMACH, INC.

CUPERCO
CUPERCO
CUPERCO

AMERICAN TIRE CO.
AMERICAN TIRE CO.
AMERICAN TIRE CO.
ALEXANDER HALE & CO.
PERFECT SOUND
NAT]JONAL AIRLINES
NATIONAL AIRLINES

13 LINES PRINTED.
JSET INDEX AMOUNT:D
IS NOW THE CURRENT INDEX.

INDE X
)PRINT

AMOU

999 .
948 .
677.
627 .
500 .
348 .
335 .
86 .
86 .
76.
37.

3.

o .

Lo - A B - L R S R T S

#2

NT

99
60
77
91
20
70
20
32
00
40
00
14
97

INV

100
27

102
1980

104
1
86

NO NAME

ST

CA
CA
CA
CA
CA
CA
CA
CA
CA
NJ
VA
CA
CA

22 ALEXANDER HALE & CO.

38 CUPERCO

33 PERFECT SOUND

27 NATIONAL
44 CUPERCO
33 DEXMACH,
55 NATIONAL
25 DEXMACH,
63 AMERICAN

106 DEXMACH,

235
7
7

57 CUPERCO
27 AMERICAN
47 AMERICAN

13 LINES PRINTED.

ATRLINES

INC.
AIRLINES
INC.
TIRE CO.
INC.

TIRE CO.
TIRE CO.

2-174

PP AP P P AR

AMOUNT

348 .
86 .
76 .

948 .

.00

37 .
3.
0.

86 .

.99

5ee

999

677.
.01
335.

627

NUMBER

—_

.

700
400
800
000
400
100
200
100
500
100
400
S5ee
500

70
32
49
€0

00
14
97
00

77

o0

ST

NJ
CA
VA
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA

18.

32.
35.

» @
@ 0 W W - O =

32

88 .
35 .

18

40 .

© = (U - -

TAX SALES

00
. 81
.10
49
99
.00
.59
.00
.32
.99
.33
.07
.29

TAX

.99
.49
.33
07
99
.00
29
. 81
.32
.10
.00
.59
. 0@

99
83
87
36
99
86
87
83
36
45
83
36
36

SALES

45
36
83
36
99
99
36
83
36
87
86
87
83

SET INDEX

Index number zero is always by line number. The user can return to line number indexing
by using "SET INDEX 0"

JSET INDEX @
INDEX #@ 1S NOW THE CURRENT INDEX.

YPRINT
$LINE INVNO NAME NUMBER ST AMOUNT TAX SALES
1 10221 NATIONAL AIRLINES 1000 CA $ 627.01 B88.07 36
2 10455 NATIONAL AIRLINES 1008 CA § 335.00 40.20 36
3 33 DEXMACH, INC. 100 CA $ 348.7@ 18.080 99
4 2738 CUPERCO 400 CA $ 948.60 32.40 36
5 23557 CUPERCO 400 CA $ 37.080 3. 00 86
6 10044 CUPERCO 490 CA $ 500.00 35.99 99
7 105 DEXMACH, INC. 10@ CA $ 86.32 4 81 83
8 186 DEXMACH, INC. 198 CA $ 76.40 1.10 87
9 10002 ALEXANDER HALE & CO. 700 NJ $ 999 .99 9.99 45
19 33 PERFECT SOUND g8ee VA $ 677.77 3.33 83
11 727 AMERICAN TIRE CO. 500 CA $ 3,14 1.59 87
12 747 AMERICAN TIRE CO. 5ee CA $.97 .00 83
13 8663 AMERICAN TIRE CO. 500 CA $ 86.00 1.32 36

13 LINES PRINTED.

2-175

SET INDEX

2-176

SET PATH

SET PATH pathname

Makes current a file that has already been opened but may not be current due to some
other OPEN, CLOSE, or SET PATH command having been issued. The current path
indicates to RELATE the file from which information should be returned.

pathname Reauired. This is the pathname of a file that has previously been
opened but might no longer be the current file.

EXAMPLES:

Once a file has been opened, RELATE maintains speedy access to the file so that it need
not be reopened each time access is desired for the user. This is done by maintaining a
PATH name for each open file. To access one of these paths and make the file
“current”, use the SET PATH command.

YSHOW PATH

PATH NAME FILE NAME DATABASE NAME

INVOICE INVOICE INVOICE . DOC79 .RDB (CURRENT PATH)
CusST1 CUST1 CUST1.DOC79.RDB

MPECUST MPECUST MPECUST . DOC79 .RDB

CuUsT cusT CUST . DOC79 .RDB

YSET PATH CUST
)SHOW PATH

PATH NAME FILE NAME DATABASE NAME

INVOICE INVOICE JNVOICE DOC79 .RDB

CusTH CUsST CUST1.DOC79 . RDB

MPECUST MPECUST MPECUST . DOC79 .RDB

CusT CusT CUST . DOC79 . RDB (CURRENT PATH)

2-177

SET PATH

2-178

SHOW

SHOW
[LALL]
[BOUND]
[LCURRENT]
[.FILES]
[[FORMAT]
[.INDEX]
[KEY]
[.LEVEL]
[.PATHS]
[LRECORD]
[.SELECT]
[.SETS]
[[STRUCTURE]

Displays information about open files.

ALL

BOUND

CURRENT

FILES

FORMAT

INDEX

KEY

LEVEL

PATHS

RECORD

Optional global switch. If included, the requested information is
directed to the file RDBLIST. if RDBLIST cannot be opened, the
output is directed to the device class "LP".

If specified, enables BOUND, CURRENT, INDEX, and STRUCTURE.

If specified, displays any variables bound to the current cursor. This
option will onty display information when used from the Host Language
Interface routines.

If specified, displays status information on the current file.

If specified, shows all open files and the locking status on each.

If specified. displays any special print formats along with the basic
structure of the current file.

If specified, the current file's indexes are displayed. Descending fields
are indicated by local "D” switches. The current index is labeled as
such.

if specified, displays a key to the information requested.

If specified, displays the data entry level along with the basic
structure of the current file.

1f specified, displays a list of paths open in the cursor and the files
with which these paths are associated.

If specified. displays positions of the fields in the record and internal
field numbers along with the basic structure of the current file.

2-179

SHOW
SELECT if specified. displays the order in which files are searched to retrieve
the results from the current SELECT command.

SETS i+ specified, the current path must reference a set in an IMAGE
database. The names of the other accessible sets are displayed.

STRUCTURE i specified, enables LEVEL, FORMAT, and RECORD.

If no specific requests are made, SHOW displays only the basic structure (RECORD) of
the current file.

If no requests are specified, or if any request other than FILES or PATHS is made, a
current file must exist.

EXAMPLES:

The SHOW command displays information about open files.

)SHOW PATHS

PATH NAME FILE NAME DATABASE NAME

INVOICE INVOICE INVOICE.DOC79 .RDB (CURRENT PATH)
CUST1 CUST1 CUST1.DOC79.RDB

MPECUST MPECUST MPECUST . DOC?79 .RDB

cusT CuUsST CUST .DOC79.RDB

)SHOW CURRENT

FILE NAME =]NVOICE.DOC79 .RDB
FILE (OR SET) NAME =INVOICE
CURRENT RECORDS =13 (EOF=13)
MAXIMUM RECORDS =100
FILE TYPE =RELATE/3000
DISPOSITION,RETENTION =PERMANENT ,PERMANENT
ACCESS MODE =EXCLUSIVE,NOLOCK
CLUSTERING INDEX =0
DATA COMPRESSION =YES
CRASHPROOF ACCESS =YES
DELETE =LOGICAL
SCAN =10
RECORDS CAN BE :DELETED,UPDATED,LADDED

2-180

)JSHOW

FILE NAME

T

Y
NAME P
INVNO 1
NAME A
NUMBER i
ST A
AMOUNT R
TAX R

I

SALES_MAN

PRINT
JSHOW FORMAT

FILE NAME

T

Y
NAME P
INVNO I
NAME A
NUMBER I
ST A
AMOUNT R
TAX R
SALES_MAN I

PRINT
LEN

LINE WIDTH

[So 0 o e I S e RN Ve)]

1
S1

2

=INVOICE.DOC79 RDB

NT
ZE

1w
2B
1w
2B
2w
2w
1w

65 CHARACTERS.
KEY

LEVEL,
PRINT
LEN $
6
20
6
2
8 . Fx
6 .
5

PRINT LINE WIDTH

L N B B B NN B BN BN N

4 TYP
. A = gl
. Z

]
N
(o]

. I
. PRINT LEN
. INT SIZE

1]
2

. $

. COM

* SPECILTAL

- t = fo
. 2 = tr
. 3 = fo
» LEV

% & X P 5 03P EDS
)

-~ 3 U

— ® 3
® 0o 3

~ .0

®

N .
3

o o

Q uw o

=INVOICE .DOC79 RDB

C
0

M SPECITAL

CHARACTERS.
« SHOW KEY

*®

y P

al

1 e
al

s
pr

gin

gn

e
D = d
R = r
L o= 1
ngth o
siz
ign pr
int
print
g sign
ing sig
ry lev

LI B B I

oub |
eal
ong
fofi
of f

int

®

2-181

m

R R % B 7 OV

IN
S12Z

T
E

1w
208
W
2B
2w
2W
1w

*« r x

int
umbe
umbe

id [.

el d
FX=

%0

-~ o m

LR BN R IR BN BN

bytes(B)

d, FL=t

er DATE
nd nega
negativ
negatiyv

* 9 0 90

®

SHOW

¥ 8 & 5 % E T EDP TSI N

ked decimal .
igned .
*

ces] .
or words(w) .
ocat .
.

or numeric FORM .
ive .
»

DB for positives

LI I B A AR L I B B A A

SHOW

2-182

SCRT

[range] SORT BY keylist TO filename[;options]
[FOR condition]

Sorts a data file by a keylist.

range

keylist

LOCAL

TO filename

FOR condition

Optional. If used, only records in the specified range are sorted. See
the RANGE section.

Required. A list of fields by which the file will be sorted. All fields
listed must exist in the current file but need not exist in the output
file.

Optional switches which, if used, are appended to items in the keylist.
‘A Sorts the field in ascending order (default).

:D Sorts the field in descending order.

Reaquired. File to which data is output in sorted order. All options
listed in the "TO filename” section needed to open the file must be

appended to the filename, whether or not the file is already open.

Optional. If used, only records meeting the condition are sorted. See
the EXPRESSION EVALUATION section.

The SORT command is a shorthand method of entering a SELECT for the current file
with a BY clause followed by a COPY command.

EXAMPLES:

Sort by AMOUNT all records where the AMOUNT is greater than or equal to $500.00 and
write them to the AMT file. Since the file doesn't exist, it 1s created by RELATE/3000
as a permanent RELATE file.

YSET PATH

YPRINT
NUMBER

100
180
100
400
400
400
sSee
500
See
700

INVOICE

INVNO NAME ST AMOUNT TAX SALES
33 DEXMACH, INC. CA ¢ 348.70 18.00 9g
105 DEXMACH, INC. cA $ 86 32 4 81 g2
106 DEXMACH, INC ca 76 40 1.10 g~
2738 CUPERCO CA $ S48 60 32 40 I8
19044 CUPERCCO CA § 500 00 35 99 ER)
23557 CUPERCO CaA % 37.00 3 09 R €
727 AMERICAN TIRE CO A3 214 1.59 &=
747 AMERICAN TIRE CO o T e . 97 2 00 2 2
8663 AMERICAN TIRE CC. CA % 86 00 132 1g
10002 ALEXANDER HALE & CO NJ $ 999 .99 9 9¢ 4

2-183

SORT

geo 33 PERFECT SOUND

1008 19221

NAT]IONAL AIRLINES

1000 19455 NATIONAL AIRLINES

13 LINES PRINTED.
JSORT BY AMOUNT TO AMT FOR AMOUNT>=500

THE "AMT" FILE HAS BEEN CREATED AS A PERMANENT

5 LINES SORTED.
JOPEN FILE AMT

YPRINT

$LINE INVNO

1 10044
2 190221
3 33
4 2738
5 10002

NAME

CUPERCO

NATIONAL AIRLINES
PERFECT SOUND
CUPERCO

ALEXANDER HALE & CO.

S5 LINES PRINTED.

)

2-184

VA $ 677.77
CA $ 627 .01
Ca § 335.00

NUMBER

4080
1000
800
400
700

ST

CA
CA
VA
CA
NJ

L R A

3.33
88 .07
4¢ .29

83
36
36

RELATE/3000 FILE.

AMOUNT

500 .09
627 .01
677 .77
948 .60
899 .99

TAX SALES

35.99 99
88.07 36
3.33 83
32.490 36
9.99 45

SUM

[range] SUM [fieldiist] [FOR condition]

Obtains the sum of one or more fields.

range

fieldlist

LOCALS

FOR condition

Optional. |f used, only records in the specified range will be summed.
See the RANGE section.

Optional global switch. Prints the averages as well as the sums of the
indicated fields.

Optional list of fields to be summed. If specified, it must contain only
fields with a numeric data type. If not specified, all numeric fields
not having a date format will be summed. Groups of fieids may be
specified using the pattermmatching feature.

Optional switch appearing on any fields in the fieldlist.

A Prints the average of the fieid as well as the sum.

Optional. If used, only records meeting the condition will be summed.
See the EXPRESSION EVALUATION section.

¥ an average 1s printed it will contain two more decimal places than the field that was

summed.

The sum and average are calculated using long arithmetic.

EXAMPLES:

Obtain a total for AMOUNT and TAX fields in the INVOICE file for NUMBERs of 500.
Also compute the average tax.

YSET PATH

INVOICE

YSET INDEX 3
INDEX #3 IS NOW THE CURRENT INDEX

Y500 PRINT

NUMBER INVNO NAME ST AMOUNT TAX SALES
500 727 AMERICAN TIRE CC. CA § 3 14 1.5¢ 87
Soe 747 AMERICAN TIRE CO CA § e 97 9.00 83
500 8663 AMERICAN TIRE CO. CA 3 86 00 1.32 36

3 LINES PRINTED

2-185

SUM

)5806 SUM AMOUNT, TAX:A

FIELD SUM AVERAGE
AMOUNTS$ 90. 11
TAX 2.91 9.97080

3 LINES SUMMED.

This can also be done by using the SELECT command.
)SELECT TOT_AMOUNT=$SUM(AMOUNT WHERE NUMBER=500), &
E)TOT_TAX=$SUM(TAX WHERE NUMBER=5@0), &
E)AVG_TAX=$AVG(TAX WHERE NUMBER=508)
YPRINT
TOT_AMOU TOT_TA AVG_TA

$ 90. 11 2.91 .97

1" LINE PRINTED.
)

2-186

SYSTEM

SYSTEM
[[$CANCEL]
[;$COMMENT]

[;$CPU]

[;$DEMO]
[;$LANGUAGE="language"]
[:$TIME]

Assigns or displays system-wide options.

$CANCEL

$COMMENT

$CPU

$DEMO

$LANGUAGE

Optional global switch. If included, shows the current status of the
system options. If additional parameters are also included, they are
processed before the status is displayed.

This parameter can have either a local "Y" or "N" switch. It controls
the control-Y trap when RELATE is being executed from the Host
Language Interface routines. If no switch is specified, a "Y" s
assumed. If an "N" is specified, the control-Y is disabled. WARNING:
RELATE makes no distinction between output-oriented commands and
other operations; therefore, any RDBREAD call after controlY has
been pressed and $SCANCEL enabled may retwn an EOF. This could
result in incomplete processing of any command which reads data from
a file.

This parameter may contain a local "Y”, “N”, or “S" switch and
indicates the action to be taken with comments contained in procedure
files. If a switch is not included, a "Y" is assumed. If a "Y" is
assumed or given, the user may include a comment at the end of each
line in a procedure file. The comment is delimited by a "/*". Any
text may appear after the start of the comment. The comment runs
until the end of the line. These comments are stripped from the
command line before it is displayed when a SHOW option has been
soecified unless the local "S" switch is also used. These comments
may also be used interactively, but they will not be saved by
RELATE.

This parameter can have either a local "Y" or "N" switch and
indicates whether the number of CPU seconds used in the execution of
a command shouid be printed when the command completes. If a
switch 15 not specified. a 'Y 1s assumed.

This parameter can have either a Jocal “"Y" or "N" switch. It
indicates if a procedure 1s being run as a demonstration. If the
procedure is a demonstration, the $DEMO_S and $SDEMO_E sequences
defined in the TERMINAL command are printed around what would be
user input to the system. If a switch 1s not specified, a "Y" s
assumed.

This parameter i1s used to change the language in which RELATE/3000
operates. When the language 1s changed. all prompts., command names.
keywords, messages and errors will appear in the indicated language.
The language name must be enclosed in gquotes.

2-187

SYSTEM

$TIME This parameter accepts either a iocal "Y" or "N” switch and is used to
indicate if the amount of time used in the execution of a command
should be printed when the command completes. f a switch is not
specified, a "Y" is assumed.

If an error occurs when any of the parameters are assigned, no changes are made to the
current system status.

EXAMPLES:

Print the amount of time used to execute commands after the command completes.
Changes made to the system parameters do not take effect until the foilowing command.

JSYSTEM $TIME:YES

Print the number of CPU seconds that it takes for a command to execute. Iif no switch
is specified, "Y" is assumed. Show the current status of the SYSTEM parameters
(evaluated AFTER other parameters are processed).

)SYSTEM:S $CPU
SYSTEM CONTROL PARAMETERS:

$CPU:YES
$LANGUAGE="ENGLISH"
$TIME: YES

$0EMO:NO
$COMMENT : NO

@ 01 MINUTES.
YSYSTEM $TIME:N; $CPU:N

® © CPU SECONDS, ©.0@ MINUTES.
)SYSTEM:S

SYSTEM CONTROL PARAMETERS:
$CPU:NO
$LANGUAGE="ENGLISH"
$TIME:NO

$0EMO:NO
$COMMENT : NO

)

2-188

Assigns or displays

$CCTL

$CLEAR

$CRT

TERMINAL

TERMINAL
[($CCTL]
[;$CLEAR="clear sequence"]
[:$CRT]

[;$DEMO_S="demonstration start sequence"]
[;$DEMO_E="demonstration end sequence”]
[.DEVICE=devicerange]

[;$SLINES=# of lines per page]

[:$SPACE_B=# of lines to space at the bottom of page]
[[$SPACE_T=# of lines to space at the top of page]
[;$TYPE="terminal name"]

[:SWIDTH=# of characters]

the values of terminal parameters.

Optional global switch. If used, the current status of the terminal
options are displayed. No keywords (other than DEVICE) may be
specified on the same command.

Optional global switch. If used. the terminal types in the RELATE
terminal table are displayed. No keywords or other switches may be
specified on the same command.

Optional global switch allowed only for users with System Manager
capability. Updates the message catalog with new terminal parameters
when used in conjuction with the DEVICE keyword. See the "System
Manager” paragraph.

This parameter can have either a local "Y" or "N" switch and is used
to indicate whether or not the terminal understands carriage control
codes. If a switch is not specified "Y" is ix 'carriage control
assumed. $CCTL:N should be specified if a form-feed is not
recognized by the terminal or if paper of an unusual size is being used
and a form-feed would not position the paper to the top of the page.
$CCTL has no effect if the output device is a CRT ($SCRT:Y).

This specifies the sequence of characters that must be transmitted to
position to the top of a page, or, if the output device is a CRT, to
clear the screen. The seaquence may be a maximum of six characters
long.

This parameter accepts either a local "Y” or "N" switch and is used to
indicate if the output device is a CRT. If a switch is not specified, a
"Y" is assumed. When the output device is a CRT. RELATE/3000 will
output twenty-two lines of information and then request that a key be
hit to continue the output. IF $CLEAR is properly set the screen
will be erased before each page is printed.

2-189

TERMINAL

$DEMO_S="demonstration start sequence”

$DEMO_E="demonstration end sequence”
These parameters define the sequence of characters that should be
printed at the beginning and end of each line of user-entered
information when a procedure file is executing in a DEMO mode (See
the SYSTEM command). Each sequence may have no more than 6
characters.

DEVICE Allowed only for users with System Manager capability, and only in
conjunction with a :S or U switch. The devicerange is a device
number or range of device numbers, including zero (0) and from 20 to
399. See the "System Manager” paragraph.

SLINES=# of lines This indicates the number of lines of information that exist on a page.

SSPACE_B=# of lines

$SPACE_T=# of lines
These parameters set the number of lines that the system will skip at
the top and bottom of each new page. The number of lines skipped
may not exceed 63 and the total must be at least 10 less than the
number of lines per page. These parameters have no effect if the
output device is a CRT. The default for hardcopy devices is three of
each.

$TYPE="terminal type"
This parameter is used to indicate the type of terminal in use. When
$TYPE is assigned and the requested type can be located in the
terminal type table maintained by RELATE/3000, the $CCTL, $CLEAR.
SCRT, SLINES, SSPACE_B, $SPACE_T., and $WIDTH parameters are
set.

SWIDTH=#
of characters This parameter is used to indicate the width in characters of the
output device. The width may not be less than 40 or more than 250.

if an error occurs when any of the parameters are processed, no changes are made to the
current terminal configuration.

System Manager

The System Manager has the ability, with the :U switch, to modify RELATE's terminal
table in two ways. First, the terminals recognized by the $TYPE parameter (device
numbers in the 300's) can be altered. This allows you to change a TYPE from one that
your installation doesn't use to one that is used, and alter its associated parameters.

Secondly, the system manager can specify the parameters for terminals located on each
of the system’s logical devices (0 for the printer and 20-299 for terminals). Then, when a
user logs on, RELATE will automaticaliy set up their terminal to match the specified
configuration.

2-190

TERMINAL

EXAMPLES:

Show the user's current terminal type. The device number is zero because the examples
are generated from a job.

JTERMINAL:SHOW

DEV SPACE
TYPE CCTL CLEAR CRT LINES TOP BOTTOM WIDTH
2 Ploeo NG 12 NO 60] (2] 84
60 84

Show the available terminal types.

JTERMINAL:T

DEV SPACE

TYPE CCTL CLEAR CRT LINES TOP BOTTOM WIDTH
300 NO 12 NO 66 3 3 g0
301 AOM3 NO "286 YES 24 0 e g0
102 AJB832 YES 12 NO 66 3 3 132
303 ASR43 NO NO 51 3 3 132
104 DIABLO YES 12 NO 66 3 3 132
195 DEC YES 12 NO 66 3 3 132
306 HP2EB1A YES 12 NO 66 3 3 132
307 HP2635A YES 12 NO 66 3 3 250
398 HP2640B NO 27U YES 24)] 20
309 HP2623A NO YES 24 3 3 132
310 TVIg28C NO 12 YES 66 3 3 8o
311 QUME YES 12 NO 66 3 3 132
312 QMS128@ YES 12 NO 66 3 3 132
313 D1658@ YES 12 NO 66 3 3 132
314 D630 YES 12 NO 66 3 3 132

Change the current terminal type and display the results.

JTERMINAL $TYPE="ADM3"; $WIDTH=72
JTERMINAL:S
CEV SPACE

TYPE CCTL CLEAR CRT LINES TOP BOTTOM WIDTH

@ ADM3 NO 26 YES 24)) 80

24 72

2-191

TERMINAL

The System Manager can alter the standard table and set up terminais for specific logica!

devices.

JTERMINAL:U DEVICE=309;$TYPE="HP2623A" ;$CRT;$LINES=24
JTERMINAL:U DEVICE=25;8$TYPE="HP2623A"

JTERMINAL:S DEVICE=20/30

DEV
TYPE
20
21
22
23
24
25 HP2623A
26
27
28
29
30

CCTL
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

CLEAR

12

LS I S S N)

CRT LINES

NO
NO
NO
NO
NO
YES
NO
NO
NO
NO
NO

2-192

66
66
66
66
66
24
66
66
66
66
66

TOP BOTTOM WIDTH

SPACE

3 3
3 3
3 3
3 3
3 3
3 3
3 3
3 3
3 3
3 3
3 3

89
89
8o
890
8e
32
8o
8o
8o
8@
89

UNLOCK

- UNLOCK

Releases ali locks held by RELATE.

The UNLOCK command cannot be issued when a transaction is in progress.

EXAMPLES:

Once locks have been manually obtained with the LOCK command they must be manually
released.

)SHOW FILES

L

0

c

K FILE NAME DATABASE NAME

Y cusT CUST . DOC79.RDB
INVOICE INVOICE.DOC79 . RDB

JUNLOCK

JSHOW FILES

L

0

C

K FILE NAME DATABASE NAME
CusrT CUST.DOC79 RDSB
INVOICE INVOICE.DOC79.RDB

2-183

UNLOCK

2-194

UPDATE

UPDATE [assignment],...]] [TO filename1[;options]]
USINGI:D] filename?2|;options] [BY keylist]

Updates and/or copies records with duplicate keys from a secondary file.

D Optional global switch which, if used, is appended to the UPDATE
command. Deletes each record from the current file as it is updated.

.F Optional global switch. Updates only the first entry in a key.

assignment Optional. May contain fields from either the current file, the output

("TO") file, if specified, and the input ("USING”) file. Fields in the
output file and in the input file must be qualified by the file's path
name.

TO filename1 Optional. If included, each record updated in the current file will be
copied to filenamel. Any data fields that exist in filenamel but do
not exist in the current file will be obtained from filename?. All
fields that do not match names in either file are set to zeroes or
blanks depending on type. Any options listed in the "TO filename”
section needed to access the file must be appended to the filename,
whether or not the file is already open.

USING filename Required. The "USING” file contains records that are matched with
records in the current file by the fields in the keylist. When a
matching set of records is found. the records are translated into the
format of the "TO" file (iIf it was spec:fied) and then the assignments
are executed.

LOCALS Optional switch which, if used, is appended to the USING keyword.
:D Deletes each record from the "USING" file as it is updated.

BY keylist Optional. If not included, the current index will be used for the
update. All fields in the current index must also exist in filename?
and be of the same type and length. If included, the fields in the
keylist must be the first fields in the current key. The fields must
also exist in filename2 and be of the same type and length.

The UPDATE command reads records serially from the USING file and then locates all
records in the current file that match the fields given in the keylist (hence, the smaller
file should be the "USING" file). When a match is found and a "TO" file exists, a new
record is created in memory for the "TO" file. This record is created by copying the
record from the current file into the format of the "TO" file and then updating any fields
that are in both the "TO" and "USING" files, but not in the current file, from the
"USING" file. Any assignments requested are now executed. If any of the assignments
change the value of fields in the current file or the "USING" file, these records are
rewritten. If any assignments are for fields in the "TO" file, the new record will be
updated. Finally, any :D switches are acted on and the new "TO" record is actually
placed in the "TO" file.

UPDATE

If the current index is by line number each record in the "USING" file will be matched
with each record in the current file.

EXAMPLES:

Update NAME and ADDRESS using the information on those fields from the CUST file.
NUMBER field must exist in both the CUST and CUST1 files. NUMBER must be the
first field in the current index.

JSET PATH CUST
JPRINT NAME, NUMBER, ADDRESS

NAME NUMBE ADDRESS

ALEXANDER HALE & CO. 7¢0 B3A SAN PEDRO

AMERICAN TIRE CO. 500 7052 EL CAMINO REAL
CUPERCO 420 10802 WILKINSON AVENUE
DEXMACH, INC. 10 BOX 877 RD1

FINCH, FINCH, & OTTO 600 87 NORTH FIRST, SUITE 243C
HASLETREX INC. 200 89 BEST waAy

NATIONAL AIRLINES 1000 SAN FRANCISCO INTL AIRPORT
PERFECT SOUND 800 415 FAIR OAKS AVENUE

8 LINES PRINTED.
YSET PATH CUST1
JPRINT NAME, NUMBER, ADDRESS

NAME NUMBER ADDRESS

ALEXANDER HALE & CO. 7@ B3A SAN PEDRO

AMER]ICAN TIRE CO. 560 70652 EL CAMINO REAL
CUPERCO 490 10802 WILKERSON AVENUE
DEXMACH, INC. 180 PO BOX 1568

HASLETREX, INC. 2090 88 BEST WwWAY

NATIONAL AIRLINES 1000 SAN FRANCISCO INTL AJIRPORT

6 LINES PRINTED.
JCREATE INDEX BY NUMBER

INDEX #2 HAS BEEN CREATED.

6 LINES INDEXED.

INDEX #2 1S NOW THE CURRENT INDEX.

JUPDATE NAME=CUST.NAME, ADDRESS=CUST.ADDRESS USING CUST BY NUMBER
6§ LINES READ FROM CURRENT FILE.

8 LINES READ FROM USING FILE.

6 LINES UPDATED IN CURRENT FILE.

)SET INDEX NAME

INDEX #1 IS NOW THE CURRENT INDEX.

UPDATE

JPRINT NAME, NUMBER, ADDRESS

NAME NUMBER ACORESS

ALEXANDER HALE & CO 760 83A SAN PEDRO

AMERICAN TIRE CO 5008 7052 EL CAMINO REAL
CUPERCO 400 1020802 WILKINSON AVENUE
DEXMACH, INC 190 BOX 877 RD1

HASLETREX INC. 200 89 BEST WAY

NATIONAL AIRLINES 1000 SAN FRANCISCO INTL AIRPORT

68 LINES PRINTED.
)

2-197

UPDATE

2-198

SECTION 3

HOST LANGUAGE INTERFACE

HOST LANGUAGE INTERFACE

RELATE/3000 is designed to be used as a stand-alone language for interactive users and
as a data sublanguage embedded in a host programming language. Most RELATE query,
data manipulation, data definition, and data control functions can be executed directly
from a user's program. These commands provide a procedural interface to a database.
Additionally, a nonprocedural interface mechanism is supported that standardizes the
interface to RELATE, IMAGE, KSAM, and MPE files.

RELATE interfaces to FORTRAN, COBOL, SPL, and PASCAL with subroutines. Special
routines are supported for BASIC that pack and unpack data.

A program accesses RELATE through a cursor. A cursor is a fifty word integer array
that maintains status information and links the user's application with the RELATE
process. For procedural access the cursor is generally associated with a RELATE
command. For non-procedural access the cursor generally references a single file. |If an
error occurs due to the execution of a subroutine, the first eiement of the cursor will be
returned as a non—zero value. The program may then obtain the English language message
associated with the error number by calling RDBERROR. The CURSOR FORMAT section
should be consulted for other types of information returned to the user’'s program.

A program may have as many cursors initialized as desired, subject to the restrictions of
MPE and the hardware in regards to the number of open files and the memory space
available. The Host Language Interface routines create the RELATE Command Interpreter
as a son process. Information is passed back and forth through a shared extra data
segment in response to calls made by the application program.

All user programs must be prepared (PREPed) with DS (data segment) and PH ({process
handling) capability. The application program will be aborted by MPE if it has not been
prepared with the required capabilities.

To access files, a program must issue OPEN commands in the same manner as a user in
the Command interpreter. The path that is created when the file is opened is associated
with the passed cursor. Each cursor represents a group of zero or more access paths,
any of which can be used as the current path. Path names on different cursors do not
conflict with each other. Any file that s opened becomes accessible to any other
cursors, and can be accessed by more than one cursor at a time by creating a path to
the file by opening the file again on the desired cursor.

CALL NAME
RELATE
RDBADD
RDBBIND
RDBCLOSE

RDBDELETE

RDBERROR
RDBINFO
RDBINIT

RDBPOINT

RDBREAD

RDBREPOINT

RDBUPDATE

CALL SUMMARY

DESCRIPTION

Passes a command to the RELATE/3000 data base management system.
Adds a new record to the file associated with the passed cursor.

Binds a memory location for a return value.

Closes a cursor.

Deletes the current record from the file associated with the passed
Cursor,

Returns information on an error condition that exists in a cursor.
Returns information on the current file or status of the system.
Initializes a cursor.

Positions to a specific record on the file associated with the passed
cursor for reading.

Reads the next record from the file associated with the passed cursor.
Repositions to a specific record on the file opened in shared mode to
verify that it has not been altered by another user before an
UPDATE.

Updates the current record on the file associated with the passed
Cursor.

The current record is set by the RDBADD. RDBREAD, and RDBPOINT calis and may be
changed by a RELATE call. The current record is neutralized by the RDBDELETE call.

The table below

illustrates the format of the call statements used in each of the

supported languages.

cOBOL
FORTRAN
SPL

BASIC

PASCAL

CALL "name” USING parameter,...
CALL name (parameter,...)
name (parameter,...)

linenumber CALL name {parameter....)
linenumber *name (parameter....)

name (parameter,...)

32

All procedures may be called directly from any of the five host languages since they are
not TYPE procedures, do not use the SPL OPTION VARIABLE capability, and all
parameters are passed by reference as word addresses. A special set of calls is provided
to interface with the BASIC language. The format for these calls is included at the end
of this section.

3-3

RELATE

RELATE (cursor.command,commandlen)

The RELATE cali passes a command to the RELATE/3000 Command Interpreter process.
The command may be any command except REDO. If a CREATE FILE command is
executed, at least one of the keywords STRUCTURE or FIELDS must be included (see
CREATE FILE for further information).

cursor

command

commandien

A cursor to which the command will be associated. If the command
s either a CREATE or an OPEN of a file, the cursor will be
associated with the path formed. If a SELECT command is given, the
cursor will be associated with the results of the SELECTion.

An integer array containing the command to be executed. The
command may have up to 1500 characters.

An integer variable that indicates the length in bytes of the command.
If -1 is passed. the command is assumed to be terminated with a null
or a backslash ("\").

After the command is executed the current file is rewound. A subsequent read on the
file will return the first record in the file.

RDBADD

RDBADD ({cursor eof.list,listlen,source)

The ADD call is used to place a new record into a file.

cursor

eof

list

listlen

source

A cursor that is associated with an open path. The path must
reference a file to which the user has ADD access.

A logical variable that returns TRUE if the record could not be
written because the file is filled. Any other error during the add will
return TRUE as well as an indication of the cause of the error in the
cursor.

An integer array that contains the names or numbers of the fields to
be added. If field names are passed, they must be separated by
commas. f field numbers are passed, a zero element terminates the
list. An atsign ("@") may be used to indicate that the values for all
fields are supplied. If the user does not possess the ADD ability for
all fields, the atsign represents those fields to which the user has
access.

An integer variable that indicates the length in bytes of the list. |If
-1 is passed, the list is assumed to be terminated with a null, a
backslash ("\"), or contains field numbers. |f zero is passed, a zeroed
record is written to the file. If a -2 is passed, the list is ignored and
any substitution variable names which match a name in the file are
used to compose the new record.

An integer array that contains the data to be added to the file, if
listlen 1s not O or -2. The order, type. and size of the data must
correspond exactly to the format of the fields in the file. If listlen is
0 or -2, this array must be passed but it is ignored.

The add call will reset any break value that had been given during an RDBPOINT.

RDBBIND

RDBBIND {cursor bird relatevar relatevarien, var)

The BIND call is used to associate program variables with return variables used in an
ADD, POINT, UPDATE, or READ call.

cursor

bind

relatevar

relatevarlen

var

A cursor to which the return variable will be associated.

An integer variable that should be set to 1 to bind the field or 0 to
remove the field from the bind table.

An integer array containing the name of the return variable to be
used. Return variables must be a valid fieldname and must appear on
the left side of the assignment operator in a SELECT command or
duplicate the names of fields in the file. After the fieldname. the user
may specify the TYPE and SIZE of the field as well as any special
print formatting. If TYPE and SIZE are not specified, they will be
obtained from the field which is being bound. If the variable being
bound is alphabetic, the FORMAT will be set to zero.

An integer variable that indicates the length in bytes of the text in
relatevar. If -1 is used, the system assumes that relatevar is
terminated with a null or a backsiash ("\").

An integer variable or array that is used as the address of the return
variable.

The BIND call for return variables may be made at any time. This allows a RELATE
command to be given followed by calls to obtain information on the data that will be

returned.

Bound variables are lost any time the current path in a cursor is changed. The path can
be changed by a SELECT, CREATE FILE, OPEN FILE. CLOSE FILE, PURGE FILE, CLOSE
DATABASE, or SET PATH command.

RDBCLOSE

RDBCLOSE (cursor)

A CLOSE call releases the resources allocated to the cursor in the database process.
After a cursor is closed, an INIT call must be made with the cursor prior to any other
RDB calls. Closing a cursor logically disconnects the passed cursor from the database
process and may close files or databases if they are not referenced in any other cursor.

cursor An initialized cursor.

37

RDBCLOSEX (cursor)
RDBCLOSEX (cursor)

A CLOSEX call releases the resources allocated to any cursors in this segment and closes
down the RELATE process associated with the cursor. The process is created by the first
INIT or INITX call.

cursor An initialized cursor.

RDBDELETE

RDBDELETE (cursor)

The DELETE call deletes the current record.

cursor A cursor that is associated with an open path. The path must
reference a file to which the user has DELETE access.

RDBDELETE will delete the last record referenced by an RDBPOINT, an RDBREAD, an
RDBADD, or an RDBUPDATE. To delete several adjacent records, RDBREAD or
RDBPOINT should be called prior to each RDBDELETE call.

39

RDBERROR

RDBERROR (cursor,mode,.error errorien)
The ERROR call returns the text corresponding to an error condition in the cursor.

cursor A cursor that contains a non-zerc in the first element.

mode An integer variable that indicates the operation to be performed on
the error message:

1 Return the error message to the user in the error array.

3 Display the error message on RDBOUT (usually $STDLIST). The
error array and errorlen parameters are ignored but must be

passed.

error An integer array into which the error mesage will be placed. The
message is terminated with a null.

errorien An integer variable that must be set to the number of bytes available
in the error array prior to the call. The actual byte count of the
message is returned. If the length is returned as a negative number,
it indicates that the message did not fit into error. If O is returned,
no error existed.

3-10

RDBINFO

RDBINFO (cursor,mode,qualifier information,words)

The INFO call returns information about the file referenced by the cursor passed or about
the current state of the RELATE system.

cursor A cursor that is associated with an open access path.

mode An integer variable that indicates the type of information that should
be returned.

qualifier An integer variable that qualifies the type of data requested. For
some modes this parameter is ignored.

information An integer array of at least 30 elements into which the information
will be placed.

words An integer variable that specifies the size in words of the information
array.

Certain classes of information may be returned. These classes are indicated by the
hundreds digit of the mode. The type of information from a particular class is indicated
by the ones and tens digits. Information may be returned on the foliowing:

100 Indexes

200 Fields

300 Bound Fieids

400 Transaction Status
500 Databases

600 Files

700 Paths

RDBINFO

Mode

100

101 Index Number

102 Index Number

Qualifier Information Returned

Returns the number of indexas defined in the first word
and the number of each index defined in the following
words.

Returns the number of fields in the index in the first
word and the field numbers that comprise the index in
the following words. If the field is in descending order
in the index, the field number is negative.

Returns information about the index number:

WORD CONTENTS

1 Contains 1 if the index is a unary index.
2 The type of the index:

O B-Tree.

1 Hashed (image Master).

2 Hashed-linked (Image Detail).

3 Sort Order.

4 Record number.

3 The number of levels in the tree for RELATE
B-Tree indexes.

H

Not used.

56 The number of nodes allocated for RELATE
B-Tree indexes.

7 The number of words in the key.

8-29 Reserved

312

Mode

200

201 Field Number
(Negative for
Internal Field
Number)

202

RDBINFO

Qualifier Information Returned

Returns the number of fields in the file associated to the
passed cursor.

Returns information about the field:

WORD CONTENTS

1-5

6

10
11
12

13

14

15

16

17-29

Fieidname.

The number of characters in the fieldname.
Type (see the Data Type Codes section).

Words.

Print width.

Decimals.

The field car be used when a record is added.
The field can be used when a record i5 changed.

The word offset to the field in the cur:ent
record.

The internal (IMAGE) field number.

The print format of the field as set by the
CREATE FILE and MODIFY FIFLD commands.
See the Print Formats seciion for details.

Data entry level.

Reserved.

Returns information about type conversion problems for
bound variables. One element is returned for each fieid.
The causes and error numbers are described in the Type
Conversion Errors section.

3-13

ROBINFO

Mode

300

301 Field Number

Qualifier Information Returned

Returns the number of fields bound to the passed cursor.
Returns information about a bound field. The information
IS returned in the same format as in mode 201 except

that word 13 contains the address in the user's program
of the field, and word 14 is zero.

3-14

Mode

RDBINFO

Qualifier Information Returned

Returns information about the current transaction state:

WORD CONTENTS

1

The transaction level. A zero indicates the
absence of a transaction.

The locking status:

0 No locks pending.
1 Locks are pending.
2 Locks applied.

The number of locks pending or applied.

315

RDBINFO

Mode

501 Database Number

Qualifier Information Returned

Returns the number of currently opened databases in the
first word and the number of each database in the
following words.

Returns information about the database:

WORD CONTENTS

1-14 The normalized (contains the group and account)
name of the database terminated with a null.

15 The type of the database:
1 RELATE/3000
2 MPE
3 KSAM
4 IMAGE/3000 DATABASE
16 The number of files open in the database.
17 The current disposition of the database.
1 Permanent
2 Temporary
4 None
18 The retention of the database.
1 Permanent
2 Temporary
4 None

19-28 Reserved.

3-16

Mode

601 File Number

RDBINFO

Qualifier Information Returned

Returns the number of currently open files in the first
word and the number of each file in the following words.

Returns information about the file:

WORD

1-9

10

11-12

13

14
15
16

17-18

19-20

21-29

CONTENTS

The ilocal name of the file, or dataset terminated
with a null.

The number of the database to which this fiie is
associated. If the file is a view, this is zero.

A doubleword value that indicates the current
number of records in the file.

The type of the file:
1 RELATE/3000

2 MPE

3 KSAM

4 IMAGE/3000 DATASET

6 A SELECTION or view

The number of fields in the file.

The number of words in the data record.
Reserved.

A doubleword value that indicates the EOF
position on the current file. This is identical to
elements 11 and 12 for an IMAGE data set.

A doubleword value that indicates the limit of the
file.

Reserved.

RDBINFO

602

Returns information about the current file:

WORD CONTENTS

1

The current path number.
The current index number.
The current file number.

The current database number if the current file is
not a SELECTion.

3-18

RDBINFO

Mode
Qualifier Information Returned

700 Returns the number of currently open paths in the passed
cursor in the first word and the number of each path in
the following words.

701 Path Number Returns information about the path:

WORD CONTENTS

1-8 The path name terminated with a null.
10 The file number to which the path is associated.
1 The index number to which the path is associated.

12-29 Reserved.

319

RDBINIT

RDBINIT (cursor)

The INIT call creates a cursor in the database processes and initializes the cursor passed.
An INIT call must be the first RDB call made with the cursor and must be made for

each cursor that will be used.

cursor An integer array at least 50 words in length.

3-20

RDBINITX

RDBINITX (cursor, loadlist, listlen)

The INITX call creates a cursor in the database processes and initializes the cursor
passed. An iNIT or INITX call must be the first RDB call made with the cursor and
must be made for each cursor that will be used. The INITX call is a superset of the
INIT call and need only be used if special loading instructions are required.

cursor An integer array at least 50 words in iength.

ioadlist An integer array which can contain special loading or operational
instructions. The options should be separated with semicolons (";").
The list can not contain any blanks and all keywords must be spelled
out completely. The options are as follows:

SEGMENT=num Instructs RELATE to use 'num’ as the identity of
the extra data segment which will be used for
communications between the user's process and
RELATE. The segment number must be between 1
and 10000. A new RELATE process is created for
each new segment number used. Use of this option
allows a single user process to use several RELATE
processes and allows several user processes to
concurrently execute with their own RELATE
process. Any one segment number should not be
used by more than one user process.

SIZE=num Instructs RELATE to initially allocate, and maintain
at least this allocation, of DL area (which is used
by tables created within RELATE). The size must
be either -1, which says to use the default size, or
between O and 20 (representing 20 * 1024 words).
Larger numbers will reduce the number of times
that RELATE must expand the stack during file
opens and SELECT commands, easing the burden on
MPE's memory manager. Smaller numbers will
improve the performance of sorting by allowing the
system sort routine more stack space.

listlen An integer variable that indicates the length in bytes of loadlist. If
-1 is passed, the list is assumed to be terminated with a null or a
backslash ("\"}.

This process terminates and the data segment is released when an RDBCLOSEX is called.

3-21

RDBPOINT
RDBPOINT (cursor key,words break,found)
The POINT call locates a record by a key value.

cursor A cursor that is associated with an open path which contains an index.

key An integer array that contains the key value to be searched for. |If
words is O or -2, this array must be passed but it is ignored.

words An integer variable that specifies the number of words in the key
array passed by the user. This value may be less than the actual
number of words in the index. If O is used, the file is rewound. If a
-2 is used, the values of the substitution variables are used to
compose the key. This is done by searching the current key for bound
fields. The POINT key is composed of current values from the bound
program variables in order of the current key until a key field is
found which is not bound. Words must be 0 if a view without a BY
clause is being searched.

break An integer variable that indicates the number of fields in the current
index that should be checked for a control break. When a control
break is encountered, an EOF s returned from the read and the
contents of variables in the user's program are not changed. The
twelfth (12) cursor location returns the number of the field that
caused the break to occur. Field one is the least significant field in
the key. When the actual EOF is encountered on the file, cursor (12)
will return the value initially specified for break. An additional read
will return an EOF and a zero in cursor {12).

found A logical variable that returns TRUE if a record exactly matching the
key was found. If words is zero, found is returned as TRUE if any
records exist in the file.

A POINT call can be made for a file of any type. In RELATE, KSAM, and MPE files,
the point positions to a location on the file (or in an index). Subsequent reads made on
the file will return records starting with the key requested or the next largest key if an
exact match could not be found. In IMAGE master sets, only the record pointed to can
be read. In IMAGE detail sets, only records containing the same search item can be
read. For IMAGE sets, EOF is returned as TRUE when an attempt is made to read
additional records.

if an RDBPOINT is not done before an RDBREAD, the first record in the file will be
returned.

3-22

RDBREAD

RDBREAD (cursor.eof list.listlen,destination)

The READ call returns the next record from a file.

cursor A cursor that is associated with an open access path.

eof A logical variable that returns TRUE when an attempt is made to
read a record past the end of the file. If a POINT had previously been
made with break greater than zero, TRUE is returned when the next
key does not eaqual the current key. in this case, a record is not
returned. |If the file is not an IMAGE file, another read can then be
executed to obtain the first record in the next key.

list An integer array that contains the names or numbers of the fields to
be read. If field names are passed, they must be separated by
commas. If field numbers are passed. a zero element terminates the
list. An atsign ("@") may be used to indicate that all field values
should be read.

listlen An integer variable that indicates the length in bytes of the list. If
-1 is passed, the list is assumed to be terminated with a null or a
backstash {"\") or contains field numbers. If zero is passed, a record
from the input file is read but not returned. If a -2 is passed, the
list is ignored and any substitution variable names which match a field
name in the file are changed to refiect the data read.

destination An integer array into which the data is read if listlen is not O or -2.
The order, type, and size of the data is unchanged when read. |If
listlen is O or -2, this array must be passed but it is ignored.

If a read is done before an RDBPOINT is executed, the first record of the file is
returned.
If a serial read of an IMAGE master set 1s used and records are deleted during the read,

records may be skipped. This problem, which is described in the IMAGE reference
manual, is caused by migrating secondaries.

3-23

RDBREPOQOINT

RDBREPOINT (cursor key,words,break, found)

The REPOINT call relocates a record that has previously been read to preserve the
multi—user checksum.

cursor A cursor that is associated with an open path which contains an index.

key An integer array that contains the key value to be searched for. If
words is O or -2, this array must be passed but it is ignored.

words An integer variable that specifies the number of words in the key
array passed by the user. This value may be less than the actual
number of words in the index. If 0 is used, the file is rewound. |If a
-2 is used, the wvalues of the substitution variables are used to
compose the key. This is done by searching the current key for bound
fields. The key is composed of current values from the bound
program variables in order of the current key until a key field is
found which is not bound. Words must be O if a view without a BY
clause is being searched.

break An integer variable that indicates the number of fields in the current
index that should be checked for a control break. When a control
break is encountered, an EOF is returned from the read and the
contents of variables in the user's program are not changed. The
twelfth (12) cursor location returns the number of the field that
caused the break to occur. Field one i1s the least significant field in
the key. When the actual EOF is encountered on the file, cursor (12)
will return the value initially specified for break. An additional read
will return an EOF and a zero in cursor (12).

found A logical variable that returns TRUE if a record exact!ly matching the
key was found. If words is zero. found is returned as TRUE if any
records exist in the file.

A REPOINT call can be made for a file of any type. In RELATE, KSAM, and MPE files,
the point positions to a location on the file (or in an index). Subseaquent reads made on
the file will return records starting with the key requested or the next largest key if an
exact match could not be found. In IMAGE master sets, only the record pointed to can
be read. In IMAGE detail sets, only records containing the same search item can be
read. For IMAGE sets, EOF is returned as TRUE when an attempt is made to read
additional records.

This command is only useful for access to an updatable path open in SHARED mode. It
allows RELATE find a record that has previously been read and verifies that no other
user has altered the record before an UPDATE or a DELETE is done. The checksums
that indicate the status of a record are maintained on a segment basis. so if the file is
opened in different cursors within the same segment the checksums will be properly
maintained.

3-24

RDBUPDATE

RDBUPDATE (cursor,list,listlen,source)

The UPDATE call changes the values of fields in the current record.

cursor

list

listlen

source

A cursor that is associated with an open access path. The path must
reference a file to which the user has update access.

An integer array that contains the names or numbers of the fields to
be updated. If fieldnames are passed, they must be separated by a
comma. If field numbers are passed, a zero element terminates the
list. An atsign ("@") may be used to indicate that all updatable fields
will be changed.

An integer variable that indicates the length in bytes of the list. If
-1 is passed, the list is assumed to be terminated with a null or a
backslash ("\"} or contains field numbers. If -2 is passed, the list is
ignored and any return variable names which match a field name In
the file are used to update the record.

An integer array that contains the new data if listlen is not 2. The
order, type, and size of the data must correspond exactly to the fields
specified in the list. If listlen is -2 this array must be passed but it
1S ignored.

3-25

BASIC INTERFACE

To simplify access to RELATE/3000 from BASIC programs, special interface routines are
provided. The BASIC language interface routines perform the following actions:

1) Converts all byte addresses (string variables) to word addresses.

2) Converts the data types on entries that normally require integer variables or
expressions.

3) Packs and unpacks information in the read and writelists for reads, adds, points,
and updates.

4) Updates the logical length of string variables into which data is placed if string
variables are used in a read list. This is not done on variables that are bound.

STRING VARIABLES

The physical length (DIM) of a string variable determines the number of characters (bytes)
read and the logical length of a string variable determines the number of characters
written. Thus, the physical length of a string variable specified in a DIM or COM
statement should exactly match the size of the fields read.

On the other hand, the same string variable can be used to write items of varying sizes.
Substring designators should be used to ensure that the actual string passed to the field
fills the item to be written. For example, if the field is 8 characters long, and substring
S$(3) is 2 characters long, S$(3,10) or S$(3:8) fills the item with the S$(3) substring and
appends 6 blanks.

If the string variable is an array, the length of each string element or of the
concatenated string elements should correspond to the length of the field to be written.
This can be ensured by specifying substring designators when assigning the value of
elements in string arrays.

326

BRELATE (cursor{*), commandstring)

The RELATE call passes a command to the RELATE/3000 Command Interpreter process.
The command may be any command except REDO. If a CREATE FILE command is
executed, at least one of the keywords STRUCTURE or FIELDS must be included (see
CREATE FILE for further information).

cursor Required. An integer array containing no less than 50 elements.
commandstring Required. A string constant, variable or expression that contains the

command to be executed.

See the RELATE cal! for further information.

3-27

BDBADD {cursor{*}), eof [,list putlist])

The ADD call is used to piace a new record into a file.

cursor

eof

list

putlist

Required. An integer array containing no less than 50 elements.

Reauired. A single integer, real. or long variable that returns 1 if an
end of file is encountered. A 0 is normally returned.

Optional. |f not included, any bound variables are written to the file.
If included. this must be a string constant, variable, or expression
containing the names of the fields for which information is supplied in
the putlist. The list may consist of an atsign ("@") which represents
all fields to which the user has ADD access. The list may also be an
integer array containing the field numbers of the fields to be used.
The array must be terminated with a zeroed element.

Optional. One or more integer, real, long, or complex constants or
variables or string arrays, constants, or variables from which the new
record will be composed.

See the RDBADD call for further information.

3-28

BDBBIND (cursor(*), name [variable])

The BIND call is used to associate program variables with return variables used in a
RELATE command or ADD, POINT, UPDATE, or READ calls.

cursor Required. An integer array containing no less than 50 elements.

name Required. A string constant, expression, or variable containing a
fieldname optionally followed by its type, size, and print format.

variable Optional. A single integer, real, long, or string variable or array that
is bound to the name given above. If not specified, the field
contained within name is unbound.

If a string variable is bound the string should not be subscripted in an attempt to bind a
field to a portion of the string. Any attempt to do this will cause BASIC to create a
temporary variable and pass its address to RELATE. This cannot be detected by RELATE
and will cause incorrect results. The length of bound string variables is not adjusted by a

BOBREAD call. Thus, the length must be set in the user's program prior to the
execution of the BDBREAD. The simplest way to do this is to execute an assignment of
the form 'LET X$ (1.Y)=" " where Y 1s the number of characters in the field.

See the RDBBIND call for further information.

3-29

BDBCLOSE (cursor(®))

A CLOSE cali releases the resources aliocated to the cursor in the database process.
After a cursor is closed, an INIT call must be made with the cursor prior to any other
BDB calls. Closing a cursor logically disconnects the passed cursor from the database
process and may close files or databases if they are not referenced in any other cursor.

cursor Required. An integer array containing no less than 50 elements.

See the RDBCLOSE call for further information.

3-30

BDBCLOSEX (cursor(*))

A CLOSEX call releases the resources allocated to any cursors in this segment and closes
down the RELATE process associated with this cursor. The process is created by the

first INIT or INITX call.

cursor An initialized cursor.

3-31

BDBDELETE (cursor{®})

The DELETE cal! deletes the current recorc.

cursor Required. An integer array containing no less than 50 elements.

See the RDBDELETE call for further information.

332

BDBERROR (cursor(®*)[, mode, error])

The ERROR call returns the text corresponding to an error condition in the cursor.

cursor

mode

error

Reauired. An integer array containing no less than 50 eiements.

Optional. An integer, real, or long variable indicating a mode of
operation. |f not specified, mode 3 is assumed.

Reaquired if mode is used. A string variable into which the current
error message is returned.

See the RDBERROR call for further information.

333

BDBINFO (cursor(*), mode|, qualifier], information)

The INFO call returns information about the file referenced by the cursor passed or about
the current state of the RELATE system.

cursor Required. An integer array containing no less than 50 elements.

mode Required. An integer, real, or long variable indicating the information
to be returned.

qualifier Optional. An integer, real, or long variable that qualifies the mode.
I not passed, the qualifier is assumed to be zero.

information Reaquired. An integer, real, long, or string variable or array into

which the requested information is returned.

See the RDBINFO call for further information.

3-34

BDBINIT (cursor(*){, loadlist])

The INIT call creaies a cursor in the database processes and initializes the cursor passed.
An INIT call must be the first BDB call made with the cursor and must be made for
each cursor that will be used.

cursor

toadlist

Reaquired. An integer array containing no less than 50 elements.

Optional. A string constant, variable, or expression that contains
special loading or operational instructions as described under
RDBINITX. This need only be used if special loading instructions are

required.

If a loadlist is specified, BDBCLOSEX must be used to terminate the process.

See the RDBINIT call for further information.

335

The PACK call

BDBPACK (cursor(*), buffer(®), offset, packiist)

moves information from the variables in the packlist into the buffer

starting at the byte indicated by offset.

cursor

buffer

offset

packlist

Required. An integer array containing no less than 50 elements. The
array need not represent an initialized cursor.

Reaquired. A variable (usually an array) into which the contents of the
packlist will be placed.

Required. An integer, real, or long variable which represents the
starting byte location within buffer. Zero represents the first byte in
buffer. When the cail completes, offset is increased to represent the
number of bytes moved into the buffer.

One or more integers, real, long, complex or string variables or arrays
which contain the data to be packed into the buffer.

336

BDBPOINT (cursor(*)[, break, found|, pointlist}])

The POINT call locates a record by a key value.

cursor

break

found

pointlist

Required. An integer array containing no less than 50 elements.

Optional. An integer, real, or long expression, constant or variable
that indicates the number of fields in the current key that should be
checked for a control break when a read is performed.

Optional. An integer, real, or long variable that returns 1 if a record
containing the given key is found. A O is returned otherwise. If the
break parameter is not passed, found and pointlist must not be passed.

Optional. One or more integer, real, long, complex, or string
constants or variables which are used to create the key to be located
in the file. If not included, any bound variables are used to compose

the key.

PARAMETERS ACTION
cursor The file is rewound. No breaks are set.
cursor, break The file is rewound. The break fields are set.

cursor, break, found A point is performed with the bound variables.

cursor, break, found,
pointlist A point is performed with the passed variables.

See the RDBPOINT call for further information.

337

BDBREAD (cursor(*), eof{, list], readlist]})

The READ call returns the next record from a file.

cursor

eof

list

readlist

Reauired. An integer array containing no less than 50 elements.

Reaquired. A single integer, real, or long variable that returns 1 when
an end of file is encountered. A O is normally returned.

Optional. If not included, any bound variables are read from the file.
If included, this must be a string constant, variable, or expression
containing the names of the fields for which information is supplied in
the putlist. The list may consist of an atsign ("@") which represents
all fields to which the user has READ access. The list may also be
an integer array containing the field numbers of the fields to be used.
The array must be terminated with a zeroed element.

Optional. One or more integer, real, long, complex, or string variables
or arrays into which the next record from the file is returned.

See the RDBREAD call for further information.

3-38

BOBREPOINT (cursor(®)[, break, found{, pointlist]])

The REPOINT call relocates a record that has previously been read to preserve the
multi-user checksum.

cursor

break

found

pointlist

Reaquired. An integer array containing no less than 50 elements.

Optional. An integer, real, or long expression, constant or variable
that indicates the number of fields in the current key that should be
checked for a control break when a read is performed.

Optional. An integer, real, or long variabie that returns 1 if a record
containing the given key if found. A 0 is returned otherwise. |If the
break parameter is not passed, found and pointlist must not be passed.

Optional. One or more integer, real, long, complex, or string
constants or variables which are used to create the key to be located
in the file. If not included, any bound variables are used to compose
the key.

PARAMETERS ACTION
cursor The file is rewound. No breaks are set.
cursor, break The file is rewound. The break fields are set.

cursor, break, found A point is performed with the bound variables.

cursor, break, found,
pointlist A point is performed with the passed variables.

See the RDBREPOINT call for further information.

339

BDBUNPACK ({cursor(*), buffer(*), offset, unpacklist)

The UNPACK call moves information from the buffer into the variables in the unpacklist
starting at the byte indicated by offset.

cursor

buffer

offset

unpacklist

Required. An integer array containing no less than 50 elements. The
array need not represent an initialized cursor.

Required. A variable (usually an array) which contains data from a
BDBREAD or which has been previously packed.

Reauired. An integer, real, or long variable which represents the
starting byte location within buffer to obtain the data required to fill
the variables in the unpackiist. Zero represents the first byte in
buffer. When the call completes, offset is increased to represent the
number of bytes moved.

One or more integers, real, long, complex or string variables or arrays
into which the data from buffer will be unpacked.

BDBUPDATE (cursor(*) [, list], updatelist]])

The UPDATE call changes the values of fields in the current record.

cursor

list

updatelist

Reauired. An integer array containing no less than 50 elements.

Optional. If not included, any bound variables are written to the file.
If included, this must be a string constant, variable, or expression
containing the names of the fields for which information is supplied in
the putlist. The list may consist of an atsign ("@") which represents
all fields to which the user has CHANGE access. The list may also
be an integer array containing the field numbers of the fields to be
used. The array must be terminated with a zeroed element.

Optional. One or more integer, real, long, complex, or string
constants, expressions, or variabies from which the current record will

be updated.

See the RDBUPDATE call for further information.

341

PRINT FORMATS

When information on fields is returned from
print format word has the following meaning:

If right 3

If right 3

bits (13-15)=0 (a
bits (10-12)

bits (4-9)

bits (1-3)

bit (0)
bits {13-15)=1 (a

bits (10-12)

bits (7-9)

bits (4-6)

bits (1-3)

bit (0)

numeric format):

=1, if commas are to be printed.

SHALN L,

b

1l
N -

for
for
for
for
for
CR
CR

for
for
for

the RDBINFO or BDBINFO subroutines,

leading minus.

trailing minus.

=not used.

no $.
floating $.
fixed $.

date format):

=0, If
=1, if
=2, if
=3, if
=4, if

=0, if
=1, f
=2, if
=3, if
=4, if
=5 if
=5, if

=0, if

no separator.
slash ("/") is separator.
blank (* ") is separator.
dash ("-")} is separator.
period (".") is separator.

first
first
first
first
first
first
first

second position is ignored.
=#, represents same data as bits 7-9.

position
position
position
position
position
position
position

15
is
s
is
s
is
is

leading minus or plus.

trailing minus or plus.
parentheses around negatives.
for negatives.
for negative and DR for plus.

ignored.
MM.
DD.
JJd.
YY.
CCcCC.
NNN.

=0, if third position is ignored.

=#, represents same data as bits 7-S.

=not used.

the

DATA TYPE CODES

When information on fields is returned from the RDBINFO or BDBINFO subroutines, the
field types are encoded according to the tabie below:

TYPE FIELD TYPE

Alphabetic {2 characters per word).
Zoned decimal (2 digits per word).
Integer (1 word).

Double integer (2 words).

Real (2 words).

Long (4 words).

Packed decimal (4 digits per word).
Unsigned (1 word).

OO S WN

See the FIELD SIZE LIMITATIONS section under the CREATE FILE command for detailed
information about the types.

IJ

12,42

R2

R4

U. X

K1

i4.J4

OTHERS

RELATE IMAGE SPL

INTEGER
DOUBLE
INTEGER
REAL

LONG

BYTE

LOGICAL

DATA TYPES INTERFACE

EORTRAN
INTEGER

INTEGER*4

REAL

DOUBLE
PRECISION

CHARACTER

LOGICAL

COBOL
COMP S9
TO S9(4)

COMP S9(5)
TO S9(9)

COMP 3

DISPLAY
PICTURE S

DISPLAY
PICTURE A,
PICTURE X

DISPLAY
PICTURE A

COMP S9(10)
TO S9(18)

BASIC
INTEGER

REAL

LONG

STRING

SIGNED
INTEGER

BPG
BINARY

BINARY

NUMERIC

CHARACTER

CHARACTER

BINARY

TYPE CONVERSION ERRORS

When a listlen of -2 is used in an ADD, READ. or UPDATE call or a word count of -2
is given in a POINT call, the Host Language Interface routines will automatically
perform any type conversions reguired by the return variables defined by the user.
This mechanism allows programs to be written that are completely independent of the
format of the data in the database.

During the conversion operation RELATE may encounter errors because of the reasons
indicated below. If all of the error numbers are negative or zero no error is reported.
If any positive values are found an error indication is returned in the cursor. The
actual field(s) that caused the error can be found by using mode 202 of RDBINFO. If
an error is found in a point, add, or update, the operation is not performed. |f the
error is caused by a read, as much of the requested data as possible is returned to the
user's application.

ERROR DESCRIPTION
-3 The source contained only blanks. Zero is output.
-2 Too many decimals existed in the source. The source was truncated to

the allowed number of decimals.

-1 The source contained more digits than could correctly be printed or more
characters than would fit into the field. This error can be generated for
integer, double, real, long, or unsigned values and indicates that a
conversion from alphabetic, zoned, or packed format contained more digits
or characters than could correctly be printed. For numeric fields, the
number has been converted and accepted without change. For alphabetic
fields. trailing characters have been truncated.

0 No error.
1 The source contained more digits than could be accepted or the value of

the number exceeded the maximum for the data type. The conversion did
not take pilace.

2 Not returned.

3 The source contained an invalid character. The conversion did not take
place. This error is returned when an invalid digit is encountered in an
alphabetic to numeric conversion. It can also be caused by an invalid

digit or sign in a packed or zoned number.

4 Attempted conversion of negative number to logical. The conversion did
not take place.

5 The source contained only a sign. The conversion did not take place.

6 Invalid date. The conversion did not take place.

The address of the variable is no longer within the user’'s stack f{only
returned when bound variables are used).

The cursor

CURSOR FORMAT

is the means of communication between a user's application and the

RELATE/3000 data base management system. A cursor must be included in every call
made to the system. The contents of the cursor are updated by RELATE and should
not be modified by the user.

WORD

1

7-8
9-10
11

12
13-16

17

18

19-20

21

22

CONTENTS

RELATE/3000 error number.

MPE or KSAM file system error number,

IMAGE /3000 error number.

If the error was caused by, or can be associated with, a position in a
passed command line, this contains the character offset from the beginning
of the line.

Reserved.

The record number of the last record added., read, or updated.

Reserved.

The number of the Host Language Interface routine last called.

Contains the number of the field in the key that caused a control break.
Reserved.

File Type:

RELATE/3000

MPE

KSAM/3000

IMAGE /3000
Selection or View

OB WN 2

The number of the last executed RELATE/3000 command. This location
will contain a zero if the last Host Language Interface intrinsic cail was
not to RELATE. For a list of the command numbers see Appendix B.

Reserved.

Contains a 1 or a 0. A 1 indicates that records can be added to the file
referenced by this cursor.

Contains a 1 or a 0. A 1 indicates that records can be updated on the
file referenced by this cursor.

23

24

25

26

27-28

29-30

31-32

33

'35-36

37-38

3940

4145
46.(0:9)
46.(10:1)

48.(11:1)

46.(12:1)

Contains a 1 or a 0. A 1 indicates that records can be deleted from the
file referenced by this cursor.

Contains a 1, 2 or 3. A 1 indicates that the cursor references a file to
which the user has exclusive access. A 2 indicates semi-exclusive access
and a 3 indicates share access.

Contains a 1 or a 0. A value of 1 indicates that the file must be locked
before operations are performed on the file.

Contains a 1 or a 0. A 1 indicates that the user is the creator of the
file.

The count of the number of records not added, updated. or deleted in the
last command or since the last RDBPOINT call, because of a security
violation.

The count of the number of records returned from the current SELECT
command or the number read since the last RDBPOINT call.

The count of the records not read because of a security violation in the
last command or since the last RDBPOINT.

Contains a 1 or a 0. A 1 indicates that the last record could not be
added, changed, or deleted because of a security violation.

Reserved.

Indicates the maximum number of records that could be returned from the
current file or SELECTion.

A doubleword quantity indicating the number of milliseconds of real time
the last command took to execute. This value is only available if enabled
with the $TIME parameter on the SYSTEM command.

A doubleword quantity indicating the number of milliseconds of CPU time
the last command took to execute. This value is only available if enabled
with the $CPU parameter on the SYSTEM command.

Reserved.

Reserved.

Contains a 1 or a 0. A value of 1 indicates that the last RELATE
command was terminated with a Control-Y.

Contains a 1 or a O. A value of 1 indicates that the last RELATE
command caused the current index to be changed.

Contains a 1 or a 0. A value of 1 indicates that the last RELATE
command caused the current path to be changed.

46.(13:1)

46.(14:1)

46.(15:1)

47

438

Contains a 1 or a 0. A value of 1 indicates that the last output from
RELATE was 'PRESS ANY KEY TO CONTINUE'.

Contains a 1 or a 0. A value of 1 indicates that RELATE will not
execute commands passed to it because an IF command was executed
which returned a negative result.

Contains a 1 or a O. A value of 1 indicates that the last RELATE
command caused output to the terminal.

The number of this cursor.
The PIN of the database process assigned to this cursor.

The extra data segment number (XDS) of the data segment used for
communication between the user's program and the database process.

The extra data segment indentifier used for the communications segment.

351

PROGRAMMATIC CALLS EXAMPLES

On the following pages is a sample program written in BASIC, COBOL, FORTRAN, and
SPL. demonstrating usage of all of the programmatic calls to RELATE/3000. These
examples are not guaranteed to use excellent programming methodology or to be the
best use of the language or calls. They are only attempts to demonstrate how the
calls can be utilized in the available languages. They ail, however, compile and run
correctly.

The program:
1. Uses RDBINIT to initialize cursors for two files.

2. Uses the "OPEN" command with RELATE to open an already existing
RELATE/3000 file called VENDORS containing the fieids:

NAME, A, 20
VENDNUM, |, 5
PARTNO, I, 5
STATE. A, 2
and containing an index by VENDNUM.

3. Uses the "CREATE” command with the RELATE call to create a new
RELATE/3000 file called PARTS containing the fields:

PARTNO, I, 10
DESCR, A, 20
COLOR, A, 4
QTY. I, 5
4. Uses RDBINFQ to ascertain information concerning the VENDORS file.
5. Uses RDBERROR to evaluate errors returned from previous calls.
6. Uses RDBREAD to read through the VENDORS file.
7. Uses RDBADD to add records to the PARTS file.
8. Uses RBCLOSE to close the PARTS file and cursor.

9. Uses RDBBIND to bind fieids in the VENDORS file to variables in the
program.

10. Uses the "SET INDEX" command with the RELATE call to set the index in
VENDORS.

11. Uses RDBPOINT to find a specific record in VENDORS.
12. Uses RDBDELETE to delete a record from VENDQRS.

13. Uses RDBREAD to demonstrate use of the variables bound by RDBBIND.

353

14. Uses RDBUPDATE in conjunction with bound variables to modify records in -
VENDORS.

15. Uses RDBCLOSE to close the VENDORS file and cursor.

BASIC LANGUAGE HLI EXAMPLE

BASEX
19 REM, V(s) and P(s) will oct as cursors.
20 INTEGER vi[40],P1[40]),v2[20]
30 INTEGER V[50].P[50]
49 DIM C$[(10e] F$[B80] . E$[120].V$[5]).5%[2]
50 DIM X$[20].Y$[4]
690 INTEGER C,F.M,V1,F1 ,N,P,B
70 INTEGER 1,0Q,Q1

88 REM integer vorioblies with "2" ore used aoas Jlogicals.

90 INTEGER V2,P2,F2

10©@ REM

11 REM First operation must olwoys be to initialize cursor
120 REM BASIC calls moy be mode either with

130 REM CALL functionname or

140 REM S . functionname .

1506 REM

160 CALL BDBINIT(V[=])

170 »BOBINIT(P[s])

180 REM Initiolize end~-of-file ltogicalis.

19¢ P2=9

200 V2=0

219 REM

220 REM We wish to open the oireody existing file caolled
2390 REM VENDORS. After execution of the command, the
240 REM cursor V(s) will be associated with the VENDORS
250 REM file.

260 REM

270 C$="0OPEN FILE VENDORS"

280 CALL BRELATE(V[s].C$)

2906 REM We wish to create a new file called PARTS
30 REM containing four fields. After the command is
310 REM executed, the cursor P(s) will be aossocioted
320 REM with the PARTS fiie.
338 C%$=¢&

"CREATE FILE PARTS;FIELDS=(PARTNO,I,10@), (DESCR,A,20@),(COLOR,A,4), (&

QTy.1.,5)"

340 CALL BRELATE(P[+].C$%)
350 REM We will be looking at information in the VENDORS
36@ REM file concerning its fields NAME and PARTNO.
370 F$="NAME PARTNO"
380 REM We will obtain informaoti on obout the VENDORS
39@ REM file. The info that we want is obout fields, so
400 REM we will coll RDBINFOR with @ mode of 201. We
410 REM need to pass it field numbers, so we use F1 as
420 REM the field number counter.

430 M=201
440 F1=0

45@ REM 1f no error is found (error number in V[1]) ond
460 REM we have not yet found the NAME field (data obout
470 REM field is in V2(*)), then we continue to obtain
480 REM info.

49¢
509
519
529
530
540
5509
S56e
570
580
580
600
610
620
630
640
650
660
670
680
690
700
710
720
739
740
759
760
770
780
73880
800
810
8290
830
840
850
860
870
880
890
98¢0
Si1@
920
930
9490
950
S6@
9780
S80
9989
10009
te1e
1020

IF v[1)=0 ARD NOV FNE(V2[1])."Na")Y AND NOT FNE(V2[2)]),"ME") THEN DO
Fi=F 141
CALL BDGINFO(V]e]. M, F1 Vv2(s1])

GOTO 4990
DOEND
REM I1f an error haos been found, ascertain the messog
REM and return.
1F Vv[1]<>@ THEN DO
M=
CALL BDBERROR(V[s] .M. E$)
PRINT E£%
END
DOEND
REM If no error was found, then the length of the NAME
REM fietd is in Vv2[8]).
REM Proceed to read the first record from the VENDORS
REM file. NAME and PARTNO will be placed into V1(s)
N=v2[8]
CALL BDBREAD(V[e]l,v2,F$,Vi[s])
REM 1f no end-of-file found, then compore the port
REM number . 1t found the proper one, then read daota
REM for the PARTS file into P1(es) and add that dato
REM to the PARTS file.
IF NOT P2 AND NOT V2 THEN DO
REM Dota for the PARTNO field begins right agfter
REM the end of the NAME field.

P=V1[N+1]
IF 123@0<=P AND P<=1239 THEN DO
INPUT ®“PARTNO?",Q
INPUT "DESCR?",Xx$%
INPUT "COLGR?",Y$
INPUT "QTY?2",Q1
F¢="0"
CALL BDBADD(P[+«].,P2,F$.Q,.X%$,.Y$.01)
DOEND
F$="NAME ,PARTNO"
CALL BDBREAD(V[s*].,V2,F$,Vvi[s])

GOTO 729
DOEND
IF P2 THEN GOTO 1310
REM RDBCLOSE closes access to o cursor, but leoves
REM its ossociaoted file open. Close the file
REM first, then the cursor.

C$="CLOSE FILE PARTS"
CALL BRELATE(P[+].C$)
CALL BDBCLOSE(P[=*])

REM Whaotever the definition of the field VENDNUM was
REM in the file, it wll now be read into the program
REM as an ASCI] string of 5 chars. It will be read
REM into the vaoriable V$. V$[1:5] must be set to

REM something in order to set its length as RELATE
REM colls will not set the length for bound variables

F$="VENDNUM;SIZE=5;TYPE=ALPHA"
CALL BDBBIND(V[s]}.F$.V$)

193¢0
1040
1050
10680
19078
12890
1099
100
110
129
130
140
150
160
170
189
190
200
210
220
230
240
250
260
270
280
290
Joe
310
320
330
340
350
360
370
>80
390
400
410
429
439
14490
1459
1460
1470
1489
1430

..._..._._.d_._‘_._._._........_a

.._4_-_._._....._‘_._._._.......4

REM Whaotever printiength and type are
REM STATE in VENDORS file will be use
REM Dato wil) be associated with the

REM See note on Vv§$§

F$="STATE"
*BDBBIND(V[+],.F$, 5%)
S$[{1:;2)="

REM Set index

C$="SET INDEX VENDNUM"

CALL BRELATE(V[s].,C$)

FOR I=1000 TO 5000 STEP 100
CALL BDBPOINT(V[s},0,F2,]
IF F2 THEN DO

CALL BDBODELETE(V[«])
CALL BDBPOINT(V[s],0,F2
IF F2 THEN DO

CALL BDBREAD(V[s],Vv2)

)

1)

IF s$[1:2}="CA" THEN DO

V$[1.:5)="00000"

CALL BOBUPDATE(V[s])

DOEND
DOEND
DOEND
NEXT 1
F$="CLOSE FILE VENDORS"
CALL BRELATE(V[e],C$)
CALL BDBCLOSE(V[«])

above .

by VENDNUM .

defined f
d in the
variabile

rnteger value N with

END

REM Function compores the

REM .. . - the 2 characters in the string.
REM .. if equal .

DEF INTEGER FNE(N,X$)
INTEGER M
M=256~NUM(X$[1,1])
M=M+NUM(Xx$[2:1])

I'F N=M THEN RETURN 1
ELSE RETURN 9

FNEND
REM Function places passed 2
REM integer starting ot Pth

DEF INTEGER FNC(X$,P)
INTEGER N
N=256«NUM(X$([P;1])
N=N+NUM(X$[P+1;1])
RETURN N

FNEND

chaoracters
character

Returns

into
of X% .

or
progranm

S$.

9

COBOL LANGUAGE HLI

$CONTROL USLINIT, MAP
IDENTIFICATION DIVISION.
PROGRAM-1D.
ENVIRONMENT DIVISION.
DATA DIVISION
WORKING-STORAGE SECTION

77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
01
81

21

81

01
21

01

21

01
21

.. .V=CUR

COM-LEN

F-LEN
MODE-NUM
V-INFO-SIZE
FIELD-NO
B-LEN
NAME-LEN
PART-NO

BIND
WORDS-IN-KEY
1

V-EOF

P-EOF

FOUND

DUMMY

QTYy

TEMP-10
]I-0O-AREA.

Q4 BUFFER
NUM-AREA REDE
04
and P
V—-CUR

BUFF-NUM OCCURS

EXAMPLE

RELATE-SAMPLE.

PIC S9999 USAGE
P1C S8999 USAGE
PIC S9999 USAGE

PIC S9999 USAGE
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

USAGE
USAGE
USAGE
USAGE
USAGE
USAGE
USAGE
USAGE
USAGE
USAGE
USAGE
USAGE

$9999
$9999
$9999
$8999
$99899
$9999
S9999
S$S9999
$9999
$99989
PIC S9999
PI1C S9999
PIC XXXX.

PIC X(120).

FINES 1-0-AREA.

-CUR are the cursors.

IS
Is

Is
IS
IS
IS
Is
IS
IS
IS
1S
1S
Is
Is

6@ TIMES PIC S9999 USAGE

@4 VEND-~-CUR OCCURS 50 TIMES PIC S9989 USAGE

P-CUR .
Q4
V-DATA.

©4 VEND-DATA OCCURS 4© TIMES PIC $9999 USAGE

V-DATA-C REDE
P-DATA

©4 PART-DATA
P-DATA-C REDE
04 P-DATA-CA
04 P-DATA-CB
04 P-DATA-CC
04 P-DATA-CD
V-INFO

24 VEND-INFO
V-INFO-C REDE
24 V-INFQO-NAM
@4 FI1LLER
COMMAND .

04 COMMAND-L
COMM~-C REDEFI
FIELDS.

FINES V-DATA PIC X(80) .

OCCURS 40 TIMES PIC S9999
FINES P-DATA.
P1C
PIC
PIC
PIC

XX .

X(20) .
X(4).
X(54) .

OCCURS 2@ TIMES PIC S9998 USAGE
FINES V-INFO.
E PIC X(4).

PIC X(36).

NE OCCURS 1teoe
NES COMMAND PIC x(200).

PART-CUR OCCURS 5@ TIMES PIC $S9999 USAGE

USAGE

TIMES PIC S8999 USAGE

IS COMPUTATIONAL.

COMPUTATIONAL.
COMPUTATIONAL.

IS COMPUTATIONAL VALUE 29.

COMPUTATIONAL.
COMPUTATIONAL .
COMPUTATIONAL.
COMPUTATIONAL .
COMPUTATIONAL.
COMPUTATIONAL.
COMPUTATIONAL.
COMPUTATIONAL.
COMPUTATIONAL.
COMPUTATIONAL .
COMPUTATIONAL .
COMPUTATIONAL.

IS COMP.

1S COMP .

IS COMP.

1S COMP.

IS COMP .

IS COMP .

IS COMP.

@4 FIELD-LIST OCCURS 4@ TIMES PIC S9593 USAGE IS COMP.
Q1 FIELDS-C REDEFINES FIELDS PIC X(80).
01 V—-NUM.
@4 VEND-NUM OCCURS 3 TIMES PIC S9999 USAGE IS COMP.
21 V-NUM-C REDEFINES V-NUM PIC X(6).
21 STATE.
@4 STATE-FIELD PIC S9999 USAGE IS COMP.
21 STATE~-C REDEFINES STATE PIC X(2).
PROCEDURE DIVISION.
MAIN-ROUTINE.
......... Cursors must be initialized before using.
CALL “RDBINIT" USING V-CUR.
CALL "RDBINIT" USING P-CUR.
.......... initiolize end-of-file logicals.
MOVE ZERO TO P-EOF.
MOVE ZERO TO V-EOF.
......... Now open the alreody existing file caolled VENDORS.
......... The OPEN command has o length of 17 characters.
MOVE "OPEN FILE VENDORS" TO COMM-C.
MOVE 17 TO COM-LEN.
........... After execution of the OPEN command, V-CUR will be
........... associoted with the VENDORS file.
CALL "RELATE" USING V-CUR, COMMAND, COM-LEN.

........... Create a new file colled PARTS with four fields. It
........... a tength of -1 is given, the commoand ends with o nul!
........... or o backslaosh. After the command is executed, PCUR
........... will be associated with the PARTS fitle.
MOVE "CREATE FILE PARTS;FIELDS=(PARTNO,],1@),(DESCR,A,20),
"(COLOR,A,4),(QTY,1.5)\" T0 COMM-C.

MOVE -1 TO COM-LEN.
CALL "RELATE"” USING P-CUR, COMMAND. COM-LEN.
........... Set up partial field list for VENDORS file with
........... 11 chaorocters.
MOVE "NAME,PARTNO" TO FIELDS-C.
MOVE 11 TO F-LEN.
e Find informotion aobout fields.
MOVE 201 TO MODE-NUM.
MOVE ZERO TO FIELD-NO.
R L While no errors encountered, ook for NAME fielid.
..... Obtoin info about the FIELDNOs and put it in V=-INFO.
LOOK-FOR-NAME .
1F VEND-CUR(1) IS = ZERO AND V-INFO-NAME IS NOT = “NAME"
AND VEND-INFO(5) IS NOT = 4
ADD t TO FIELD-NO,
CALL “RDBINFO" USING V-CUR, MODE-NUM, FIELD-NO, V-INFO
V-INFO-SI1ZE,
GO TO LOOK-FOR-NAME.
............. Error found. Return error message
1f VEND-CUR(1) IS NOT = ZERO
MOVE 128 TO B-LEN,
MOVE 1t TO MODE-NUM,
CALL "RDBERROR" USING V-CUR, MODE-NUM, NUM-AREA, B-LEN,
DISPLAY [-0-AREA,
GO TO END-1T.

............. Number of words of datag in the NAME field.
MOVE VEND-INFO(B) TO NAME-LEN.

............. Read first record from VENDORS file. Place

............. NAME ans PARTNO data into V-DATA.

CALL "RDBREAD™ USING V-CuRr, V-EOF, FIELDS, F-LEN, v-DATA.

............. Whiie no end-of-file g found, reagd info from
............. terminagl into P-DATA ang add records to PARTS
............. file using info in P-DATA .
PERFORM ADD-A-RECORD UNTIL V-EOF IS NOT = ZERO OR
P-EOF 1S NOT = ZERO.

ADD~A-RECORD.
MOVE NAME-LEN TO I.
ADD 1 TO 1.
MOVE VEND—DATA(I) TO PART-NO.
IF PART-NO Is > 1229 AND PART-NO 1S < 1240

MOVE "PARTNO?" TO BUFFER,
DISPLAY 1-0-AREA,
MOVE ZEROS ToO TEMP-10,
ACCEPT TEMP-10,
MOVE TEMP-10 710 PART—DATA(l).
MOVE "DESCR?" To BUFFER,
DISPLAY I-0-AREA,
MOVE SPACES To BUFFER,
ACCEPT I-0-AREA,
MOVE BUFFER TO P-DATA-CB,
MOVE "COLOR?" To BUFFER,
DISPLAY I-0-AREA,
MOVE SPACES TO BUFFER,
ACCEPT I-0-AREA,
MOVE BUFFER T0O P-DATA-CC,
MOVE "QTYy=?" 710 BUFFER,
DispLAY 1-0-AREA,
MOVE ZEROS TO TEMP-10,
ACCEPT TEMP-10,
MOVE TEMP-10 TO PART—DATA(14),
MOVE "@" 710 FIELDS-C,
MOVE 1 T0 fF-LEN,

CALL "RDBADD" USING P-CUR, P-EOF, FlELDS, F-LEN, P-DATA.

MOVE "“NAME,PARTNO" TO FlELDS-C.
MOVE 11 TO F-LEN.

CALL "RDBREAD" USING V-CuUR, V-EOF, FlELDS, F-LEN, V-DATA.

END-OF-ADD.

1F P-EOF IS NOT = ZERO THEN GO TO END-IT.
............. RDBCLOSE closes gccess to cursor but leaves the
............. file open. Close the file first.

MOVE "CLOSE FILE PARTS\" TO COMM-C.

MOVE -1 TO COM-LEN.

CALL "RELATE" USING P~CUR, COMMAND, COM-LEN.
CALL "RDBCLOSE" USING P-CUR

............. Binding voeriables. Whatever the definition of the
.............. field VENDNUM in the file was, it wili be read as
........... -on ASCII string of 5§ chaorocters into the variabie

........ V-NUM . An FLEN of -1 assumes |ine ends with o null

MOVE “VENDNUM;S]ZE=5:TYPE:ALPHA” TO FIELDS-C.

361

MOVE -1 TO F-LEN.

MOVE 1 TO BIND.

CALL "RDBBIND" USING Vv-CUR, BIND, FIELDS, F-LEN, V-NUM.
P Bind the STATE field to the STATE voriable.
. Whotever the printlength and type are in the
PO VENDOR file will be used by the program.

MOVE "STATE" TO FIlELDS-C.

MOVE 5 TO F-LEN.

CALL "RDBBIND" USING V-CUR, BIND, FIELDS. F-LEN, STATE.
P Set index in VENDORS file by VENDNUM.

MOVE "SET INDEX VENDNUMN\® TO COMM-C.

MOVE -1 TO COM-LEN.

CALL “"RELATE®™ USING V-CUR, COMMAND , COM-LEN.
. Assumption made that VENDNUM is an integer in the
. VENDORS file. Search for vendor numbers by 100°'s.

PERFORM SEARCH-FOR-RECORDS THROUGH SEARCH-EX

VARYING I FROM 1000 BY 100 UNTIL I IS > 5@900.
MOVE “"CLOSE FILE VENDORS™ TO0 COMM-C.
MOVE -1 TO COM-LEN.
CALL "RELATE" USING V-CUR, COMMAND, COM-LEN.
CALL "RDBCLOSE" USING V-CUR.
END-1T.
STOP RUN.
SEARCH-FOR-RECORDS.
MOVE 1 TO WORDS-IN-KEY.
MOVE ZERO TO DUMMY.
CALL "RDBPOINT" USING V-CUR, 1. WORDS-IN-KEY, DUMMY, FOUND .
1F FOUND IS NOT = ZERO THEN PERFORM FOUND-ONE
THROUGH FOUND-EX.
SEARCH-EX EXIT
FOUND~-ONE
CALL "RDBDELETE" USING V-CUR.

FOUND-EX .

FOUND-ANOTHER .

CALL "RDBPOINT" USING V-CUR, I, WORDS-IN-KEY, DUMMY
FOUND.
IF FOUND IS NOT = ZERO THEN PERFORM FOUND-ANOTHER .
EX1T.
MOVE -2 TO F-LEN.
CALL "RDBREAD" USING V-CUR, V-EOF, FIELDS, F-LEN
, V-DATA.
1F STATE-C IS = "“CA"
MOVE ZEROES TO V-NUM-C,
CALL "RDBUPDATE”™ USING V-CUR, FIELDS
F-LEN, V-DATA.

—

FORTRAN LANGUAGE HL]I EXAMPLE

$CONTROL USLINIT,FILE=5-6,L0CATION

C. VCUR aond PCUR are the cursors.
INTEGER VCUR(S5@),PCUR(50)
INTEGER VDATA(40),PDATA(402) VINFO(20)

INTEGER COMM(1@0@) ,FIELDS(4@),VNUM(3) ,STATE(2)

INTEGER IBUFF(40)

INTEGER COMLEN,FLEN,MODE,VINFOSIZE,FIELDNO,WORDSINKEY
INTEGER BLEN,NAMELEN,PARTNO,BIND,OUTDEV,INVALUE

LOGICAL VEOF ,PEOF,FOUND,DUMMY

CHARACTER CCOMM=+»200 ,CFIELDS+B®,CVINFO+40 BUFFER»88@

CHARACTER CSTATE+4,CVNUM«6 ,CPDATA(80@), INVAL*20,CINCHAR+80

CHARACTER INCHAR(89)

EQUIVALENCE (COMM,CCOMM), (FIELDS,CFIELDS),(VINFO,CVINFOQ)
EQUIVALENCE (IBUFF,BUFFER),(PDATA,CPDATA), (VNUM,CVNUM)
EQUIVALENCE (STATE,CSTATE),(INCHAR,CINCHAR)

C.... ... Housekeeping
VEOF=_ FALSE.
PEOF=.FALSE.
VINFOSIZE=20
INDEV=5
OUTDEV=6
C..... .. .Must initiaglize cursors before using
CALL RDBINIT(VCUR)
CALL RDBINIT(PCUR)

c..Now open the already existing fiile caolled VENDORS.
charoccters .

c. .. . The OPEN command has o length of 17
CCOMM="0OPEN FILE VENDORS"
COMLEN=17

C After execution of the OPEN command, VCUR will be
. .associated with the VENDORS file.
CALL RELATE(VCUR,COMM, COMLEN)
C T Creote a new file called PARTS with four fields.
C. .. If a ltength of -1 is given, the command ends with
C. ... o null or a backslash. After the commaond is executed,

C. .. PCUR will be ossociated with the PARTS

+(COLOR,A,4),(QTY,1,5)\"
COMLEN=-1
CALL RELATE(PCUR,COMM,COMLEN)

C. . Set up partial field list for VENDORS
C. ... 11 characters.
CFIELDS="NAME PARTNO"
FLEN=11
C. ... Find informotion about fields.
MODE=201
FIELONO=®
C. ... While no errors encountered, ook tor
cC.Cbtaogin info about the FIELDNOsS aond put
100 I1F (VCUR(1).EQ.®) GOTO 200
C. .. Error found. Return error message
BLEN=8®

file.

CCOMM="CREATE FILE PARTS;FIELDS=(PARTNO,1,10),(DESCR,A,20),

file with
NAME field
it on VINFO.

MODE=1
CALL RDBERROR(VCUR,MODE.IBUFF,BLEN)

1F (BLEN.LT.®) THEN BLEN=88
WRITE(OUTDEV,300)BUFFER

300 FORMAT("@" ,A80)
RETURN
200 IF (CVINFO[1:4) . EQ."NAME" AND.VINFO(6).EQ.4) GOTO 4080

FIELDNO=F]IELDNO+1
CALL RDBINFO(VCUR,MODE,FIELDNO,VINFO,VINFOSIZE)

GOTO 100

C. . . Number of words of dota in the NAME field.
400 NAMELEN=VINFO(8)
C. . . Read first record from VENDORS file. Place
C. . . NAME ond PARTNO doto into VDATA.

CALL RDBREAD(VCUR,VEOF ,FIELDS,FLEN,VDATA)
C. . . While no end-of-fite encountered, read info
C. ... from terminal into PDATA ond odd records to
C. . . PARTS file using info in PDATA.
500 I1F (VEOF.OR.PEOF) GOTO 7090
C. ... ol The first NAMELEN words of VDATA cre taken up
C. .. with the field NAME. Assuming that PARTNO is
C. ... an integer field, the following word wili be
C. . the field PARTNO.

PARTNO=VDATA(NAMELEN+1)
IF(1230.GT.PARTNO OR.PARTNO.GT .1239) GOTO 600
DISPLAY "PARTNO"
ACCEPT PDATA(1)
DISPLAY "“DESCR"
READ(INDEV,520)CINCHAR

520 FORMAT (A20)
DO 522 1=1,29
522 CPDATA(2+41)=INCHAR(1)

DISPLAY "COLOR"
READ(INDEV.530)CINCHAR

530 FORMAT (A4)
DO 532 1=1,4
532 CPDATA(22+1)=INCHAR(I)

DISPLAY "QTY"
ACCEPT PDATA(14)

C. ..o Set up for odding doto to PARTS file - a
C fields.
CFlIELDS="0"
FLEN=1
CALL RDBADD(PCUR,PEOF ,FIELDS,FLEN,PDATA)
C. .. Read next record from VENDORS file.
600 CFIELDS="NAME ,PARTNO"
FLEN=11
CALL RDBREAD(VCUR,VEOF FIELDS.FLEN,VDATA)
GOTO %5@e
700 IF (PEOF) RETURN
C. ... RDBCLOSE closes access to cursor but |leaves
c .. B . .file open. Close the tile first.

CCOMM="CLOSE FILE PARTS\"
COMLEN=-1

dd

the

al

OO 00

—

8eo

CALL RELATE(PCUR,COMM,COMLEN)
CALL RDBCLOSE(PCUR)

...... Binding variaobles. Whatever the definition of

...... the fireld VENDNUM in the file was, it will be read
...... as an ASCIl] string of 5 choracters into the variable

.. .. .VNUM An FLEN of -1 agssumes Iine ends with o backslosh.
CFIELDS="VENDONUM;SITIZE=5;TYPE=ALPHA\"

FLEN=-1

BIND=1

CALL RDBBIND(VCUR,BIND,FIELDS,FLEN,VNUM)

F (VCUR(1) NE.®) DISPLAY VCUR(1)

CFIELDS="STATE"

...... Bind the STATE field to the STATE voriaoble.

...... Whaotever the printlength and type are in the VENDOR
...... file will be used by the program.

... initiaglize end—-of—-file logicals.
VEOF=_.FALSE .
PEOF=_.FALSE.
CALL RDBBIND(VCUR,BIND,FIELDS,FLEN,STATE)
..... Set index in VENDORS file by VENDNUM
CCOMM="SET INDEX VENDNUM\"
COMLEN=-1
CALL RELATE(VCUR,COMM,COMLEN)

DO 8290 1=1000, 5000 ,100
Assumption made thot VENDNUM is aoan integer in the
.VENDORS file. Search for vendor numbers by 100°'s.

WORDSINKEY=1
DUMMY=_ FALSE.
FOUND= FALSE
CALL RDBPOINT(VCUR,I! WORDSINKEY,DUMMY K FOUND)
IF(.NOT.FOUND) GOTO 8909
...A record was found with VENDNUM exactly matching
...... .. the value of 1. Detete the record. Search for
......... ecanother match. I1f tound, read it(RDBPOINT does
......... not perform a recd). FIELDS does not need to be
......... initialized as FLEN=-2 which meaons to read bound
......... vaoriaobies. VDATA will not be filled in this cose.
CALL RDBDELETE(VCUR)
CALL RDBPOINT(VCUR,I ,WORDSINKEY , DUMMY , FOUND)
IF(.NOT.FOUND)GOTO 8069
FLEN=-2
CALL RDBREAD(VCUR,VEOF ,FIELDS,FLEN,VDATA)
IF(CSTATE[1:2) NE."CA")GOTO 809
CVNUM="0000¢0"

FLEN is still -2, so binds aore still in effect.
. Therefore FIELDS is ignored and oif!l bound fields are

. updated. VDATA is 1gnored aond current values of bound
variaobles are used to update the fites.

CALL RDBUPDATE(VCUR,FIELDS,FLEN,VDATA)
CONTINUE
CCOMM="CLOSE FILE VENDORS\"
COMLEN=-1

CALL RELATE(VCUR,COMM COMLEN)
CALL RDBCLOSE(VCUR)

STOP

END

SPL LANGUAGE HLI EXAMPLE

$CONTROL USLINIT

BEGIN
INTRINSIC READ,PRINT,BINARY
INTEGER ARRAY V'CUR(®:49) . P CUR(0:49):
INTEGER ARRAY V‘DATA(0:39),P‘DATA(@:JQ),V'INFO(0:19);
INTEGER ARRAY COMM(@:QQ),FIELDS(O:JQ),V'NUM(O:Z),STATE(0:1);
INTEGER COM'LEN,F'LEN,MODE,V'INFO'S!ZE:=20,FIELD'NO;
INTEGER B'LEN,NAME’LEN.PART'NO,B]ND,WORDS‘IN’KEY.I:
LOGICAL V' EOF =FALSE.P EOF:=FALSE,FOUND,DUMMY :
LOGICAL ARRAY BUFFER(®:59);
INTEGER POINTER IBUFF=BUFFER.
BYTE ARRAY CBUFF(»)=BUFFER;
BYTE POINTER CV'INFO=V'INFO:
BYTE ARRAY CFIELDS(*)=FIELDS:
BYTE ARRAY CP'DATA(+)=P ' DATA:

PROCEDURE RELATE(CUR,COMMAND.LEN);
INTEGER ARRAY CUR,COMMAND ;

INTEGER LEN;

OPTION EXTERNAL;

PROCEDURE RDBADD(CUR,EOF.LIST,LISTLEN,SOURCE):
INTEGER ARRAY CUR,LIST,SOURCE

INTEGER LISTLEN;

LOGICAL EOF,

OPTION EXTERNAL:

PROCEDURE RDBBIND(CUR,BIND.RELATEVAR.VARLEN.VAR).
INTEGER ARRAY CUR.,RELATEVAR, VAR :

INTEGER BIND,VARLEN;

OPTION EXTERNAL :

PROCEDURE RDBCLOSE{(CUR) ;
INTEGER ARRAY CUR;
OPTION EXTERNAL :

PROCEDURE RDBDELETE(CUR) ;
INTEGER ARRAY CUR:
OPTION EXTERNAL;

PROCEDURE RDBERROR(CUR,MODE,ERROR.ERRLEN);
INTEGER ARRAY CUR,ERROR:

INTEGER MODE ,ERRLEN;

OPTION EXTERNAL;

PROCEDURE RDBINFO(CUR,MODE.OUAL,INFO,WORDS).
INTEGER ARRAY CUR,INFO;

INTEGER MODE ,QUAL WORDS;

OPTION EXTERNAL;

PROCEDURE RDBINIT(CUR) ;

3-67

ARRAY CUR;
EXTERNAL,;

INTEGER
OPTION
PROCEDURE RDBPOINT(CUR,KEY WORD
INTEGER ARRAY CUR KEY;

INTEGER WORDS ,DUMMY ;
LOGICAL FOUND;

OPTION EXTERNAL:

PROCEDURE RDBREAD(CUR,EOF,LIST,
INTEGER ARRAY CUR,LIST.DEST;
INTEGER LISTLEN,

LOGICAL EOF ;

OPTION EXTERNAL;

PROCEDURE ROBUPDATE(CUR,LIST. L
INTEGER ARRAY CUR,LIST,SOURCE,;
INTEGER LISTLEN

OPTION EXTERNAL;

S,DUMMY,FOUND);

LISTLEN,DEST)

ISTLEN,SOURCE) ;

RDBINIT(V'CUR): <<must initialize

RDBINIT(P'CUR);

P'EOF . =FALSE: <<initialize

V'EOF . =FALSE

MOVE COMM:="OPEN FILE VENDORS"; <<we went to

<< existing

COM LEN: =17, <<there are 17 characters

RELATE(V'CUR.COMM,COM‘LEN); <<execute the
<< will now be
<< VENDORS fil

MOVE COMM:

(COLOR,A,4),(QTY I.,5)\":

<<create a new

<< containing

COM’ LEN:==1 << a length of -1 indica
<< is terminated with a

RELATE(P'CUR,COMM,COM" ' LEN) ; <<execute the CR
<<will now be associated

MOVE FIELDS ="NAME, PARTNO" <<partialt fieid |

FPLEN:=11;

MODE =201 ;
FIELD "NO:=0,

WHILE V' 'CUR=@2 AND CV’ ' INFO<K>"NAME"

DO BEGIN
FIELD ' NO:=FIlELD ' 'NO+1;

RDBINFO(V'CUR,MODE,F]ELD'NO,V'INFO,V'lNFO'SIZE);

<<about field

END ;

number

<<11 characte
<<wa
<<fieltad #
AND V'INFO(S5
<<

<< fi

w

FIELD' ' NO

cursors

and

end-of-file

open the
file
in the

OPEN

gssociated

e .

before

alreacdy
called VENDORS>>
OPEN

command .

using>>

jogicals>>

>

command>>
V' CUR>>
with the>>
>>

="CREATE FILE PARTS;FIELDS=(PARTNO.1,10),(DESCR,A,20),

fite caltled PARTS >>
four fields. >>
tes that the command>>
null or a backslash>>
EATE command. P"CUR>>
with the PARTS file>>
ist for VENDORS file>>
rs in the field 1ist>>
nt info about fieltds>>

counter
Y<>4
hile no

nd fieid ca

pltace it

for

errors

<<obtain

ROBINFO>>

found>>
fled NAME>>

into>

in V'INFO>.

1F V' 'CUR<>0 THEN BEGIN «<<error encountereds>>
B’'LEN:=120; <<number of characters in buffer area>>
MODE : =1, <<return error message>>
RDBERROR(V’CUR,MODE,IBUFF,B'LEN);
PRINT(BUFFER,SG,Z49);
RETURN ;
END;

NAME LEN: =V’ INFO(7); <<number of words of data in the NAME field>>

RDBREAD(V'CUR.V'EOF,FIELDS,F'LEN.V'DATA); <<read first record from>>
<<VENDORS file and plaoce the >>
<<NAME and PARTNO fieids"’ data>>

<< into V'DATA>>

WHILE NOT V' EOF AND NOT P'EOF DO BEGIN <<while neither file has>>
<<reached end-of-file>>
PART’NO:=V'DATA(NAME'LEN); <<the first NAME'LEN words are taken >>

<<up with the field NAME. Assuming that >>
<<PARTNO is an integer field. the following>>
<<word will be the field PARTNO>>
I'F 1230<=PART'NO<=1239 THEN BEGIN
P 'DATA =" "
MOVE P'DATA(1):=P'DATA, (39);
MOVE BUFFER:="PARTNO?"

PRINT(BUFFER,—?.%40);
8'LEN:=READ(BUFFER,—120);
P‘DATA:=8]NARY(CBUFF,8‘LEN);
MOVE BUFFER:="DESCR?" :
PRINT(BUFFER,—S,%49);
8'LEN:=READ(BUFFER,-120);
MOVE CP‘DATA(Z).=CBUFF,(B'LEN);
MOVE BUFFER.="COLOR?"
PRINT(BUFFER,—G,Z40);
B'LEN:=READ(BUFFER,—120);
MOVE CP’DATA(22):=C8UFF,(B’LEN);
MOVE BUFFER:="QTY?";
PRINT(BUFFER,—4,Z40);
B'LEN:=READ(8UFFER,—120);
P'DATA(13):=BINARY(CBUFF.B’LEN);
MOVE CFlELDS: ="@"; <<set wup for ADDing dota to PARTS file - >>
<< we want to add ail fields>>
F*LEN:=1;
RDBADD(P‘CUR.P‘EOF.FIELDS.F'LEN.P‘DATA); <<add o record to the>>
<<PARTS file using the > >
<<information in P'DATA > >
END ;
MOVE CFIELDS:="NAME,PARTNO" :
FrLEN:=11;
RDBREAD(V’CUR,V'EOF,FIELDS,F’LEN,V'DATA);<<reod next record from>>
<<VENDORS file>>
END .
I1F P EOF THEN RETURN;
MOVE COMM:="CLOSE FILE PARTS\";

369

COM’ LEN:=-1;
RELATE(P'CUR,COMM,COM'LEN);<<RDBCLOSE closes the cursor but jeaves>>

<<the file open. Close the file first>>

RDBCLOSE(P'CUR):
MOVE FIELDS:=(“VENDNUM;SIZE=5;TYPE=ALPHA”,0); <<whaotever the >>
<<definition of the field VENDNUM in the file was, it will be>>
<< read into the program oS an>>
<<ASCIll string of 5 characters>>
F*LEN:=-1; <<agssumes string terminates with a nult I >>

BIND:=1;

RDBBIND(V'CUR,BIND,FIELDS,F'LEN.V'NUM); <c<V'NUM will contain >>
<<the ASCll string from VENDNUM >>
<<whenever a read is performed>>
MOVE FIELDS:="STATE"; <<will use whatever printlength>>

<<and type are defined for STATE>>
<< in the VENDOR file>>
F*LEN:=5;
RDBBIND(V’CUR,BIND,FIELDS,F‘LEN,STATE);

MOVE COMM:=("SET INDEX VENDNUM" ,90); <<set index by VENDNUM>>
COM’ LEN:=-1 <<terminates with a bockslash or null>>
RELATE(V’CUR,COMM,COM'LEN);

FOR l:=1@00 STEP 1080 UNTIL Seee DO BEGIN
WORDS ' IN'KEY =1,
DUMMY :=FALSE,
RDBPOINT(V‘CUR,I,WORDS'IN’KEY,DUMMY,FOUND);<<cssumptionmade that>>
<<VENDNUM is an integer in>>
<<the VENDORS file>>

1F FOUND THEN BEGIN <<a record was found with VENDNUM>>
c<exactly matching the value of I>>
ROBDELETE(V'CUR) <<delete the record>>

<<look for another match>>
RDBPOINT(V'CUR.I,WORDS’IN‘KEY,DUMMY.FOUND);
[F FOUND THEN BEGIN

F'LEN.=-2;
RDBREAD(V'CUR,V'EOF,FIELDS.F’LEN,V'DATA); <<Read the next>>
<<record. POINT does not read a recorgd. A read>>
<< must be performed to actually obtain>>
<<dota. FIELDS has not been initialized>>
<<becaouse a BIND has been performed on the>>
<<file and F’ LEN has been set to -2 to >>
<<indicate that the bound variables should>>
<<be read V' DATA will not be fitled in>>
<<this caose >>

IF STATE="CA" THEN BEGIN

MOVE V' 'NUM:="000@0808"
RDBUPDATE(V’CUR,F]ELDS,F'LEN,V'DATA); <<FLEN is still=2.>>
<<Therefore BINDs are still 1n etftect. Therefore FEILDS is ignored and>>
<<oll bound variables are updated, and V'DATA is ignored>>

<<and the current values of the bound variabies are >>
<<used to updote the fite.>>
END ;

3-70

END;
END;
END ;

MOVE COMM:="CLOSE FILE VENDORS\ " ;
COM’' LEN:=-1 .
RELATE(V'CUR,COMM,COM'LEN);
RDBCLOSE(V’CUR),
END .

371

372

SECTION 4

FILE SYSTEM DESCRIPTIONS

FILE SYSTEM DESCRIPTIONS

RELATE/3000 can manipulate IMAGE, KSAM, and MPE files in addition to RELATE
files. This allows the user great freedom in defining his application system because
the file system that most closely meets his requirements for speed, efficient multi-user

access, and flexibility can be used.

This section describes the methods of accessing IMAGE databases, RELATE/3000
formatted files, KSAM/3000 files, and MPE files. The types of operations that are
allowed on files of each type are also presented.

ACCESS TO IMAGE DATABASES

IMAGE is a data base management system supported by HP and is designed for an
interactive, transaction oriented environment. [IMAGE allows two file {dataset) levels:
master sets and detail sets.

Master sets are used to store information on uniguely identifiable entities. Each master
set contains a single field key. Data is stored according to a hashing algorithm
performed on the key. The key values must be unique. This key is referred to as a
search item.

Detail sets are used to store information concerning related events or items. In an
Accounts Receivable system a particular customer's outstanding invoices would most
likely be maintained in a detail data set. Each detail set is normally linked to one or
more master sets through a single field. These linkages are accomplished by physical
pointers in the database and are referred to as paths. A record may not be added to a
detail data set unless a record exists in each master set that the detail set is
associated with.

A third type of set (an automatic master) can also exist in an IMAGE database. This
set is maintained automatically by IMAGE and must be related to at least one detail
set. The set is only allowed to contain a single data item. The set is normally used
to maintain paths on items that are extremely numerous or do not need to be verified
against a master set.

Creating An Image Database

RELATE cannot create or nitialize an IMAGE database. This can be done with
programs provided by HP. After the database has been created, RELATE can be used
on the sets within the database as if these sets existed as individual files. Thus, the
user can copy information from one set to another, from or to KSAM, MPE, or
RELATE files and even to another IMAGE database.

RELATE is considered a user program by the iIMAGE system and cannot violate any
constraints enforced by IMAGE. This means. for example, that records added to detail
sets must contain valid master set search items. When an IMAGE error is encountered,
a command will terminate. A user should not request an operation that could result in
an error. For example, if master records for all customers in Denver should be
deleted. the user should first verify that no detail records depend on the existence of
these masters.

Accessing An Image Database

Accessing an IMAGE database requires the use of two OPEN commands. First, the
database must be opened: second, the particular set(s) that will be used must be
opened.

To open an IMAGE database. the OPEN DATABASE command is used with a TYPE of

IMAGE. This command must alsc include any required password and may include the
access mode desired. This OPEN physically opens the database.

4-3

A second OPEN command must be issued for the particular dataset desired. This
command must include the set name desired and the DATABASE keyword followed by
the name of the database opened in the first step. The database name must be
specified in order for RELATE to know which database the set is in since several
databases (possibly using the same schema) can be open at one time.

RELATE makes no distinction between master sets and detail sets. It is possible to
open several sets within a single database.

When a set is opened, RELATE uses standard IMAGE calls to create the structure for
the set. During this process, fieldnames may be adjusted by RELATE. This adjustment
consists of removing all non-alphabetic, non—numeric characters and then limiting the
length of the name to ten characters. This operation may cause duplicate names which
Can be adjusted by using the MODIFY FIELD command. RELATE uses the field numbers
supplied by IMAGE to access data so the change of name does not cause file access
errors. RELATE can correctly handle all IMAGE data types except sub-items which
are not aligned on a word boundary. When an IMAGE dataset containing a compound
'tem 1s accessed RELATE creates a field definition for each field. These expanded
fields count against the 126 fields per file limit in RELATE.

The print lengths of fields are assigned the following default values which may be
changed with the MODIFY FIELD command:

TYPE PRINT LENGTH

A Two times the number of words in the field.

[6

D 10

R 8.2

L 16.2

P Four times the number of words in the field Two decimal positions are
assumed.

z Two times the number of words in the field plus 1. Two decimal

positions are assumed unless the field is only 1 word long.

After the field structure i1s created, the index information is generated. Each search
item in a set represents an index through which the data may be accessed. When a
master set is accessed, the only index available is the search item. When a detail set
Is opened, all paths into the set through master sets can be used as indexes. RELATE
will make use of a search item if such use will speed access. An index is also created
to reference the information by record number.

In the RELATE Command Interpreter. many commands allow a range of key values to
be specified. For B-tree type indexes this causes records to be returned in order by
key. In a hashed indexing system as used by IMAGE, records cannot be returned in
order. This changes the meaning and operation of the range parameter.

The range parameter should only contain single key values as exists in a current index.
That is, the range normally indicates that directed reads should be done by the system.
Any other sequence of values will cause a sequential search of the dataset.

Image Security

IMAGE maintains security information on each database. This security is based on a
password that the user must supply when the database is opened. The password
determines to what fields and datasets the user can read and write. RELATE operates
within the security set up by IMAGE. Views may be created using IMAGE datasets.
This allows a DBA to place record level security on an IMAGE database. This has no
effect on QUERY or the IMAGE interface mechanisms.

EXAMPLE:

JOPEN DATABASE INV:TYPE=IMAGE;PASSWORD=STOCKBOY
JOPEN FILE INVENTORY DATABASE=INV

The first command opens the database and creates the IMAGE control block. If an
access mode is not specified, a mode of 3 (exclusive read/write) is assumed. The
second OPEN makes the information in the INVENTORY dataset available.

ACCESS TO KSAM FILES

KSAM is a file access method supported by HP that is similar to the access methods

for RELATE data.

RELATE places key
KSAM a second file exists which contains only the key information.

information and data in the same file. In

The table below

compares and contrasts RELATE files with KSAM files.

RELATE
Multiple keys are allowed.

Indexes can be created or purged after
a file has been created.

Duplicate key values can be allowed or
disallowed.

Procedural access can be accomplished
through RDB calls.

Up to 30 indexes may be defined per
file.

Generic, approximate, and partial keys
can be used in procedural access.

indexes may be ascending or descending.
Multiple fields of various types can be
used to compose keys, and they need

not be contiguous in a record.

Does not support odd byte length keys
or variable length records.

The index structure uses a B-Tree.

KSAM
Multiple keys are allowed.

All indexes must be defined when the file
is created.

Duplicate key values can be allowed or
disallowed.

Procedural access can be accomplished
through file system intrinsics.

Up to 16 indexes can be defined per file.
Generic and approximate keys can be used
in procedural access.

Indexes must be ascending.

A key must contain a single data type and
must be contiguous within a record.
Supports variable length records and keys
with an odd number of bytes.

The index structure uses a B-Tree.

Access to KSAM files through the RELATE Command Interpreter or the Host Language
Interface routines is almost identical to RELATE files except that KSAM files do not

contain structure information.
for the file.

This information must be given in the OPEN command

RELATE will allow several paths to be placed on the same KSAM file. However,
multiple positions can not be maintained correctly if data in the file is changed. This
is also true of a scan through an index in which the key values are changed. This
situation cannot be corrected or prevented by RELATE due to an inability to obtain

sufficient status information from MPE.

Creating a KSAM File

RELATE/3000. the utility program KSAMUTIL. or the file system intrinsic FOPEN can
be used to create KSAM files. if the file is not created from RELATE the following
rules must be followed in order to access the file from RELATE:

1} The file must contain fixed length records.
2) The record size must be an even number of bytes.
3) All fields must begin on a word boundary. This reaquirement forces

alphabetic and decimal fields to contain an even number of characters.
4) Record numbering must start at zero (the default).
KSAM imposes several other constraints on the index structure. Indexes must:
1) Consist of contiguous fields.
2) Not start at the same field.
3) If of more than one field, be composed solely of A or U fields.

Additional information is in the KSAM/3000 Reference Manual (HP part number
30000-90079).

Accessing a KSAM File
To access a KSAM file, the structure must be included in the OPEN command or a file
of any type must previously have been opened. This file can then be used as a
template for the structure of the KSAM file. The structure file may be of any type.
When the KSAM file is opened. the following operations occur:

1) The file 1s checked to ensure that it contains fixed length records.

2) The width of the structure is compared to the record width of the file.

3) The KSAM key information is obtained from the operating sytem and
compared to the structure. RELATE ensures that:

a) Each key begins on a field boundary.

b) The key contains exactly one or more fields and that it does not
end in the middle of a field.

c) If the key contains multiple fieids, the data type can support this
situation. Aliphabetic and logical fields can be composed in this
manner.

If the structure meets all of these conditions, the file 1s loaded and the index structure
iIs created. The index arrangement is not obtained from the structure file because it is
contained in the KSAM file.

EXAMPLE:

JOPEN FILE FILE?
JOPEN FILE KFILE; TYPE=KSAM; STRUCTURE=FILE?

In this example, FILE1 is a RELATE file and is used to provide the format for the
KFILE. After the KFILE is opened, it is initially accessed in record number seguence.
If access is desired in the primary key sequence, the command SET INDEX 1 can be

executed. RELATE allows all 16 KSAM keys to be accessed and will make full use of
them when responding to a query.

EXAMPLE:
JOPEN FILE KCUST: TYPE=KSAM: FIELDS=(CUST, I, 4), (AMOUNT, R, 7.2)
In this example, the KCUST file is opened and the structure of the file is supplied in
the command line.
KSAM File Security

The KSAM access mechanisms provide no security above that available from MPE. It
is possible to use RELATE security on KSAM files in the same way as RELATE files.

4-10

ACCESS TO MPE FILES

RELATE will access MPE files containing fixed length records composed of fields
containing an even number of bytes. Access is supported for files on direct access
devices only. Access to MPE files is primarily serial in nature since indexes do not
exist.

Creating an MPE File

MPE files can be created by virtually any subsystem (FCOPY, EDITOR, etc.) or
language. It is also possible to create an MPE file directly from the MPE command
language or the RELATE Command interpreter.

EXAMPLE:

JOPEN FILE MASTER
JCREATE FILE MPEFILE;&
&)STRUCTURE=MASTER; TYPE=MPE; RECORDS=20000

In this example, the MASTER file is a RELATE file. The MPEFILE is created as an
MPE file that is compatible with the structure of the MASTER file and can contain up
to 20000 records. No information about the structure is maintained in the MPE file.
This makes it possible to access the MPEFILE with a structure that contains the same
record width as the MASTER file but not the same format.

EXAMPLE:

JOPEN FILE MASTER
JCOPY TO MPEFILE; TYPE=MPE FOR TERRITORY=5

In thic example, an MPE file is created as the result of a query. All records from the
MASTER file that contain territory 5 wiil be placed into the file. In this example, the
MPEFILE 1s created from the format of the MASTER file (the STRUCTURE keyword
could have been used to specify a different file).

Accessing an MPE File

To access an MPE file, the structure must be inciuded in the OPEN command or a file
of any type must previously have been opened and specified as the structure. This file
can then be used as a template for the structure of the MPE file.

MPE files may only be accessed by record numbers. No method presently exists to
specify the sort sequence of the file. The index structure of the template file is

ignored.
EXAMPLE:

JOPEN FILE FILE1
JOPEN FILE MFILE; TYPE=MPE; STRUCTURE=FILE1

In this example, FILE1 is a RELATE file and is used to provide the structure for the
MFILE.

MPE File Security

The MPE file system provides lockword protection on MPE files. This protection
mechanism is supported by RELATE. It is also possible to use RELATE security on

MPE files in the same way as RELATE files. |If the security mode in a group is
privileged, MPE files will be created as privileged files.

4-12

FUNCTIONAL RESTRICTIONS

Constraints imposed by the underlying file systems used by RELATE limit the
operations available by file type. This section summarizes what operations can and
cannot be performed on or with the file types supported by RELATE.

It is assumed that the user of the file is also the creator of the file and thus can
normally perform ail functions on it. If the user is not the creator, security
restrictions imposed by the DBA can further limit the allowable operations on a
function or record basis.

File Creation

IMAGE /3000 databases cannot be created by RELATE/3000.

Adding Records

Records can normally be added to all file types until a limit (specified when the file
was created) is reached. No space is wasted in the main file for overflow areas, etc.
Other problems may prevent this limit from being reached:

1 In RELATE and KSAM files, the index file may fill because its size was
incorrectly specified or because of poor packing of the keys (the second
problem is more prevalent within KSAM). In addition, records may not be

added in violation of a unary index.

2) In IMAGE master datasets, key values may not be duplicated. In IMAGE
detail sets, records must exist in all related master sets (except automatic
masters) that contain the supplied key values. Records cannot be added to
automatic master datasets.

Changing Values

The values of all fields can be changed in MPE files.

All values can be changed in RELATE and KSAM files unless the new value causes a
duplicate key to be created on a unary index. In rare cases, the index file may fill

during a change operation. RELATE will recover from this situation and prevent the
record from being changed.

Search or sort items may not be changed in either IMAGE master datasets or IMAGE
detail sets. Values cannot be changed by the user in automatic master datasets.

4-13

Deleting Records
Records may not be deleted from MPE files.
Records may always be deleted from RELATE or KSAM files.

Records may always be deleted from an IMAGE detail data set. Records can only be
deleted from an IMAGE master set if no detail set entries are associated with it.
Records cannot be deleted from automatic masters by the user.

4-14

SECTION 5

TRANSACTION PROCESSING

TRANSACTION PROCESSING

Introduction

RELATE/3000 contains a transaction processing facility to ease the problems of
updating files based on complex user interaction and programmatic applications.
RELATE also contains a logging facility which can be used to recover from data base
corruption caused by hardware or operating system failures. These facilities are a
feature of RELATE Il.

Transaction Processing

A transaction is a modification to a database ("transformation of state”) which has the
following properties:

1) If the database was accurate before the transaction, it must be accurate
afterwards (a "legal” operation). A sample of a legal transformation is a General
Ledger entry where several records must be added or modified to maintain the
correct balance.

2) Either all actions must happen all at once or none must happen (an “atomic”
operation). That is, no other users can view or adjust any of the information
taking part in the transaction while the transaction is taking place.

3) Once the transaction is complete. the modifications have been posted to the
database (a "durable’ operation).

A transaction has nothing to do with screen processing (although a screen processing
system can generate transactions).

A complete transaction processing facility is composed of four separate functional
modules defined as follows:

1) A mechanism to hold changes made to files in some form of pre-log file until a
transaction completes. This phase isolates the data base from application program
aborts and allows the transaction to appear to be atomic.

2) A mechanism that takes the changes saved in the pre-iog file and applies them to
the data base. This moduie is often referred to as a DO/REDO module.

3) A module to UNDOQO transactions that cannot be completed. This module backs
out changes that have been made by the DO/REDO module. A transaction could
be aborted by the data base management system because of resource probiems, by
an invalid action {(such as a unary key violation), or by an application program
reguest.

4) A logging mechanism to save the changes made by the DO/REDO module. The
logs can subsequently be used to bring the system up to date after a faiiure.

Controlling Transactions

The actions performed by the transaction processing module of RELATE are controlled
with the BEGIN TRANSACTION, ABORT TRANSACTION, and COMMIT TRANSACTION
commands. The resources required to execute the transaction are controlled by the
LOCK and UNLOCK commands.

To start a transaction a BEGIN TRANSACTION command is issued. After the
command is given all changes made to files through RELATE commands or the Host
Language Interface routines are saved in a pre-log file for subsequent posting. When a
COMMIT TRANSACTION command is issued the information in the pre-log file is
posted to the data base. If an ABORT TRANSACTION command is issued the pending
changes are ignored.

If a BEGIN TRANSACTION has been issued and a system failure occurs the data base
will be in a consistent state because no changes have actually been made. If, however,
a failure occurs. after the COMMIT TRANSACTION and before RELATE requests a new
command (or control is returned to the user’'s application) the data base may be in an
inconsistent state.

This window of wulnerability is generally very small compared to the time required to
generate the complete transaction.

The pre-log file is a temporary file called RDBTPLOG created by RELATE with a
default size based on the number of records in the largest file open at the beginning
of the transaction. In general, proper use of transaction processing should not use up
the space in the log file.

The system allows transactions to be nested. This enables the user to “seal off”
logically complete portions of a transaction before the entire transaction has been
completed. This nesting is accomplished by executing several BEGIN TRANSACTION
commands. Eack command increases the nesting level by one and must be followed by
a like number of COMMIT TRANSACTION commands. For example:

| COMMIT

VS o _____ COMMI T
UNLOCK

This example is composed of the transaction “A" (at level 1) which is composed of
transactions "B” and "C", both of which are at ievel 2. The numbers indicate places at
which file modifications could be performed.

52

Transaction Posting

Once a transaction has been COMMITted at level 1 RELATE will post the changes to
the appropriate files. The posting operation may not proceed in the order in which the
transaction was generated. Because of this, a transaction should not operate on the
same record twice. RELATE will guarantee that all records will be added to IMAGE
master sets before records are added to any detail set.

Certain special classes of operations are recognized by the system and function as
follows:

1) An attempt to delete a record more than once is ignored.
2) An attempt to add a record in violation of a unary index is ignored.
3) An attempt to update the same record more than once will generate an error

unless the resulting records are identical.

Multi—-User Access

During multi-user (shared) update access to files which have not been locked (IMAGE,
KSAM, and MPE as well as RELATE), record checksums are created as each record is
read. A subsequent request to update, delete, or locate the record {(through an
RDBREPOINT) will verify prior to the completion of the operation that the record has
not been modified by some other user. If the record has been modified, the operation
will not complete and an error will result.

A maximum of 50 record checksums are maintained at any one time due to memory
limitations. An attempt to wpdate a record which does not have a checksum calculated
will not produce an error. |If records are updated through a transaction, the 50 record
limit does not apply and all records are marked by checksums.

Locking Modes

For RELATE to update a shared file (particularly RELATE files) a lock must be
obtained. RELATE internally deals with two types of iocks: an update lock and a read
lock. Update locks prevent concurrent reading of a file by another user. Read locks
prevent another user from updating a file as it is being read. For nomRELATE files,
read locks are ignored, for performance reasons.

Locks can be applied by the user or an application with the LOCK FILE command.
This generates an update lock. Locks are automatically generated when the Host
Language Interface routines are used. RDBADD, RDBDELETE and RDBUPDATE
generate update locks. RDBREAD, RDBPOINT and RDBREPOINT generate read locks.
These iocks are only held for the duration of the call.

The Command Interpreter generates a long-term update lock (as if LOCK FiLE had
been executed) for all files in any cursor in which records will be added, changed or
deleted. Due to locking restrictions imposed by MPE, this may result in an error and
prevent a command from executing. Update locks are obtained and maintained for the
duration of a command for performance reasons.

Locking Restrictions

Under the MPE operating system each file is considered to be a separate resource for
the purpose of locking. The operating system restricts each user to one resource lock
at a time. This means that only a single file can be locked during a transaction.
IMAGE is a special case and allows several sets to be locked if the request is made by
a single call to the IMAGE system. These restrictions impose constraints on the types
of transactions that can be correctly processed by RELATE. Essentially, only one
MPE, KSAM or RELATE file can be locked at any one time. Multiple IMAGE sets in
the same database are considered to be one lock. KSAM index files are managed
automatically and do not need to be counted. If a file is opened exclusively or
semi-exclusively it is assumed to be locked but does not count against the total.

Logging

Transaction Logging is a mechanism which allows data recovery from system failures.
This mechanism is built into RELATE Ii and is controlled by the Data Base
Administrator. The facility operates by saving information about changes to both the
contents of the data base and the structure of the data base. When a system failure
occurs and it s suspected that the data base has been corrupted the Data Base
Administrator can correct the problem by restoring a copy of the data base which is
known to be consistent and apply the subseguent log files to it.

Implementation

The RELATE logging facility has been implemented using the IPC (interprocess
Communications) capability of the MPE file system. A brief description of the
necessary operations within MPE to enable logging follows. For detailed information on
IPC the MPE Intrinsics Reference manual should be consulted.

RELATE allows a data log and an event log to be maintained. The data log is
required to allow recovery. The event log contains information about actions made by
the user or on behalf of the user by an application program or the RELATE Command
interpreter. The event log can be used to analyze response times and access patterns in
order to improve performance. The data log 1s updated as file changes are made. If
the change is made within a command the entry is bracketed with begin and end
transaction markers. This enables the recovery operation to suppress data changes due
to the incomplete execution of a command. To achieve this capability in a program
using the record level Host Language Interface routines the BEGIN TRANSACTION and
COMMIT TRANSACTION commands should be used. |f transactions are not used from
the HLI, each RDB call which adjusts the database is considered to be a transaction.
The event log is written as each action occurs to the data base.

Enabling MPE Logging

RELATE logs to standard message files. A message file can be created with an MPE
build command similar to the following:

BUILD LOG;MSG;REC=,20

RELATE requires that the file have a 128 word record size but the blocking factor can
be varied for each log file. A small blocking factor provides a better recovery
potential since less information would be lost because it has not yet been deposited on
the disc. A larger blocking factor will decrease logging overhead (and increase
application performance).

It 1s recommended that log files be placed into a separate group within each account
(or possibly a separate account). The group security should allow write access to all
users in the account. Read access should be disallowed to prevent accidental reading
(and loss) of the log data. When a failure occurs which reauires recovery the Data
Base Administrator should disable write access and enable read access. This not only
allows RELATE to read the logs for recovery but wiil prohibit users from accessing
files which must be recovered (since the log files cannot be opened). Once the recovery
is complete, the original security should be put back.

Care should be taken to insure that log files are of sufficient size to prevent the end
of file from being reached. If a log file fills, subsequent RELATE actions which reauire
log records to be written will fail. If this event occurs in the middle of a transaction,
the data base will be left in an inconsistent state. It will then be necessary to restore
a backup copy of the data base and perform the recovery procedure. Reaching the end
of a log file 1s simiiar in effect to a system failure and thus shouid be avoided.
Consequently, log files should be buiit with a total capacity far exceeding their
required size and consisting of many extents (up to 32) of which only enough to satisfy
the expected capacity are initially allocated.

Each Data Base Administrator shouid determine a log maintenance cycle for the data
base. For example suppose the data base is maintained on a daily cycle. This means
that at the beginning of each day, a log file is created by the Data Base Administrator
with the MPE BUILD command. At the end of the day the Data Base Administrator
stores a copy of the data base to tape and purges the log file. The determination of
the duration of this maintenance cycle depends on at least two considerations: the
amount of time needed to store the data base periodically, and the amount of time
required to recover the data base from the log file if the system faiis. The more
often the data base is stored, the smaller the log file {(and hence, the shorter the
recovery time) will be.

Enabling RELATE Logging

In order to enable RELATE logging the dictionary (RDBDD) for the account must have
previously been created (with the CREATE DICTIONARY command), and the log file
created with the MPE BUILD command. After this. the Data Base Administrator can
enable data logging with the ENABLE DATA LOGGING command or event logging with
the ENABLE EVENT LOGGING command.

Data logging is controlled on a group by group basis. That is, all the changes made to
RELATE files that reside in a single group are logged to a single log. When data
logging is enabled RELATE will save sufficient information to allow files to be
recovered 10 a consistent state after a system failure. Changes to open temporary
files (RETENTION=NONE) or session temporary files (RETENTION=TEMP) are not
logged. The format of the records in both logs is given in Appendix D.

Event logging is controlled on a user basis. Each user can log to a different file and
different events can be logged for each user. Normally, however, all users will log to
the same event file which in many cases is also the data log. The event log provides
information to the Data Base Administrator and is not used by RELATE.

Data Logging Considerations

The RELATE logging capability logs structural changes as well as data changes. This
allows for the recovery of not only the contents of files but the actual organization of
the files. This capability is limited somewhat by restrictions imposed by MPE.

The operating system does not atlow the creation of files across account boundaries.
Thus. RELATE cannot create files outside of the logon account. This prevents
RELATE from correcting structurally any fiies in other accounts. Because of this,
RELATE bhas been designed to work effectively within the confines of an account.
RELATE will not honor security restrictions or logging reauests which have been placed
on files in other accounts.

When data logging is performed (with recovery capabilities in mind) the system
implementor should not create procedures which directly update files in one account
from files in another account. This should be done in a two step process. First, the
adjustments from the source account should be copied into transaction files in the
destination account. Then, a procedure should be executed in the destination account
to perform the actual updates.

When a recovery operation is likely to encounter structural changes a second problem
should be considered. Specifically, the creator name on the files being recovered may
change. MPE wiil assign the current user name as the creator name to each file as it
15 built. Thus. any recovery procedure that creates new files may alter the security
matrix. It is recommended that all files created in secured groups be created by the
user (usually the account librarian or account manager) which will be performing the
recovery. If only data changes are made, this problem can be ignored. Users should
not purge files from MPE, instead. the file should be purged with PURGE FILE
command.

Recovery System

The RELATE Recovery System may be executed in the event of a system failure,
provided that a data base backup copy has been stored and all subseguent data base
modifications have been logged to one or more log files. Recovery entalls restoring
the backup data base and the use of the RECOVER DATA command to re-apply the
data base modifications from the log files.

Although the logging and recovery system s designed to s&.xccessfully.r.eexecute all
transactions that completed before the system failure, there is a possibility that some
transactions will not be recovered. The reasons for this occurrence are:

1) One or more records could be lost in the system buffers if the system fails
before they are written to the log file.

2) A transaction may have originally failed to compiete due to the system failure,
and is therefore suppressed.

3) The wrong backup data base was restored. Recovery will yield erroneous results
if this occurs.

If any transaction fails to be recovered, all subsequent transactions of the same process
are suppressed as weil.

Several groups of files can log to the same log file unambiguously. If all files that
logged to the same log file are recovered simultaneously, then all backup copies must
be restored prior to running the recovery system.

WARNING: In the event of a system failure, do not allow people to use the system
before running the recovery system. Log records may have been lost due to the
system failure. If logging is resumed without a recovery, the resulting discontinuous
log file would cause invalid results in the event that the log files are subsequently
needed.

Recovery Procedures

Before recovery can begin. the Data Base Administrator must restore the data base to
the state at which logging was initiated using the MPE :RESTORE facility. If the data
base has logged to more than one log file the earliest one must also exist.

The actual recovery is performed with the RECOVER DATA command.

To perform the recovery the user must not have any files open within RELATE. The
recovery is performed by reading data from the log file, grouping the data into
transactions. and possibly performing the transaction. A transaction is defined as a
call to RDBADD., RCBDELETE, or RDBUPDATE, or a RELATE command which ts not
made between BEGIN and COMMIT TRANSACTION commands. File structural changes
are considered to be a transaction. Any file manipulation performed between BEGIN
and COMMIT TRANSACTION commands are treated as a single transaction by the
recovery system.

In normal circumstances the system will recover any incomplete transaction which 1s
not terminated by a system failure marker. That is, if an application aborts (or is
aborted) and logging 1s not immediately discontinued the data changes made by the
process will be made during recovery. This ensures that any subsequent transaction
which operated on the same data manipulated by the transaction tnat aborted is
consistent (to the extent that i1t duplicates the original situation). The assumption is
therefore made that subsequently logged data will correct the problem caused by the
application.

5-7

In order for RELATE to recover a file it must open it in exciusive mode. Also. if a
fileset parameter is not given on the RECOVER DATA command, RELATE will attempt
to recover all files in the logon account at once. This may exhaust the amount of
memory available to RELATE. The problem can be resolved by recovering files in
Individual groups or individual files. Additionally, if the INFORMATION parameter is
given, RELATE will not recover data but will provide information on which files would
be recovered. Part of this information is a list of files open at the time of the
system failure. If this number is small, it may be appropriate to only recover those
files (since under most situations closed files cannot be damaged).

During the recovery, RELATE makes use of three files to consolidate the data from
various aspects of a transaction. The first file {(called RDBLOG) is used to compensate
for an error in the operating system. The contents of the log file are copied into this
file prior to the start of the recovery operation. If insufficient disc space exists for
the copy a file equation may be used to place this file on a tape drive or serial disc.
Another file is used to group together records that comprise a single log entry. The
third file {called RDBSTAGE) is used to group an entire transaction. This file may fill.
If this happens, RELATE will attempt to open a larger file and copy the staged data
into the new file and purge the original fiie. If an error occurs during this process
RELATE will terminate and the recovery procedure must be started over when
sufficient disc space is available. The RDBSTAGE file is originally opened with a
record limit of 1023. Each larger file will be opened with at least 33% more space
than the existing size. A file equation can be used to alter the original size of the
fiie.

Post-Recovery Procedures

After a recovery has been completed., the Data Base Administrator and system manager
have three procedural options. Whatever option is chosen determines the recovery
procedure in the event of a second system failure. Together, the Data Base
Administrator and system manager or console operator should agree upon the best
post-recovery proceaure in order to avoid confusion at recovery time. The options are:

1) The Data Base Administrator stores a new backup data base copy. and the
system manager or operator starts a new log file from the console. In the event
of a subsequent system failure, the new backup data base is restored and
recovery i1s performed from the new log file.

This option allows for a straightforward recovery procedure but delays users from
accessing the data base until the new backup copy has been generated.

2) A new backup tape is not generated. The system manager or operator resumes
transaction logging to the same log file. In the event of a subsequent system
failure, the original data base copy is restored and recovery is performed from
the log file.

This procedure is the same as the original recovery. but takes longer due to the
additional log file records. Users can access the data immediately after the
recovery without watting for the data base to be stored.

3)

A log file should not be restarted before the data base has been recovered since
some log records could have been lost in the system failure. Thus, the log file
may not be consistent with the actual state of the data base. A recovery is
necessary to bring the data base and log file into agreement before restarting
the log process.

A new backup data base is not generated; the system manager or operator
initiates logging to a new log file. In the event of a system failure, the old
data base copy is restored and two recoveries are executed: the first against
the old log file, the second against the new log file.

Until a new data base backup copy is generated, if the system manager or
operator consistently starts logging to a new log file after a system failure, a
total recovery preceded by n failures requires n executions of the recovery
system.

59

510

SECTION 6

UPDATING VIEWS

introduction

A view is a method of looking at a collection of data elements (records) that are
organized into a file. The view may be a representation of an actual file, or it may
be a "virtual” file that is actually made up of portions of several files or databases.

Views provide the ability to look at information pulled from several files or databases
and manipulate or report on this data as if it were a single physical file. Through the
view, the files being used can be updated and changed.

Defining a View

A view is a file, the contents of which are defined by a SELECT command. Thus, when
a SELECT command is issued to RELATE, the current path becomes a view.

Views can also be saved in a file with the CREATE VIEW command and opened with
the OPEN FILE command. When a view is saved in a file, only the information of how
10 construct the view is saved, not the records that comprise the view. Associated with
every view may be:

1) One or more base files that actually contain data.

2) Restrictive conditions that eliminate records from the base files so they will
not appear in the view,

3) Joining conditions that join the base files.
4) A target list that defines the fields in the view.
5) A BY clause that defines the sort order of the view.

8) A UNIQUE clause that causes duplicate records to be eliminated from the
view.

For example, the following are view definitions.
JSELECT EMP.NAME, EMP.SALARY WHERE EMP.STATE="CA"

This view has two fields and one restrictive condition. There is only one base file in
this view: EMP. This view contains the names and salaries of all employees in the
EMP file that live in California.

JSELECT DEPT.DNAME, EMP.NAME WHERE DEPT.D_NO=MEMBER.D_NO &
&) AND MEMBER.E_NO=EMP.E_NO

There are three base files in this view: EMP, DEPT, and MEMBER. This view contains
department names and the names of the employees in the departments. The names are
taken from the EMP file, the departments are taken from the DEPT file, and the
relationship (which indicates which employees are in which departments) is found in the
MEMBER file.

6-2

Using Views

There are eight basic operations that may be performed on a view. These operations
are the same ones that may be performed on physical files. They are:

CREATE a view.

OPEN a view.

READ a record from a view.
CHANGE a record in a view.
ADD a record to a view.
DELETE a record from a view.
CLOSE a view.

PURGE a view.

!

6-3

Opening a View

All of the RELATE commands that manipulate files may also be used to manipulate
views. The result will be to modify the base relations in the VIEW in a way such that,
after the command the view will be in the same state it wouid be if the same
operations were performed on a normal file. Since views can potentially be very
complicated SELECT commands there is not always a unique way to modify the base
relations to cause the correct Change to occur to the view. For this reason, not all
operations can legally be applied to every view. Later in the section we will discuss
the requirements that a view must adhere to in order to be updatable and exactly how

JSELECT AVG=3AVG(EMP.SALARY)

By examining what this view contains it becomes obvious that it cannot be updated.
This view selects the average salary of all employees. {f the average salary is changed
it is impossibie to determine which employee salaries to adjust to effect this Change.
This view can not be changed, only read.

When a BY clause appears on a selection, the view may be used as if an index existed
containing the fields in the clause. This allows a range on RELATE commands and
allows the index to be used for various purposes from the Host Language Interface
routines.

Reading from a View

All views can be read unless restricted by security requirements. Any security
restrictions that may apply to the base files do not apply to the view. This
arrangement allows the DBA to create views for users which contain information from
files normally not accessable to the user. Security restrictions can be applied to the
view itself if the view has been saved in a file with the CREATE VIEW command.

When a view is read the base files are read to compute the data for the view. It
cannot be over-emphasized that a view does not contain any data: a view only contains
directions to obtain data. Therefore, if a base file is changed the changes are instantly
reflected in the view. A view cannot become out of syncronization with the base files
that define the view.

In RELATE/3000 views are implemented so that records are returned to the user {or
his application) as soon as possible. This means that there is usually very little time
delay between when a PRINT command is executed and when data starts appearing on
the terminal. This is possible because the entire view is not constructed before the
first record is returned. As the records that comprise the view are computed they are
Immediately made available. There are two exceptions to this rule. If a sort condition
1S applied to the view and the sort condition cannot be satisfied by using a sorted
index on one of the base relations, the entire view must be computed, and sorted.
before a record can be returned. This will result in a delay between the PRINT
command and when the first record is returned. Second, if several base relations are
Joined in a view and the joining fields are not indexed, RELATE may decide to create
a temporary index on the base file to prevent a combinatorial explosion of records to
be searched. Creating an index Is a task that must be performed before the first
record can be returned. This will also Cause a delay between the PRINT command and

64

when the first record is returned. In most cases, however, views are computed auickly
and the results are promptly returned.

Join Conditions

Often when constructing a view. data is needed from fields in more than one fi'le.
These files are normally connected with join conditions. For example, in the following
database,

EMP(E_NO, NAME)
DEPT(D_NO, DNAME, MGR_NO)

A view may be reguired that contains the department name from the DEPT file and
the manager name found in the EMP file. The manager name is found in the EMP file
by using the manager number from the department file to look through the employee
numbers in the EMP file. Thus, the view would be constructed as:

}SELECT DEPT.DNAME, EMP.NAME WHERE EMP.E_NO=DEPT.MGR_NO

The condition in this case s called a join condition. The join condition does not
eliminate any records from the view, but is used to join two files together. In most
cases reauiring information from two files a join condition is necessary.

Join conditions always have the form " field1>=<field2>" where <fieldl> and <field2>
are fields from different base files. Files may be joined on fields of different data
types. For instance, in the above example the E_NO field from the EMP file could
have been an integer field and the MGR_NO field in the DEPT file could have been a
doubie integer fieid. RELATE will automatically perform the required data conversions.

When adding conditions to a view they are normally ANDed together. For example, the
database:

PARTS(P_NO., PNAME)
SUPPLIERIS_NO., SNAME)
SHIPMENT(P_NO. S_NO. QTY)

defines parts, suppliers. and the quantity of each part shipped by each supplier. A view
that defines part names, supplier names and quantity supplied reaquires data from three
files. Since three files are used two join conditions are necessary. The parts file must
be joined to the shipment file and the supplier file must be joined to the shipment file.
The view would be defined as:

YSELECT PARTS.PNAME, SUPPLIER.SNAME, SHIPMENT.QTY &
&) WHERE PARTS.P_NO=SHIPMENT.P_NO &
&) AND SUPPLIER.S_NO=SHIPMENT.S_NO

Notice that the two join conditions are ANDed together. Other conditions that might
be applied to the view would also be ANDed. For example, if we wanted to look at
only those shipments with a guantity greater than 5000, we would define the view:

YSELECT PARTS.PNAME, SUPPLIER.SNAME, SHIPMENT.QTY &
&) WHERE PARTS.P_NO=SHIPMENT.P_NO &

&) AND SUPPLIER.S_NO=SHIPMENT.S_NO &

&) AND SHIPMENT.QTY>5000

This example has two Join conditions and one restrictive condition.

Update Requirements

All the RELATE commands that can modify files can also be used to modify views.
When a view is modified the Change is made by modifying the base relations in the
view. There are certain requirements about which views can be modified and
restrictions to which operations can be performed on the modifiable views.

The following requirements must be met to allow a view to be updated:

1) The view must contain only one file or all the files in the view must contain at
least one unary index. (See CREATE INDEX :UNARY).

2) The view definition does not contain a UNIQUE clause.

3) The view definition does not contain a BY clause or, if a BY clause is given, it
must be satisfied by an existing sorted index on any of the base files.

Requirement 1 js nheccessary for RELATE to correctly decide which of the base files to
modify when several files are joined together.

Adding to a View

When a record is added to a View, a record can be added to every base file in the
view definition. The data for each field in the base file is obtained from the
corresponding field from the view. |f a field in the base file has no corresponding field
in the view then zero or blank will be used depending on the type. Any type conversion
that was done to define the field in the view will be undone when a record is added to
the view. For example:

JSELECT EMP.NAME, SALARY=SREAL(EMP.SALARY)

If the SALARY field from the EMP file is a packed field, when a record is added to
this view the SALARY field is entered as a real number but is converted to a packed
number when the record is added to the EMP file.

If a view has any restrictive conditions, records added to the view must satisfy these
conditions. For example:

JSELECT EMP.NAME, EMP.STATE WHERE EMP.STATE="CA"

This restricts the view to those records of employees in California. An error will occur
if an attempt is made to add a record with STATE="NY" because this record does not
satisfy the restrictions of the view. Any legal modifications to a view can be undone
by another modification to the view. Thus if the system allowed the above record to
be added to the view it could not be deleted., because it would not be a member of
the view.

If a view contains {more than one file and) a join condition and one of the fields in
the condition is a field in the view, the value of the field from the view will be used

6-6

for the value of both fields from each file in the join condition. For example,

EMP(NAME, D_NO)
DEPT(D_NO, DNAME)

JSELECT EMP.NAME, DEPT.D_NO, DEPT.DNAME WHERE EMP.D_NO=DEPT.D_NO

if the record (NAME="FRED", D_NO=3, DNAME="R&D") is added to this view then the
record (NAME="FRED". D_NO=3) would be added to the EMP file and the record
(D_NO=3, DNAME="R&D") would be added to the DEPT file. The EMP.D_NO field is
not explicitly mentioned in the target list of the view, but the data is obtained though
the DEPT.D_NO field and the join condition.

in the above example, if what is intended is to add Fred to department 3, it makes
sense to add the record to the EMP file, but presumably department 3 already exists in
the DEPT file. Since it 1s not desirable to add department 3 again, somehow this must
be detected. This i1s the reason for reaquirement 1. Since this view contains more than
one file in its view definition both files must contain a unary index. The unary index
for the EMP file would be NAME since that is the field that uniquely determines
records in the EMP file. The unary key in the DEPT file would be D_NO. When records
are added to a view, any unary index violation on the base files is ignored. In this
case, |f department 3 previously existed, a unary index violation would result when the
record was added. If department 3 did not exist, then it would be added. In either
case the desired result 1s obtained.

It is a good idea when creating views to have all unary keys in the base files as fields
in the view. If this 1s not done, it becomes impossible to add records to the base files.
One record may be added sincé zero will be used as the value of the missing fieid, but
after that, unary index violations will result and additiona! records could not be added
to the view.

Deleting from a View

A record in a view consists of one record from each base file in the view definition.
When a record in a view is deleted, one or more of the records in the base files are
deleted. The decision of which base files to delete records from is made by observing
the upary indexes in the base files, the view definition and the command used to
delete the records. When there is only one file in the view definition, no. decision IS
necessary and the record is deleted from the base file. .

tij mofr_el tha: one file is used in the view definition then records are deleted from the
ase files that are restricted by all fields in the conditions from th
e delete
A field can be used to restrict file A if: command.
a) the field is a field in file A, or

b) the field restricts records from a file B that 1s joined to file A and the join
condition uses the unary index key of file B.

For example.

EMP(E_NO, NAME, D_NO) 132767 Unar :
— . D 767 y key: E_NO
DEPT(D_NO DNAME) 132767 Unary key: D_NO

67

JSELECT EMP.E_NO, EMP.NAME, DEPT.D_NO, DEPT.DNAME &
&) WHERE EMP.D_NO=DEPT.D_NO
JDELETE FOR NAME="FRED"

In this example, records would be deleted from the EMP base file, but not the DEPT
base file. The NAME field is the only field used in a restrictive condition in the
DELETE command. and the NAME field restricts the EMP file because it is a field in
the EMP file. The NAME field cannot restrict records from the DEPT file so no
records will be deleted from the DEPT file.

Now, consider the same view and the following command:

JDELETE FOR DNAME="ACCOUNTING"

"ACCOUNTING" department and ajl employees in the department will be deleted. The
DNAME field is the only field used in the restrictive condition in the DELETE
command, and the DNAME field restricts the DEPT file because it is a field within
that file. The DEPT file is joined to the EMP file and the join condition
(EMP.D_NO=DEPT.D_NO) uses the unary key of the DEPT file; so by definition (b)
above, the DNAME field can restrict records in the EMP file; therefore, records will
also be deleted from the EMP file.

A field is part of the restrictive condition |f:
a) The field is used in the FOR clause of the command.
b) The field is part of the current index of the view.

c) The field is used in a restrictive condition in the view definition.

Updating in a View

The fields of a view are defined by the target list of the SELECT command that
defines the view. Any of the fields of a view may be changed subject to the following
rules and restrictions:

1) If a field that is part of a join condition is changed, the_nA the cha_nge is
made to the fields from the base files on both sides of the join condition.

view contains more than one base file. then changes are only made to

? !ttwoi,e bease files that are dependent upon a!! the fields being changed and ﬂ

fields used to restrict records from the view in the command. If a field in

the view is defined by a field from a base file that cannot be c‘hanged then

that field of the view cannot be changed. If a field in the view is used in a

Join condition, the field cannot be changed if both fields from the join
condition cannot be changed.

This rule is similar to the rule used in del_eting_ records from a view. A
base file A is said to be dependent upon a field if:

a) the field is a field in file A or

68

b) a file B which is joined to file A is dependent on the field and
the join condition uses the unary key(s) of FILE B.

Restrictions:
1) Only fields that are defined in the SELECT command target list with a
simple field name, an assignment, or a data type conversion may be changed.

Fields that are defined as expressions or aggregates may not be changed.

2) Fields may not be changed if the change causes the conditions of the view
to be unsatisfied.

For example,

PARTS(P_NO, PNAME, COLOR) 132767 Unary key:P_NO
SUPPLY(S_NO, SNAME, CITY)X/ Unary key:S_NO
SHIPMENT(P_NO, S_NO, QTY)IX7/ Unary key:P_NO, S_NO

JOPEN FiLE PARTS; PATH=P

JOPEN FILE SUPPLY; PATH=S

JOPEN FILE SHIPMENT; PATH=M

JSELECT P.@, S.@, M.@ WHERE P.P_NO=M.P_NO AND S.S_NO=M.S_NO
)LET COLOR="RED" FOR PNAME="HERRINGS”

In this case the PARTS file is the only base file that i1s dependent upon both COLOR
and PNAME so only the PARTS base file is changed.

)LET QTY=500 FOR PNAME="DERRIGIBLES" AND SNAME="BRITAIN"
In this case the SHIPMENT file is dependent upon QTY and also PNAME and SNAME
since the PARTS file and the SUPPLY file are both joined to the SHIPMENT file using
a unary key. The command changes the appropriate QTY field in the SHIPMENT file.
JLET PNAME="GOLD" FOR QTY>1000 AND PNAME="LEAD"
In this case only the SHIPMENT file is dependent upon both the PNAME field and the
QTY field. An attempt has been made to change the PARTS file in tre LET
command. This wiil cause an error because there may be other records in the
SHIPMENT file that reference the P_NO for lead. If the PNAME of lead is changed to
gold it would have been changed for records other than those restricted by QTY>1000.
JLET PNAME="GOLD" FOR PNAME="LEAD"

This command does not cause an error since all PNAMES of lead are to be changed to
gold.

JLET P_NO=3 FOR P_NO=2

In this case the P_NO field i1s part of a join condition and both the PARTS file and
the SHIPMENT file are dependent on P_NO so records are changed in both files.

)] ET P_NO=3 FOR P_NO=2 AND SNAME="BRITAIN"
in this case only the shipment file is dependent on both P_NO and SNAME so the

6-9

shipment with P_NO=2 and SNAME="BR!TAIN" is changed to P_NOQ=3, but no change is
made to the PARTS file.

6-10

SECTION 7

SECURITY

SECURITY

f data within
RELATE/3000 has several levels of security that allow complete control ©

a datapase.

~ ‘ ' ' level.
RELATE provides security at the file (or viewl, field, record, and Mos‘;eErat\onV_‘de -
These security provisions. coupled with those features ayallable from , pro ‘
unobtrusive yet effective means of controlling information in even the most compiéx

environment.

When a user executes RELATE the system automatically checks for files in the PUB
group of the user's account. The absence of files used by the system to verify ‘the
user's access capabilities indicates to RELATE that a non—secure environment exists.
When used In this manner, RELATE operates with only the security provisions provided
by MPE. These provisions include: password protection at the user, group. and account
level: lockword protection at the file level; and access restrictions on files, groups, and
accounts. In many installations these security provisions aré sufficient. At other
installations, additional security provisions may be required 1o protect individual files,
records, and possibly fields. This section of the manual describes MPE security and the
effects of MPE security on RELATE. It also describes the security features supported
by RELATE and the interaction of the RELATE and IMAGE security mechanisms.

Security Systems Overview

Security on the HP3000 is provided at several levels by the MPE operating system.
These security measures include:

1) A valid_ user name, account name, and sometimes a group name must be
known in order to log-on to the computer. A user who is not logged-on
cannot obtain any information from the system.

2) A password (or passwords) must be known to validate the user
identification.

3) Access is generally prohibited across accounts and groups. This secures
your files against other people who may have logged-on.

4) L(_)ck‘words may be required to access individual files. This secures files
within a group from users authorized to logon to the group but who may
not be authorized to access all of the information in the group.

If the IMAGE data base management system is used, the user must also know a valid

When RELATE | -
IS used in an unsecur '
, ed e
tI)MAGE Security) mechanisms come into ZT;ronm\(;J)ht only the MpPe security (and possibly
OY an account librarian (AL) RELA" Y. Nén a secured environment is created
Imposed by MPE ang IMAGE. In a sreE SeCUrity is added to whatever restrictions are
the dat ini : cure environment, the account |j i
the mfoarbnfzfioidf:)m;itrator (DBA). It is the DBA's responsibility tr:: c;:r{arg?na::;sszs
€ account. Seven CoOmmands for controlling a secure environmen?

ENAB
LE/DISABLE T;wese commands control the RELATE Secure/unsecure modes
o. operation. A secure environment can be created in a
single group, many groups, or ajl groups of an account.

ALLOW/DISALLOW These commands are used to restrict the types of functions
that 'particular users can perform in particular groups. The
functions include the ability to use the RELATE Corr;mand
Interpreter, batch access. and the creation of new files.

PERMIT/DENY These commands are used to restrict the types of operations
that particular users can perform on particular files. The
operations that can be performed on a file InClude adding,
deleting, and changing records.

CREATE DICTIONARY This command creates the RELATE security dictionary,
RDBDD. Security can't take effect until this file exists.

MPE Security Overview

The security provisions provided by MPE are the least useful yet most effective built
Into the system. These restrictions are enforced at the file level and essentially either
permit or deny access to a file. Group and account restrictions may additionally
inhibit access to a file. RELATE Ooperates within the MPE environment and does not
circumvent any of its security provisions. In many instances, it may be necessary to
eliminate (through MPE commands) some of these MPE restrictions in order to give
RELATE better control over a database.

The security provisions for files can be likened to a jigsaw puzzle. The puzzle is
treated as a single item by MPE to the extent that a user has access to all of it or
none of it. The security provisions within RELATE attempt to break the puzzle up into
smaller pieces (not necessarily individual parts). Another distinction is that RELATE
security can vary the information that a user has access to after a file is opened; MPE
security only affects which files can be accessed. As the puzzie is divided, better
control is obtained for each portion. Notice that the division also makes things more
compliex and that at some point the overhead of putting the puzzle back together again
becomes a great burden. This is the case with any system that allows security to be
placed on items of variocus sizes {granularities). Indeed, when security is applied at
various levels and to individual items it is nearly impossible to see the entire picture.

This section attempts to proceed from the largest granule of security (the account
level) to the smallest (restrictions on files records, and fields). The section will aiso
differentiate between security provided by MPE, RELATE/3000, and IMAGE.

MPE Security - Logon

The first level of security that must be passed occurs in the logon procedure. At this
point, the user must know a valid USER. ACCOUNT, and possibly a GROUP name as
well as any passwords assigned to these names. |If a user cannot logon, noné Qf{ the
additional security restrictions come into play. Once a user has logged-on, additional
restrictions are imposed first by MPE and then possibly by IMAGE (if an IMAGE
database is in use) and RELATE. These restrictions areé determined primarily by
attributes assigned to the user and his USER name by the DBA.

MPE Security — Account Level

When a new account 1S created by a user with system manager (SM) capability, the
group PUB and a user with account manager (AM) capability are created. f security
provisions (ACCESS provisions) are not provided when the account is created, the
default provisions of (R, A, W, L, X:ACC) are used. These provisions allow an account
member (AC) to read. access. write, lock, and execute any file within the account if
appropriate group and file restrictions also allow these operations. More importantly.
these provisions prevent any other user on the system from accessing files within the
account (unless the file is RELEASED: see MPE SECURITY - FILES). The security at
this level prevents most interactions between users in separate accounts.

MPE Security — Group Level

in order for group level security to come into play, the user must first pass through
the account level security. |If the account level security provisions deny access tO the
file. the request is immediately terminated (unless the file s RELEASEd: see MPE
SECURITY - FILE LEVEL).

Many groups can be created within an account. The first group of an account (PUB) is
created when the account is created. It is normally considered the library group for
the account and 1Is assigned provisions such that any person who logs onto the account
can read or execute files from the PUB group. Additionally. the account librarian (AL)
and group users (GU-—any user who has PUB as his home group Of is logged on to the
PUB group) can write, append to., lock, or save files in the group. RELATE security
mechanisms use the PUB group for data storage.

When a_nqditnonal groups are created in the account, only the group user (GU) 1s given
the abnllty_to' read, append to, write, lock, execute, or save files within the group.
These res;rvctvons prevent any other user {except the account manager) from performing
any functions on any of the files in the group.

MPE Security — File Level

in order for the file level security to come into play the user must first pass through
the account and group levels of security. if any of the account oOr group security

provisions prevent access to the file, the request is immediatel 1
OO A aed ately terminated uniess the

7-3

When_ a file i_s Created, any user who can get through the account and group levels of
security restrictions can read, append to, write, lock. or execute the file. Normally
only the group user (GU) and account manager (AM) can perform these functions. /

any user on the system can perform any operation on the file. Obviously, files should
not be RELEASEd if security is a Consideration. After a file has been RELEASEd the

normal security provisions of the file can be reimposed by issuing the SECURE
command for the file.

Another method of altering security provisions on a file in a less drastic way is the
ALTSEC command. When a file is Created, default security provisions are used. These
provisions allow a group user (GU) to read, write, lock, execute, and append to the
file. If the file is in the PUB group, any user can read or execute the file but only
the account librarian (AL) can write, lock, or append to the file.

MPE Security - Summary

In general, MPE security provisions operate from an outside-in manner; that is, the
ACCOUNT security provisions prevent significant access across accounts and the
GROUP security provisions prevent significant access across groups. Each level of
security eliminates certain operations and users untijl finally, at the file level, the
particular functions available to a particular user are known.

MPE security provisions are an effective method of preventing access but fall far short
of an effective method of allowing access. For example. if a user develops a program
In a group within the DEV account and wishes to transfer that program to a group in
the ONLINE account several alternatives are available:

1) The program can be RELEASEd and copied from the DEV account while in
the ONLINE account. This method poses the least risk if the user then
remembers to SECURE the original file. If the file is not SECUREd, any
user on the system can get a copy of the program (or even purge it).

2) A user who has system manager (SM) capability can copy the file into
PUB.SYS (or a group and an account with similar security provisions). This
is possible because a System manager can read any file on the system. The
developer can then copy the file into the ONLINE account and the system
manager can then purge the file in PUB.SYS. This method is more
complicated than the first and suffers from the same problem (except that
another user could not alter the program, only copy it).

3) Alter the security provisions of the DEV account and the group in which
the program resides so that direct access to the program is possible from
the ONLINE account. This method is at least as complex as the second
method and not only allows the desired access but also allows anyone else
on the system to access any file within the group.

Clearly. each of these methods compromises the security of one or more files. What
is needed 15 a method of granting only the user in the ONLINE account read access to
only the single file in the DEV account. MPE does not allow this mode of data

sharing.

74

RELATE allows this kind of data sharing on the group level (MPE restrictions make it
impossible at the account level). RELATE allows the DBA (in a secured environment) to
share individual files with individual users. In addition, the type of access (read, write,
etc.) allowed to a file can be restricted on a user by user basis.

RELATE operates in two security modes. The first {and the default) uses only the
security provisions within MPE to determine what type of access, if any, is allowed to
any particular user. Users can create, purge, and manipulate files at will. This mode
of operation is most convenient for first-time users and for any environment where
data security is not of much importance.

RELATE also operates in a secured mode in which users are allowed particular
functions on particular files. This mode is ENABLEd by an account librarian who then
becomes the Data Base Administrator (DBA) for the account. it is the responsibility of
the DBA to ALLOW the appropriate capabilities and to PERMIT the appropriate
operations to each user in the account.

Security Screening

When RELATE/3000 begins operation it checks for the RDBDD file in the PUB group
of the user's account. 1f this file exists, RELATE will operate in a secured mode and
screen any reauests against the appropriate capability matrices. If this file does not
exist, no additional checks are made for authorization by RELATE. 1f a secure
environment is created after RELATE has begun execution, 1t will not be enforced until
the next execution. Likewise, f the DBA alters the status of the user’'s log-on group
either to or from a secure environment, 1t will not take effect until the next execution
of RELATE. RELATE maintains the information on the log-on group in memory on the
assumption that most operations will be pertformed there.

If the user is operating In a secure environment, the RDBDD.PUB file is checked to
determine if the user has the ability to perform the particular function. If information
allowing the function cannot be found, the request is denied. If a record is found, the
function is checked and may be denied. If the user has not been given the ability to
access RELATE interactively, RELATE would terminate at this point.

For some functions, a record that references a group name other than the user's fog—on
group may be used. This freauently occurs when a user attempts to create or use a
file in a group other than his log-on group. This method of searching allows the DBA
to determine what a user can do in each individual group. For example, the DBA may
allow a user to create permanent files in one group but only temporary files in others.

Operation, Record, and Field Level Security

Once a group is secured, the only user that may access files within the group is the
creator of ‘th‘e file and the DBA (account librarian). In a secured environment, it 1s
the responsibility of the DBA to create the database and authorize users to access it.
This authorization is given by using the PERMIT command.

As each permit is |ssqed, one or more permit type entries are placed into the RDBDD
file. To revoke permission, the DENY command must be used specifying which entries

7-5

to delete.

Privileged Files
Upon authorization by the system manager, files created in secured groups by an

Account Librarian will be privileged files. These files will block attempts to access
them through system utilities or programs.

7-6

SECTION 8

RELATE/3000 INTERNALS

FORMAL FILE DESIGNATORS

RELATE/3000 uses three formal file designators for command input and printed output.
These files may be redirected by the user for various purposes. The names of these
files and the purpose for each is as follows:

RDBIN This file must contain the commands which RELATE will execute.
The file is usually opened as $STDINX. If a file with this name
exists when RELATE is invoked interactively, the commands
contained in the file will be executed before the user is prompted
for information. The file is ignored if RELATE is begun from the
Host Language Interface routines.

RDBOUT RELATE outputs all messages (errors, warnings, and printed text) to
this file. The file is usually opened as $STDLIST. After RDBIN
and RDBOUT are opened, the system verifies that RDBIN s
$STDINX and if so then determines if the two files are duplicative.
If the files are not duplicative, all information read from RDBIN
will be placed into RDBOUT.

RDBLIST This file is accessed when a global "P" switch appears on a
command name. The "P" indicates "printer” although this file may
be equated to any device type. When the switch is recognized the
file is opened. If a file cannot be opened, the system attempts to
open the device class "LP". When the file is closed and the output
device is spooled, the system will display the spool file number
used. |f the output is not spooled, the actual filename is displayed.

RELATE also accesses the following files:

RDBECAT.PUB.CRI
This file contains the error messages, prompts and other control
information used by RELATE. This file is opened as soon as
RELATE begins execution. If the file cannot be opened, RELATE
will terminate. |f RDBECAT is not in PUB.CRI, a file equation can
be used to redirect RELATE to the correct location.

RDBHELP.PUB.CRI
This file contains the HELP information. The file is opened the
first time the HELP command is used. If RDBHELP is not in
PUB.CRI, a file equation can be used to redirect RELATE to the
correct location.

RDBTPLOG This file is used as the holding file for data prior to the completion
of a transaction. It is automatically created by RELATE when the
first BEGIN TRANSACTION command is executed. Its size is
determined at that time. The limit is calculated to allow each
record in the largest currently open file to participate in the
transaction. A file equation can be used to specify its size or to
force the file to be created on a specific device.

RDBSTAGE This file is used during recovery operations. Its functions and
specifications are described in the Transaction Processing section.

8-1

When the Host Language Interface (HLI) routines are used they attempt to create ‘w
RELATE.PUB.CRI as a son process. If RELATE.PUB.CRI does not exist, an attempt is
made to load the program referenced by the formal file designator RELATE.

8-2

APPENDICES

APPENDIX A

COMMAND FORMATS

:mpecommand

PURPOSE: Executes an MPE command from RELATE.

ABORT [ENTIRE] TRANSACTION
PURPOSE: Aborts a transaction in progress.

ADD [SEPARATOR="character”)

PURPOQOSE: Adds data to the current file.

GLOBALS: | Obtains data from the procedure file.
L Displays line number of added line.
NOTE: Functions on RELATE, KSAM, MPE, and IMAGE files.

ADD FIELD fieldname, type, printiength [.decimals] [;options]

PURPQOSE: Adds a new field to the structure of the current file.

ALLOW functionlist [IN grouplist] [BY userlist] [:DEFAULT]

PURPOSE: Creates or adds to a capability matrix that determines what operations a
user can perform in a particular group.

NOTE: This command can only be executed by the account librarian in the PUB
group.

BEGIN TRANSACTION

PURPOSE: Begins a new transaction.

[range] CHANGE [fieldspecs] [FOR condition]
PURPOSE: Selectively modifies data in a file.

GLOBALS: Obtains data from a procedure file.

[
L Prints line number.
S Suppresses current key.

LOCALS: P Prints value of field and does not request new value.

NOTE: Functions on RELATE, KSAM, MPE, and IMAGE files.
Field specs may be either:
field
or

(field [[PROMPT="text"] [:DEFAULT=YES/NO])

CLOSE [DATABASE databasename] | [FILE filename[;DATABASE=databasename] [PATH
pathname]

PURPOSE: Closes paths, files, or databases.

NOTE: If no parameters are specified, everything referenced in the current cursor is

closed. Functions on RELATE, KSAM. MPE, and IMAGE files.

CLOSE RDBLIST

PURPQOSE: Terminates spooling for the file RDBLIST.

COMMIT TRANSACTION

PURPOQOSE: Commits the current transaction.

COMPARE fieldlist WITH filename1|;options] [MATCHES [TO] filename2|;options]]
[ERRORS [TO] filename3[:options]] [BY keylist]

PURPOSE: Compares two files by key.

LOCALS: {on items in the fieldlist)
E Contains error message or # of error.
F Contains file name or file # 1n which error occurred.
| Contains index # in which error occurred.

R Contains record # in which error occurred.

NOTE: Functions on RELATE, MPE, and KSAM fiies. Matching records go to
"MATCHES" file. Unmatched records go to "ERRORS” file.

COMPILE CATALOG source INTO destination |WARN} [;OLD=oldmaster]

PURPOSE: Allows the user to create a message catalog in his own language.

[range] CONSOLIDATE [fieldlist] TO filename[options] [BY keylist] [FOR condition]

PURPQOSE: Creates a summary of the current file.

GLOBALS: D Deletes each record used in the consolidation.
LOCALS: (on items in fieldlist)

A Averages the field.

C Counts number of records used.

F Takes the first value.

G Takes the greatest value.

L Takes the last value.

S Takes the smaliest value.

T Totals the field.

NOTE: Functions on RELATE KSAM. and MPE files.

A-3

[range] COPY [assignment]....]] TO filename|:options] [FOR condition]
PURPQOSE: Copies information from the current file to the "TQO" file.
GLOBALS: D Deletes each record from current file as it is copied.

NOTE: Functions on RELATE, IMAGE, KSAM, and MPE files.

CREATE DICTIONARY

PURPOSE: Creates the data dictionary used to store the security and view information
used In a secure enivronment by RELATE/3000

NOTE: This command can only be executed by the account librarian in the PUB
group.

CREATE FILE filename | keyfilename]
[TYPE=RELATE:{KSAM MPE] [:STRUCTURE=pathname]
[[RECORDS=recordcount] [:RETENTION=PERMANENTITEMPORARY INONE]
[:CODE=filecode] [:PATH=pathname] [.FIELDS=f:eldnamelist]
[;INDEXES=indexlist] [:PRIVILEGED]

PURPOSE: Explicitly creates a new file.

GLOBALS: ! Obtains field descriptions from a procedure file.

NOTE: Creates only RELATE, KSAM or MPE files.

After the message "Enter Fieldname. Type. Size"., the user will enter field descriptions of
the format:

fieldname. type, printlength [FORMAT=number!"datestring” ' UPPERCASE |LOWERCASE]

[[INTERNAL=internal#] [.LEVEL=entrylevel] [;DOLLAR=FIXEDiFLOATINONE]
[[COMMA=YESINO]

A4

CREATE INDEX [number] BY fieldlist [[UNARY]
PURPQOSE: Creates a new index for the current file.
LOCALS: {on items in the fieldlist)

A Ascending field.

B Descending field.

NOTE: Functions only for RELATE files.

CREATE VIEW viewname
viewcommands

PURPQOSE: Creates a view and stores it permanently.

GLOBALS: | Obtains view commands from a procedure file.
D Adds view to the RDBDD file.

NOTE: Viewcommands are composed of one or more OPEN commands followed by a
SELECT command.

frange] DELETE [FOR condition]
PURPQOSE: Deletes records from the current file.

NOTE: Either range or condition must be specified. Functions on RELATE, KSAM
and IMAGE files.

DENY READ/DELETE/ADD/CHANGE/ALL ON file [BY userlist]
PURPOSE: Allows the DBA to revoke previously allowed file operations.

NOTE: This command can only be executed by an account fiibrarian in the PUB
group.

A-5

DISABLE DATA LOGGING [IN grouplist]

PURPOSE: Instructs RELATE to discontinue logging changes to RELATE files in the
indicated groups.

DISABLE EVENT LOGGING [BY userlist]

PURPOSE: Instructs RELATE to discontinue logging event data for the indicated users.

DISABLE SECURITY [IN grouplist]
PURPOSE: Reinstates a non—secure environment in the groups specified.

NOTE: This command can only be executed by the account librarian in the PUB
group.

DISALLOW functions [IN grouplist] [BY userlist]

PURPQOSE: Removes capabilities from a matrix that determines what operations a user
can perform in a particular group.

NOTE: This command can only be executed by the account librarian in the PUB
group.

ENABLE DATA LOGGING [IN grouplist] TO logfile

PURPOSE: Instructs RELATE to begin logging changes to permanent RELATE files in
the indicated groups.

ENABLE EVENT LOGGING [OF events] [BY userlist] TO logfile

PURPOSE: Instructs RELATE to begin logging the events specified for the wusers
specified.

A6

ENABLE SECURITY [IN grouplist]
PURPQSE: Creates a secure RELATE/3000 environment in the groups specified.

NOTE: This command can only be executed by the account librarian in the PUB
group.

END, EXIT or //
PURPOSE: Terminates access to RELATE/3000.

GLOBALS: C Prints total CPU time used in run.
T Prints connect time used in run.

ERASE FILE filename [;DATABASE=databasename]

PURPOSE: Erases the indicated file.

EXECUTE filename [;SHOW=YESINOISAME]

PURPOSE: Executes RELATE/3000 commands from a file.

FIX FILE filenamelfileset [CREATOR]

PURPOSE: Converts files from the RELATE 4.4 format to the RELATE 4.5 format.

FIX FORMAT MAP=mapfile; FROM=inputfile [;EBCDIC] TO outputfile

PURPOSE: Reformats information from the inputfile to the outputfile.

HELP [commandname] [requests]
HELP ERROR errorrange

PURPQOSE:

GLOBALS:

NOTE:

Displays information concerning errors or command formats and functions.

F Form-feeds the output.
P Directs output to the printer.

Requests may be any of:

ALL, FUNCTIONS, COMMANDS, SYNTAX, PURPOSE. KEYWORDS,
DESCRIPTION, or EXAMPLES.

IF [condition]...ELSE...ENDIF

PURPOSE:

Allows conditional execution of commands.

IGNORE [ALL] ERRORI[S] [errornumber]

PURPOSE:

Allows the user to ignore errors on the next command.

[range] LABEL [modifiers] USING formatfile{;options] [FOR condition]

PURPOSE:

GLOBALS:

NOTE:

Displays or prints output in a user-specified format.

| Suppresses forms alignment reguest.
P Directs output to printer.

Modifiers may be any combination of:

ACROSS=number, DOWN=number, LINES=number, REPEAT=number,
WIDTH=number, SUPPRESS, FORMATTED.

A8

[range] LET assignment [,...] [FOR condition]
PURPQOSE: Makes arithmetic or alphabetic assignments.

NOTE: Functions on RELATE, MPE, KSAM, and IMAGE files.

LIST COMMANDS [rangelist] [TO filename[;RECORDS=records][;WIDTH=width]]
PURPOSE: Lists the indicated RELATE commands.

GLOBALS: P Directs output to the printer.

LIST FILE filename
PURPOQOSE: Lists the contents of the indicated text file.

GLOBALS: P Directs the output to the printer.

LOCK DATABASE databasename
LOCK FILE filename [:DATABASE=databasename]

PURPQOSE: Informs RELATE that the indicated database or file should be locked for the
next transaction.

MODIFY FIELD fieldlist; formatlist
PURPQOSE: Changes existing field descriptions in a fife.

GLOBALS: K Keeps changes permanently. This switch can only be used on RELATE
files.

NOTE: ftems in the formatlist may be any of the foliowing:
[FORMAT=number ! "datestring” | UPPERCASE | LOWERCASE]
[;INTERNAL=internal#] [:LEVEL=entryleveI] [:DOLLAR=FIXEDIFLOATINONE]
[;COMMA=YESINQ] [:NAME=fieldname] [:SIZE=printiength]

MODIFY FILE filename [;CLUSTER=index] [:COMPRESS=YES!NOQO]
[:CRASHPROOF=YESINO] [:DELETE=LOGICALiPHYSICAL]} [;SCAN=blocks]

PURPOSE: Alters the manner in which data is handled in a particular file.

e e e e e e e e e e e e e - —— ——— ——— - ——

NOTE [any text]
PURPQSE: Makes a comment.

GLOBALS: D Displays the text.

OPEN DATABASE databasename
:TYPE=IMAGE [;INFORMATION]
[;P ASSWORD=password]
:MODE=accessmode

PURPQOSE: Opens an IMAGE database.

OPEN FILEISET filename
[TYPE=RELATEIMPEIKSAMIIMAGE] [;INFORMATION] [:ERASE]
[;STRUCTURE=pathname] [;DOMAIN=PERMANENTITEMPORARY]
[;DATABASE=databasename] [;RETENTION=PERMANENTITEMPORARY | NONE]
[;:PATH=pathname)]
[;FIELDS=fieldlist] [MODE=accessmodes]

PURPOSE: Opens a file, set, or path.

NOTE: Functions for RELATE, IMAGE, KSAM, and MPE files.

OPEN RDBLIST

PURPOSE: Spools all output for RDBLIST until a CLOSE RDBLIST is encountered.

PAUSE ["comment”]

PURPQOSE: Causes RELATE tc pause until RETURN is pressed.

PERMIT READIDELETEIADDICHANGEIALL ON file [;FIELDS=fieldlist]
[BY userlist] [FOR condition]

PURPOSE: Allows the DBA to authorize individual users to perform functions on files,
records, or fields.

NOTE: This command can only be executed by an account librarian in the PUB
group.

[range] PRINT [fieldlist] [FOR condition]
PURPOSE: Displays information from the current file.

GLOBALS: number Skips a line after every number of lines.
D Displays filename, index #, fields, time, and page
number on output.
Form-feeds the output.
Prints the line number.
Suppresses printing of the fieldnames.
Directs output to line printer.
Suppresses the current key.
Totals all numeric fieids.

AWMV =z

LOCALS: {on items in the fieldlist)
number Skips number of lines on a control break.
B Uses field as control break.
F Form-feeds on control break.
H Uses field or text in heading.
S Suppresses field if it hasn't changed.
T Totals the field.

NOTE: Functions on RELATE, KSAM, MPE, and iMAGE files.

PURGE FILE filename
PURPQSE: Purges the indicated file.

NOTE: Functions on RELATE, KSAM and MPE files.

PURGE INDEX number
PURPQOSE: Purges an existing index from the current file.

NOTE: Only works on RELATE files.

PURGE VIEW filename
PURPQSE: Purges an existing view.

GLOBALS: D Purges the view from RDBDD.

QUIZI:P] reportname [;SOURCE=datafile] [;PARM=parm] [;MAXDATA=maxdata]

PURPOSE: Invokes the QUIZ reportwriter.

[rangel RECOVER [TO filenamel;options]] [FOR condition]

PURPOSE: Recovers previously deleted data.

RECOVER DATA FROM iogfile [(INFORMATION] [FILES fileset]
PURPOSE: Recovers the content and structure of the data base after a system failure.

REDQO [commandnumber]
PURPOSE: Allows editing of the previous command line.
NOTE: Performs the following edit functions:

D Deletes a character.

R Replaces a character.

S Splits a line into two lines.

! Inserts a character.

L# Edits the line indicated. .ix 'REDO’,'syntax’

REORGANIZE FILE filename [;RESERVE=records]

PURPQOSE: Removes deleted records and rewrites the index structure of the given
filename.

SELECT ([targetlist {[SORT] [UNIQUE] BY keylist] [WHERE condition]]

PURPQOSE: Indicates what information will be available to the following command.

SET INDEX numberlfieldlist

PURPOSE: Makes the indicated index the current index.

SET PATH pathname

PURPQOSE: Accesses a file that has already been opened.

SHOW [,ALL] [BOUND] [CURRENT] [FILES] [.FORMAT] [INDEX] [KEY] [LEVEL]
[.PATHS] [RECORD] [,SELECT] [.SETS] [.STRUCTURE]

PURPQOSE: Displays information about open files.

[range] SORT BY keylist TO filename[;options] [FOR condition]
PURPQOSE: Sorts a datafile by a keylist.
LOCALS: (on items in the keylist)

A Sorts in ascending order.

D Sorts in descending order.

NOTE: Functions on RELATE, MPE, KSAM, and IMAGE files.

[range] SUM [fieldlist] [FOR condition]
PURPQSE: Obtains the sum of one or more fields.
GLOBALS: A Prints averages as well as sums.

LOCALS: (on items in the fieldlist)
A Prints average of the field as well as the sum.

SYSTEM [$COMMENT] [:$CPU] [;SDEMO] [;SLANGUAGE="language"] [;$TIME] [;$CANCEL]
PURPOSE: Assigns or displays system—wide options.

GLOBALS: S Shows current status of system parameters.

TERMINAL [;$SCCTL] [;CLEAR="clear sequence”] [;$SCRT] [;SLINES=#lines]
[;$SPACE_B=#spaces at bottom] [;SSPACE_T=# spaces at top] [;$TYPE="terminal name”]
[:SWIDTH=# characters] [;SDEMO_S="start seq"] [;$SDEMO_E="end seq"]

PURPOSE: Assigns or displays the values of terminal parameters.

GLOBALS: S Shows current status of the user's terminal.
T Shows the terminal types known to RELATE.

NOTE: A user with System Manager capability can also use a GLOBAL "U" and a
"DEVICE=" parameter.

UNLOCK

PURPOSE: Unlocks all locked files.

UPDATE [assignment [....]] [TO filename1[;options]] USING[:D] filename2|:options] [BY
keylist]

PURPOSE: Updates and/or copies records with duplicate keys from a secondary file.

GLOBALS: D Deletes each record from the current file as it is updated.
F Updates only the first entry in a key.

LOCALS: D Deletes each record from the USING file as it is updated.

NOTE: Functions on RELATE, KSAM, and IMAGE files.

A-16

APPENDIX B

COMMAND NUMBERS

When the RELATE/3000 Host Language Interface routines are used, complete commands
may be passed to the system. In some applications it may be useful to know what these
commands were. Location eighteen (18) of the cursor returns a numeric indication of the
command. The table below can be used to obtain the actual command name.

CHANGE

SELECT
DELETE
"y

END

EXIT
ALLOW
OPEN

10 PRINT

11 SHOW

12 CREATE
13 REORGANIZE
14 RECOVER
15 SUM

16 CONSOLIDATE
17 UPDATE
18 PURGE

19 SORT

20 LET

21 COPY

22 CLOSE

23 MODIFY
24 LABEL

25 COMPARE
26 NOTE

27 SYSTEM
28 ERASE

29 ADD

30 QuiZ

31 HELP

32 TERMINAL

OQONOO D WN

35 SET

36 EXECUTE
37 DISALLOW
38 ENABLE
39 PERMIT
40 DENY

41 REDO

42

45
47
49
51
52
55
57
59
61

DISABLE
FIX

MPE Command

BEGIN
COMMIT
PAUSE
DRAW
PLOT
LOCK
UNLOCK
ABORT
IGNORE
REPORT

IF

ENDIF
ELSE
COMPILE

APPENDIX C

TERMINATION CONDITIONS

During the execution of RELATE/3000 certain serious error conditions may be
encountered. These conditions are primarily caused by a lack of resources (usually
memory) or an inability of MPE to perform an operation required by RELATE. These
conditions will cause RELATE to terminate execution immediately.

In the case of an MPE related difficulty the problem may disappear if the request is
made when the system is not as busy. In the case of a lack of memory closing unused
files may enable the desired operation to be performed.

The errors that can be generated are summarized below.

99 Illegal execution of instructions in the RELATE/3000 timing system.
Indicates a hardware or RELATE failure.

100 Invalid system control block address. The memory location containing the
master table location has been destroyed. Indicates a RELATE failure.

101 Unable to open $STDINX. Indicates an MPE failure.

102 Invalid virtual memory management table address. Indicates a RELATE
failure.

103 Unable to read from $STDINX. Indicates an MPE failure.

104 The Host Language Interface routines could not correctly locate the shared
extra data segment used for communications. Indicates an MPE or RELATE
failure.

105 The Host Language Interface routines could not correctly retrieve information
from the communications extra data segment. Indicates an MPE or RELATE
failure.

106 lllegal Host Language Interface instruction. Indicates a hardware or RELATE
failure.

107 Unable to open RDBOUT (usually $STDLIST). indicates an MPE failure.

464 MPE could not obtain more memory because the stack is frozen. This should

never occur. It indicates a serious problem within MPE.

APPENDIX D

LOG RECORD FORMATS

All RELATE log file entries are prefixed with the following information:

WORDS

bW

CONTENTS

Writer's ID (Enabled with FCONTROL 46)

Data Code (Enabled with FCONTROL 46)

A 1 indicates a RELATE data logging record. A 2 indicates a
RELATE event logging record. Records containing values other
than a 1 are ignored during recovery.

Seaquence Number for entries which span multiple records
Number of data words in the entire entry

Data offset

The following entry types are generated from DATA logging:

BEGIN TRANSACTION

WORDS

0
-2
3

CONTENTS

Code 1
Not Used
Command Number (If interactively executed)

COMMIT TRANSACTION

WORDS

-2

w2 O

RECORD ADD

WORDS

- O

-2

\ngw

CONTENTS

Code 2
Not Used
Command Number (If interactively executed)

CONTENTS

Code 7

Not Used

Not Used

Physical File Table Number
Record Number

Offset to Data

Record Added

RECORD DELETE

WORDS CONTENTS

0 Code 8

1-2 Not Used

3 Not Used

4 Physical File Table Number
56 Record Number

7 Offset to Data

Record Deleted

RECORD UPDATE

WORDS CONTENTS
0 Code 9
1-2 Not Used
3 Not Used
4 Physical File Table Number
56 Record Number
7 Offset to Data
Original Record and Updated Record
FILE ACCESS
WORDS CONTENTS
0 Code 10
1-2 Not Used
3 Operation:
1= Create
2= Open
3= Close
4= Purge
4 Physical File Table Number
5 Words of data
6 Offset to data

Data

INDEX CREATE/PURGE

WORDS CONTENTS

0 Code 11

1-2 Not Used

3 Not Used

4 Physical File Table Number

5 Command Code (See Appendix C)
6 Characters in the Command

7 Offset to Command

Command

D-2

The following entry types are generated from COMMAND event Iogging:

COMMAND INITIATION

WORDS

O

-2

NOO D W

CONTENTS

Code 4

Not Used

Command Number (If interactively executed)
Not Used

Command Code (See Appendix C)
Characters in the Command

Offset to Command Start

Command

COMMAND INFORMATION

WORDS

o

-2

b wa

CONTENTS

Code 5

Not Used

Command Number (If interactively executed)
Information Code (None currently defined)
Offset to Information

information

COMMAND TERMINATION

WORDS

~ N

CONTENTS

Code 6

Not Used

Command Number (If interactively executed)

CPU Time (Only available if enabled by the SYSTEM command)
Wall Clock Time (Only available if enabled by the SYSTEM
command)

RELATE Error Number

MPE, KSAM, or IMAGE

Error Number

The following entry types are generated from STARTUP event logging:

RELATE INITIATION

AN G ODE
NN -

0.

"

2
37
8-12
13-17
18

19

20-24
25-29
30-34

CONTENTS

Code 15

User Session or Job Number (Not yet available)
Session or Job Input Device Number '
User Name (Null Terminates)

Group Name (Null Terminates)
Account Name (Null Terminates)
Access Source:

O= Interactively

1= Host Language Interface

#= CRI| Subsystem

PIN of Calling Process (Not yet available)
Program Name (Not yet available)
Program Group (Not yet available)
Program Account (Not yet available)

LT

RELATE TERMINATION

CODE

ODPWN-2O

CONTENTS

Code 16

User Session or Job Number (Not yet available)
Session or Job Input Device Number .-
RELATE Error Number

MPE Error Number

PIN of Calling Process (Not yet available)

D4

The following entry types are generated from ACCESS event logging:

CURSOR INITIALIZATION

0 Code 20
1 Cursor Number
2 PIN of Calling Process (Not yet available)

CURSOR RELEASE

0 Code 21

1 Cursor Number

2 PIN of Calling Process (Not yet available)
FILE OPEN

0 Code 22

1 Cursor Number

2 File Number

37 File Name

8-12 Group Name

13-17 Account Name

18-26 Set Name (If IMAGE)
FILE CLOSE

0) Code 23

1 Cursor Number

File Number

D-5

D-6

APPENDIX E

USER DEFINED FUNCTIONS

The user may define his own functions by writing a procedure called RDBFUNCTIONS and
placing it in either the group, account, or system SL. This procedure will contain the
definitions of any user defined functions.

The RDBFUNCTIONS procedure is never called directly by the user; it is referenced
automatically by RELATE when an unidentified function is encountered. The user should
use the new functions in the same manner that standard RELATE functions are used.

A RDBFUNCTIONS procedure may occur in all three SL's. To locate a function, RELATE
first looks at the group SL then the account SL., followed by the system SL. If none of
the procedures recognize the function, an error results.

The definition of the RDBFUNCTIONS procedure is as follows:

ROBFUNCTIONS(NAME NAME'LEN MODE,PARMS);
1A v v A

Where:
NAME Is the name of the function.

NAME'LEN Is the length of the function name in bytes.

MODE Process mode:
0 = Validate NAME, set function number
1 = Assign data types to parameters and result
2 = Evaluate function
3 = Reset function
PARMS Data passed to and from function {depends on MODE).

OFFSET

0')0’!&-0*)!\)—10

8*

9‘
10*
N+O*
N+1*
N+2*
N+3
N+4

PARMS ARRAY CONTENTS
(words marked with * are automaticaliy filled by RELATE.)

Function number.

Maximum number of parameters allowed in function.
Minimum number of parameters allowed in function.
Actua! number of parameters found in function call.
Number of words reauired for inter-record communication.

Word address of inter-record communication space.

Data format of result of function:

BITS:

0-3 Data type (see Data Type Codes in HLI)

4-7 Number of decimal places

8-15 Print length including decimals
Data size of result of function:

BITS:

0-7 Word length of data

8-15 Reserved for RELATE
Word address of data result of function.
Number of words per parameter entry (currently 5).
Starting offset in parm table of parameter entries (currently N=11)
Word address of parameter data.
Actual format of parameter {same format as word 7).
Actual size of parameter (same format as word 8).
Desired format of parameter (same format as word 7).
Desired size of parameter (same format as word 8).

E-2

MODES
MODE 0 (Validate name):

Uses: NAME
NAME'LEN

User Sets: Function number {between 1 and 32767).
Maximium number of parameters allowed.
Minimum number of parameters allowed.

Error: If the function is not found then the function number (first word of
PARMS) should be set to zero. :

MODE 1 (Assign data types):

Uses: Function number.
Actual number of parameters found in function.
Number of words per parameter entry.
Starting offset in parameter table of parameter entries.
For each parameter:
Actual data format
Actual data size

User Sets: Number of words required for inter-record call space if needed.
Data format of result.
Data size of result.
For each parameter:
Desired data format
Desired data size

MODE 2 (Evaluate function):

Uses: Function number.
Actual number of parameters found in function.
Number of words per parameter entry.

Starting offset in parameter table of parameter entries.
Word address of inter-record space if used.
Data format of result.
Data size of resuit.
Word address of data result.
For each parameter:
Word address of parameter data
Desired data format
Desired data size

User Sets: Evaluate function and place result in data result area.

MODE 3 {Reset function):

Uses: Function number.
Actual number of parameters found in function.
Number of words per parameter entry.
Starting offset in parameter table of parameter entries.
Word address of inter-record space if used.
For each parameter:
Desired data format
Desired data size

User Sets: Initialize inter-record space if used.

E4

—

EXAMPLES:

PROCEDURE RDBFUNCTIONS(NAME,NAME'LEN,MODE,PARMS)
VALUE NAME'LEN,MODE;

INTEGER ARRAY NAME,PARMS;

INTEGER NAME'LEN,MODE;

BEGIN
BYTE POINTER RESULT'STR,PARM’STR;
BYTE ARRAY BNAME (»)=NAME ;
INTEGER I.LEN,N;
INTEGER POINTER IR'SPACE;
LONG POINTER RESULT'LONG,PARM'LONG" IR’ LONG;

EQUATE MAX' ' MOV’ 'AVG=180;

CASE MODE OF BEGIN

BEGIN
PARMS (@) : =0 ; <<
IF BNAME="$REVERSE" THEN BEGIN <<rev
PARMS(0) =1,
PARMS (1) . =1; <
PARMS(2) . =1, <
END ;
I1F BNAME="$MAVG" THEN BEGIN <<tak
PARMS (@) : =3,
PARMS (1) :=2;
PARMS(2):=1;
END;
END ;
BEGIN <

<<NOTE: PARMS(t1@)=oft
CASE PARMS(@®)-1 OF BEGIN

BEGIN
PARMS (6):=PARMS(PARMS(1@)+1); <<resu}
PARMS (7) =PARMS(PARMS(10)+2); <<r
PARMS (PARMS(10)+3):=
PARMS(PARMS(10)+1) . <<desired parm
PARMS (PARMS(10@)+4):=
FARMS (PARMS(10)+2); <<desi
END ;
\ <<fu
BEEGIN
PARMS (68):=PARMS(PARMS(18)+1) <<resul
PARMS(6).(@0:4):=6;
PARMS (7). (e:8):=4; <

PARMS (4) :=MAX MOV 'AVG*4+1;
PARMS (PARMS (10)+3) :=
PARMS(PARMS (1@)+1). <<desi
PARMS (PARMS (10)+3).(0:4) =6 <<de
IF PARMS(3)=2 THEN BEGIN
PARMS (PARMS (1@)+8) :=%30006 ; <<
PARMS (PARMS(1@)+9) =1,
END

E-5

’

<<mod
null fun
erse o p
<<funct
<max # o
<min # o

e the mo
<<funct
<<ma
<<mi

<mode 1=
set to 1

<<funct
t formaot
esult si

format=a
red parm

nction 2
<< fun
t format
<<resu
<result
<<inter

red parm

sired po
<<2

integer,

e O9=VALIDATE>>
ction number>>
assed string>>
ion number 1>>
f parameters>>
f porometers>>

ving average>>
ion number 3>>
x # of parms>>
n #§ of parms>>

ASSIGN TYPES>>
st parameter>>

on 1=REVERSE>>
=parm formot>>
ze=paorm size>>

ctual format>>

size=agctual>>

=NOT DEFINED>>
ction 3=MAVG>>
=parm format>>
it type=long>>
size=4 words>>
-record aoreg>>

form=actual>>
rm type=long>>
parms passed>>
rength of 6>>
<<one word>>

END ;
END ;
END,;

BEGIN
: CASE PARMS(@)-1

BEGIN
GRESULT 'STR:=W'TO'B(PARMS (8))

OF BEGIN

ﬁPARM‘STR:=W’TO’B(PARMS(PARMS(10)+O));

LEN:=PARMS(6).(8:8);
WHILE
FOR 1

:=0 STEP 1 UNTIL LEN DO

LEN>® AND PARM'STR(LEN-1)="

<<mode 2=EVALUATE>>
1=REVERSE>>
byte address>>
byte oddress>>
<<result print (en>>

“ DO LEN:=LEN-1;

<<function
<<results
<<parm

RESULT'STR(1):=PARM'STR{LEN-1-1);

FOR 1:=LEN STEP 1 UNTIL PARMS(6).
RESULT'STR{1):="
END;

BEGIN

I1F PARMS(3)=2 THEN BEGIMN
OIR’'SPACE:=PARMS (PARMS(10)+5);
N:=IR'"SPACE ;

END
ELSE N:=5;
GRESULT ' LONG:=PARMS(8);
- BPARM' LONG:=PARMS (PARMS(10));
@IR'SPACE:=PARMS(5);
MOVE
(- ((MAX'MOV ' AVG-1)+4));

OIR'LONG:=0IR'SPACE(1);

IR"LONG(@) . =PARM’ LONG ;

1F IR"SPACE(Q)<N THEN

RESULT " LONG:=0L0;

FOR 1:=0 STEP 1 UNTIL

<<number

IR*SPACE(MAX MOV’ 'AVG»*4):=1R"

IR"SPACE(®@)-1

(8:8)-1 DO

<<function
<<function
<<if 2 parms

2=NOT DEFL%ED>>
I=MAVG>>
passed>>
of records to incil in avg>>
<<default is 5
<<agddress of
<<1st
<<inter-record gddress>
SPACE(MAX 'MOV'AVG+4-4),

records>>
resul t>>
parm cddress>>

IR"SPACE(@):=IR'SPACE(@)+1;

DO

RESULT LONG:=RESULT ' LONG+IR’LONG(1);

IF TR’SPACE(®)>8 THEN

RESULT LONG:=RESULT LONG/LONG(DOUBLE(IR'SPACE(®)));

END;
END ;
END ;

BEGIN
CASE PARMS(@)-1 OF BEGIN

BEGIN
©IR'SPACE:=PARMS(5) ;
IR'SPACE(Q) :=90;

END ;:

END ;

END ;
END;
END ;

E-6

<<mode 3=RESET>>
<<1=REVERSE>>
<<2=NOT DEFINED>>
<<3=MAVG>>

APPENDIX F

RELATE/3000 SERVER PROCESS OPERATION

RELATE/3000 uses a server process to coordinate access to resources which must be shared by
many processes on the system. At present, this is primarily the extra data segments used for
buffers on RELATE files. The server process is reponsible for creating, assigning and releasing
the data segments at the request of ‘a user's RELATE process. The server process must
therefore be running whenever RELATE files must be accessed.

The server process communicates with user processes through message files. These files are
created by the server process in the SERVER.CRi group.

The RDBWRSRV file is used to pass file open and close messages to the server. When the
server receives a file open message it searches its tables to determine if the file is currently
open by any RELATE process. If the file is not open, an extra data segment is created and
assigned to the file. The newly created or previously assigned extra data segment number is
returned to the user's process in the RDBRDSRV file.

The server maintains a list of the open files, the PINS which have a particular file open and
the identifier assigned to each PIN's access to the RDBWRSRV file. When a file close message
is received by the server the access count on the file is decremented and the PIN number is
rernoved from the list. |f the access count goes to zero the extra data segment is released and
the file name is removed from the server's table. |f a user process aborts, all files associated
" with the process are closed and their extra data segments may be released.

INDEX

A
abbreviation of commands, (see
command)
abbreviation of keywords, (see
k eywords)
ABORT TRANSACTION, 2-3/24 52
syntax, A-1

1-16
(see open)

ABS function,
accessing a file
ACCOUNT
system field, 1-25
account-level security, (see security)
ACOS function, 1-18
ADD, 2-5/2-8
restrictions on, 4-13
syntax, A-1
ADD access
deny, 2-61
permit. 2-131
ADD FIELD. 2-9/2-10
adding
field to a file, 2-9
from HL!, 35, 3-28
to a view, 66
aggregate. 2-163/2-164
definition, 14
in FOR or WHERE clause.
syntax, 2-164
type of 2-164
ALLOW. 2-11/2-12 7-2
syntax. A-1
turning off 2-67
alphabetic
definition, 1-4
description. 2-49
alphabetic fields (see also character
string)
ampersand
in a job. 1 30
in a proceaure file. 2-81
In message catalog. 2-34
meaning of 1-3
AND. 1-11, (see logical operators)
APPEND function. 1-14
arithmetic functions, 1-16
arithmetic operators, (see operator)
ASCIH function, 1-13
ASIN function, 1-18
assignment. 1-12
definition,

1-9

1-4

evaluation of, (see expression evaluation)

making several, 2-103
asterisk

in matchstring, 1-22, 1-23
ATAN function, 1-18
atsign

in matchstring, 1-22, 1-24
attribute, (see field)
average 2-185 (see AVG)
AVG aggregate, 2-163

example, 2-168, 2-169
AVGU aggregate, 2-163

B

backslash

meaning of, 1-3
backspace, 1-3
BASIC, (see HLI)

data types, 3-46, (see data types)
example from HLI, 355/3-57

format of calls from, 3-2
HL! calls, 3-26/3-41

interface calls. (see BDB calis, HLI)

interface description, 3-26

string variables, 3-26
BDBADD call, 3-28
BDBBIND call. 3-29
BDBCLOSE cail, 3-30
BOBDELETE call 332
BOBERROR call, 3-33
BDBINFO call. 334

data types returned. 345

print format returned, 343
BDBINIT call, 3-35
BDBPACK call, 3-36
BDBPOINT call, 3-37
BDBREAD call, 3-38
BDOBREPOINT call, 3-39
BDBUNPACK call, 340
BDBUPDATE call, 341

BEGIN TRANSACTION, 2-13/2-15. 52, 54

syntax. A-2
bianking out a fieid, 2-18
blanks. {see aiso spaces)

removal of. 1-14

trailing. 2-6
bound variables

binding, 3-6. 3-29

display 2-179

obtaining info from HLI. 3-14

braces, 2-81

BRELATE call; 3-27 numbers, B-1
on multiple lines, 1-3

C on several lines, 1-1, 1-3
resume execution, 1-3
cancel suspend execution, 1-3
enabling for listings, 2-187 switches on, (see switch)
cance! output, 1-3 syntax, -2
CASE function, 1-16 syntax definition, 1-1
catalog of RELATE messages, 2-33 : terminate execution, 1-3
CHANGE, 2-17/2-19 commas in fields. 2-51
restrictions on, 4-13 comment, (see NOTE., PAUSE)
syntax, A-2 ' allow in procedure file, 2-187"
CHANGE access COMMIT TRANSACTION, 2-25/2-26. 52, 54
deny. 2-61 syntax, A-2
permit, 2—131 COMPARE, 2-27/2-31
changing syntax, A-3
using duphcates (see UPDATE) COMPILE CATALOG, 2-33/2-35
changing a view, ‘66, 68 syntax, A-3
changing values from HLI 325, 341 - compressing data, 2-115
character CONCAT function 1-14
separator for ADD, 2-5 condition
character string definition, 14
functions, 1-14 evaluation of. (see expiession evaluation)
pattern matching, (see pattern conditional commands, (see IF)
matching) conditiona! execution, (see ELSE, ENDIF, IF
CLOSE file. database. or path, command)
2-21/2-22 CONSOLIDATE, 2-37/2-39
syntax, A-2 pattern rmatching, 1-22
CLOSE RDBLIST, 2-23/2-23 syntax, A-3
syntax, A-2 © constants
closing cursor, 3-7 in expressions. 1-S
COBOL. (see HL!) type of 1-9 '
data types. 346, (see data ‘ continuation character, (see ampersand)
types) : Control-H, 1-3
example from HLi, 3-59/3-62 : Control-Q., 1-3
format of calls from, 3-2 Control-S, 1 3
interface calls, (see HLI, RDB Control-X, 1-3
calls) ’ Control-Y, 1-3
column, (see fieid) disabling, 2-187
commandg : ' conversion
abbreviation, 1-1 ' to 4.5 (see Appendix G, FIX FILE)
conditional execution, (see type errors from HLI, 347
ELSE. ENDIF, IF command) conversion function, 1-13
definition, 1-4 conversion of types, (see type conversnon)
delete a line, 1-3 in expressions. 1-10
editing. 2-155 g COPY, 26, 2-41/2-42
HELP, 2-89 syntax, A4
issuing from HLI, 34, 3-27 copying
length, 1-1 using duplicates, (see UPDATE)
length in HLI, 34 COS function, 1-18 -
list all, 2-105 COUNT aggregate 2-163
maximum size in file 2-81 example, 2-168, 2-169, 2—171 2-172
MPE, 2-1 o COUNTU aggregate, 2-16.
mulitiple on line, 1-3 example, 2-169
notation, 1-1 - CPU time

display, 2-187
CRASHPROOF, 2-115, (see MODIFY
FILE)
CREATE DICTIONARY, 2—43/2—43
A4

CREATE FILE, 2-45/2-53 .
pattern matching, 1-22
syntax, A4
CREATE INDEX, 2-55/2-56
syntax, A-5 ,
CREATE VIEW, 2-57/2-58, 6-2°
syntax, A-5
CRT. (see terminal)
cursor 5
closing. 37, 38
closing from BASIC, 3-30
command number returned, B-1
contents, 3-49
format, 349
in extra data segment, 3-21
initializing, 3-20, 3-21, 3-35
obtaining info from, 3-11/3-19,
~o 334

D

data
choosing a subset, (see range)
clustering, (see MODIFY FILE)
compression, (see MODIFY FILE)
definition, 14
logging. (see transaction)
. modification of, (see CHANGE,
UPDATE)
print from file, 2-135
recovering deleted. 2-151
recovery, (see transaction)
removing deleted, 2-157
removing redundant, 1-27
selection, {see SELECT)
- sorting, (see SELECT. SORT,
“indexes)
types, (see types)
types allowed in expressions, 1-9
compression, 2-115
dictionary
creation of, 2-43 :
entry levels, 2-5 2-51
show, 2-179
segment
assigning and releasmg -1
~. .closing extra, 3-8 T
obtaining extra. 3—21 BN
database :
closing, 2-21

data
data
data

data

" dollar sign

obtaining info from HL!, 3-16
opening, 2-121
date
format for fields, 2-50
functions, 1-19
system field, 1-25 -
todays, 1-25
valid types, 1-19
DAY function, 1-19
DAY_DIFF function, 1-19
DAY_WEEK function, 1-19
DBA :
definition, 14 :
DEB function, 1-14 L
decimal places
number of, 2-9, 2—-48

default
not printing in prompt 2 17
degrees oo
functions returmng 1-18
DELETE, 2-59/2-60 .
physical or logical, 2-59, 2-115

restrictions on, 4-14

syntax, A5
delete a command line, 1-3
DELETE access

deny, 2-61

permit, 2-131 .
deleting a file. {see PURGE)
deleting all records, (see ERASE)
deleting an index. (see PURGE)
deleting from a view. 6-7 ¢
delimiters

definition, 1—2
demonstration -mode. 2-187, 2-190
DENY, 2-61/2-61, 7-2, 7-5

syntax, A-5 :
detail set, (see IMAGE)
device, (see terminal)

dictionary, (see data dlctlonary)

DISABLE, 7-2

DISABLE DATA LOGGING 2-63
syntax, A6 i

DISABLE EVENT LOGGING, 2-65
syntax, A6 '

DISABLE SECURITY, 2-87/2-67
syntax, A-6

DISALLOW, 2-69/2-70, 7-2
syntax, A-6

in matchstring, 1-22, 1-23

on fields, 2-51 .
domain of file, 246, 2-123
dots

meaning. 1-1

DOUBLE function, 1-13
double integer
definition, 14
description, 2-49
double slashes, 1-3
DOWNS function, 1-14

E

EBCDIC to ASCll; 2-85
editing command line, (see REDO)
EDITOR, 21 '
ellipsis
meaning, 1-1
ELSE, 2-93
ENABLE DATA LOGGING, 2-71, 55
syntax, A-6
ENABLE EVENT LOGGING, 2-73, 55
syntax, A-6
ENABLE SECURITY, 2-75/2-75, 7-2
syntax, A-~7
END, 2-77
syntax, A-7
ENDIF, 2-G3
ERASE FILE. 2-79/2-79
syntax, A-7
erasing a file, (see file)
ERROR
determining ignored message.
2-95
evaluating from HLI 3-10. 3-33
fatal, C-1
from procedure files, 281
HELP, 2-8¢
ignoring. 2-95
in a job, 1-30
location in cursor. 3-49
system defined field, 1-25, 2-95
type conversion from HLI, 347
error message catalog, 2-33
error number
getting its message, ii
evaluating expressions, (see
expression)
event logging. {see transaction)
EXECUTE 2-81/2-82
syntax. A-7
executing RELATE in a job, 1-30
execution of command
terminate, 1-3
EXIT, 2-77 '
exiting system, 1-3
EXP function, 1-16
exponent

notation, 1-11

expression

definition, 14
evaluation of, 1-9/1-12
hierarchy of evaluation, 1-12

F

FACT function, 1-16

field

field

field
field

adding to a file, (see ADD FIELD)
blanking out, 2-18 »
changing several, (see LET]
changing value, (see CHANGE)
decimal places on, 248
default ADD value, 25
definition, 14

formats, 2-50/2-51

formats from HLI, 3-43

in expression. 1-10 '
maximum In a file, 29, 2--48
maximum size, 2-49
modifying format, 2-111
obtaining info from HLI, 313
print size, 2-9, 2-48

print size timitations, 2-49
system defined, 1-25

type assigning, 2-51

type changing, 2-111

valid types, 2-9, 2-48

number

internal, 2-51, 2-111

options, {see field formats)
size

assigning, 2-51

changing, 2-111

field-level security, (see security)
fieldlist

definition, 14

fieldname

file

adding, 2-9

allowable characters in,
assigning, 2-51

changing, 2-111
definition, 14
description, 2-9, 2-48

in IMAGE dataset, 2-123
preventing truncation, 2-135
restrictions, 2-9, 2-48

1-4

adding data to, 2-5

adding field to. (see ADD FIELD)
ADDing restrictions., 4-13-
CHANGE restrictions. 4-13 -
changing data from HLI, 3-25, 341
changing data in, 2-17

changing size, 2-6, (see
REORGANIZE)

closing, 2-21

combining multiple, (see

- SELECT)

comparing two, 2-27

contents of, (see data)

converting to 4.5, (see Appendix
G, FIX FILE)

copying, 2-41

~ greation, 245, 4-13

definition, 14
DELETE restrictions, 4-14

~.domain after creation, 2-46

domain after open, 2-123

domain before opening, 2-123

erasing, 2-79, 2-123 '

execut.ng commands from, 2-81

filling. during ADD, 2-6

fixing format, 2-85

from tape, (see tape file)

1/0 used by RELATE 8-1

IMAGE, (see IMAGE dataset)

in.a view, 6-2

increasing size. 2-6, (see
REORGANIZE)

indexes on, {see index)

join, (see SELECT)

joined in a view, &5

KSAM, (see KSAM file)

list text contents, 2-107

locking, 2-109

making -current, (see SET PATH)

maximum fields in, 2-48

modifying options, 2-115.

MPE. (see MPE file)

narmalization of, (see
normalization)

number of records 245, 2-157

obtaining info from HLI 3-17

opening, 2-123

opening additional. 321

prepare for relational use. {see
normalization)

print contents, 2-135

printing using formats, 2-97

privileged, 246, 76 -

procedure, (see procedure file)

purging. 2-139 . ;

recovering deleted data, 2-151

RELATE, (see RELATE file)

~_removing .deleted data, 2-157

o

securrty. 7-1) ‘
show. all-open files, 2-179
show information about, 2-179

&

show print formats, 2-179
show structure of,.2-180
size altering, 2-6, (see REORGANIZE)
sorting, (see SELECT, SQORT)
summarize, 2-37 N
system description, 4-1/4-14
system restrictions, 4-13
unlocking, 2-193
file-level security, (see security)
filename
characters allowed in, 14
definition, 14
restrictions, 245
filename in TO clause, (see TO filename)
FIX FILE, 2-83/2-83 ,
FIX FORMAT, 2-85/2-87
_syntax, A-7
FOR condition
contents- allowed, 19
syntax., 1-2 A
formal file designators, (see RDB files)
format file description, 2-98 .
formats for fields, 2-50/2-51, 2-111
returned from HLI, 343.
formatting oid file to new, 2-85
formatting output, (see LABEL)
FORMAT_TIME function, 1—19,,
FORTRAN, (see HLI) ,
data types 346, (see data types)
example from HLI, 3-63/3-66
format of calls from. 3-2
- interface calls, (see HLi. RDB callis)
functions
arithmetic, 1-16
character string. 1-14
date manipulation, 1-19
inter-record, 1-21
pattern maiching, 1-23
summary, {(see aggregates)
trigonometric, 1-18
type conversion, 1-13
user—defined, D-1/D-6

G

global switches
definition, 14
group .
security, [(see.security)
system field. 1-25

H

HEAD function, 1-14

HELP 2-89/2-9%

information obtained for, 8-1
syntax, A-8
hierarchy of operators, 1-12
HL!, 3-1/3-71, (see COBOL,
FORTRAN, SPL, also BASIC)
adding records from, 35
adding records from BASIC,
3-28
BASIC RELATE, 3-27
binding from BASIC., 3-29
binding variables. 36
buffer packing, 3-36
buffer unpacking, 3-40
changing values from, 3-25, 3-41
closing cursor from, 37, 3-30
closing files from, 2-21
creating file from, 2-45, 2-46
cursor format, 3-49
data types returned, 345
deleting records from, 3-9, 3-32
effect of EXIT, 2-77
evaluating errors, 3-10, 3-33
examples, 3-53/3-71
initializing cursor, 3-20, 3-35
locating a record, 3-22, 3-24,
3-37, 3-39
moving from buffer, 3-40
obtaining info from cursor,
3-11/3-19, 3-34
opening file from, 2-124
packing into buffer, 3-36.
passing command from, 34
print formats returned, 3-43
reading record from, 3-23, 3-38
RELATE, 34 '
starting up. 8-2
type conversion errors, 347
Host Language Interface, (see HLI)

IF, 2-93/2-94
syntax, A-8
IF function. 1-16 A
IGNORE ERROR, 2-95/2-95
syntax, A-8
IMAGE '
data types, 346
names of fields, 2-123
IMAGE datasets
accessing, 4-3/4-5
closing, 2-21
creating, 4-3
detall sets. 4-3
erasing, 2-79

generating a consolidation, 2-38
fisting available, 2-121, 2-180
master sets, 4-3
opening, 2-121, 4-3
purging, 2-139
restrictions on, 4-13, 4-14
search item, 4-3
security, 4-5
index, (see key)
ascending, 2-55
by line number, 1-26, 2-173
clustering by, (see MODIFY FILE)
creation, 2-55/2-56 ’
current, 2-173
definition, 1-5
descending, 2-55. 2-173
details, 1-26
effect on ADD, 26
effect on CHANGE, 2-18
maximum fields in, 2-55
maximum number of, 2-55
maximum words in, 2-55
number aliowed, 1~26 .
obtaining info from HLI, 3-12
purging, 2-141
rewrite structure, 2-157 -
setting, 2-173 e
show for current file, 2-179 *
unary creation, 2-55
index number
definition, 1-5
information, (see data)
input file, {see RDBIN)
integer
definition. 1-5
description, 2-49
INTEGER function, 1-13
inter-record functions, 1-21
interface
programming languages, (see HLI)
internal field number
assigning, 2-51
changing, 2-111
internals of RELATE/8-1

J
JCW, 1-30
job execution, 1-30
join
example, 2-166
JULIAN function, 1-19
K

clustering records by, 2-115
definition, 1-5
keywords
abbreviation, 1-1
definition, 1-5
notation, 1-1
KSAM files
accessing, 4-7/4-9
creating, 2-45, 4-8
opening, 2-123, 4-8

putting on word boundaries, 2-85

re§trictions on, 4-13, 4-14
~ security, 4-9
- vs RELATE files, 4-7

L

LABEL, 2-97/2-101
syntax, A-8

language
changing, 2-187

creating messages in, 2-33, 2-34

LAST function, 1-21
LAST_DAY function, 1-19
leading zeroes, 2-6

length

of a field, (see field print size)

LENGTH function, 1-14
length of command. (see command)
LET. 2-103/2-104
syntax A-S ‘
levels for data entry, 2-5, 2-51
show, 2-179
line number
after REORGANIZE, 2-157
definition, 1-5
index by, 1-26, 2-173 ‘
lines in a command, (see command)
LIST COMMANDS, 2-105/2-105
syntax, A-9
LIST FILE. 2-107/2-107
CUsyntax, A-9
fisting file contents
PRINT, (see)
tocal switches ‘
definition, 1-5
LOCK, 2-109/2-110, &2

syntax. A-9
LOG function, 1-16
logging

disable for events 2-65
disabling for data, 2-63
enabling for data. 2-71
enabliing for events, 2-73

of changes, (see transaction)

of data, (see transaction)

of events, (see transaction)
logging on, ii ~
fogical N

definition, -5 .
logical deletion, 2-69, 2-115
logical operators, (see operator)

example, 2-170 o
LONG function, 1-13°
iong number ,

definition, -5 .

description, 2-49 ,
LOWERCASE function, 1-14-

master set, (see IMAGE)
MATCH function, 1-23
matching records '
finding, 2-27
MAX aggregate, 2-163
example, 2-170.
MAXIMUM function, 1-16
MEDIAN aggregate, 2-163
example, 2-170 '
message catalog, 2-33/2-35, 8-1
messages -
changing language for, 2-187
to user. 2-119, 2-128
MIN aggregate 2-163 i
example., 2-170. 2-171
MINIMUM function, 1-16
MOD function 1-16 o
MODIFY FIELD, 2-111/2-113
syntax, A-9

MODIFY FILE, 2-59, 2-115/2-117. 2-151

after creation, 2-47

modifying data, (see CHANGE, UPDATE)

MONTH function, 1-19
MPE commands

from RELATE, 2-1
files

accessing, 4-11/4-12
creating. 245 4-11
deleting from, 2-59
opening, 2-123, 4-11 o
putting on word boundaries, 2-85
restrictions on. 4-14
security, 4-12

MPE security, 7-1. 7-2/7-5
multi—user updates, 3-24

multiple commands on one line, 1-3

MPE

N

W

name of path, (see path name)
name of wew {see view name)

NEW_DATE function, 1-19

normalization, 1-27/1-28

NOT. 1-11

notation, 1-1

NOTE, 2-119/2-119
syntax, A-10

number of an index, (see index
number) ’

number on a line, (see line number)
numeric types, (see type)

O -

OPEN -
syntax, A-10

OPEN DATABASE, 2-121/2-122

OPEN FILE, 2-123/2-125
pattern matching, 1-22

OPEN RDBLIST, 2-127/2-127
syntax, A-10

opening a view, 64

operators, 1-11/1-12
hierarchy of, 1-12

OR, 1-11 '

output
formatting.
resume, 1-3
spooling, (see RDBLIST)
suspend, 1-3

_ terminate, 1-3 A
output file, (see RDBLIST, RDBOUT)

{see LABEL)

P

PACKED function,
packed number
definition, 1-5
description, 2~49
PASCAL -
data types, (see data types)
path
closing, 2-21
current, (see CREATE FILE,
OPEN FILE)
obtaining info from HLI,
setting, 2-177
show all open paths, 2-179
name
for creating file, 2-46
length, 2-124
putting on file, 246
setting, 2-124
pattern matching, 1-22/1-24

1-13

a9

path

PAUSE. 2-129/2-129

syntax, A-11
percent sign

in matchstring,
PERMIT, 2-131/2-133.

syntax, A-11

turning off, 2-67
physical deletion, 2-58, 2-115, 2—151
Pi function. 1-16
PORT system field,
pound signs, 2-136
primary key clustering, ?~115
PRINT, 2-135/2-138

pattern matching, 1--22

syntax, A-11 N
print format, (see field format) -
printer, (see RDBLIST}
printien, (see field print s:ze)

definition, 1-5
printout

output, (see) '

spooling, (see RDBLIST)
privileged file, 2-46
privileged files, 76
procedure file

adding data from,

cancelling, 2-81 T

changing data from, 2-17 -7~

comments 1n, 2-187

creating, 2-81

creating file from. 245

creating view from, 2-57

executing 2-81 '

pausing during, 2-129

terminate execution, 1-3
program ‘

1-22, 1-23
7-2, 7-5

1-25

2-5

1

requirements for HLI,
programming languages

accessing from, (see HL1)
prompt '

changing, 2-17
punctuation in a command, 1-2
PURGE FILE, 2-139/2-139 o

syntax, A-12 E
PURGE INDEX K 2-141/2-142

syntax, A-12
PURGE VIEW, 2-143/2-143

syntax, A-12 ’

Q

aquestion mark t-

in- matchstring, 1-22.

1-23 -
QUIZ, 2-145/2-150 s

radians
functions returning, 1-18
range, 1-7/1-8

after a SELECT, 1-7, 2-161

definition, 1-5
syntax, 1-2
RDBADD call, 3-5
RDBBIND call, 3-6
RDBCAT, 2-35
RDBCLOSE call, 3-7
RDBCLOSEX, 3-8
RDBDD:. (see data dictionary)
security, 7-5
view placed in, 2-57
view removed from, 2-143
RDBDELETE call, 3-9
RDBECAT, 2-35, 8-1
RDBERROR call, 3-10
RDBFUNCTIONS. D-1
RDBHELP, 8-1
RDBIN, 2-81
definition, 8-1
RDBINFO call, 3-11/3-19
data types returned, 3-45
print format returned, 3-43
RDBINIT call. 3-20 ;
RDBINITX call, 3-21
RDBLIST
ciosing, 2-23
definition, 8-1
end spooling, 2-23
opening, 2-127.
spooling to, 2-127
RDBOUT
definition, 8-1 oo
RDBPOINT call, 3-22 3-24
RDBRDSRV, D-1 .
RDBREAD cail, 3—23
RDBTPLOG.. 5—2 .
RDBUPDATE call, 3-25
RDBWRSRV. D-1
READ. access.
deny, 2-61
permit, 2-131
reading a- record, 3-23
reading a view, 64
REAL function, 1-13
real number
definition, 1-5
description, 2-49
record updates
multi-user. 3-24

record-tevel security. (see, security)

records

change maximum, 2-157
choosing a subset. (see range)
Clustering by a key, 2-115
counting, (see COUNT). =
definition, 1-6
deleting, 2-59
deleting all, 2-79, 2-123
deleting from HLI, 3-9, 3-32
deletion method, 2-115
finding matching, 2-27
maximum size, 2-48
number in_a file, 2—45 —
reading from HLI, 3-23.. &-38
recovering deleted, 2-151
removing deleted, 2-157
show structure of, 2-179
sorting, (see SELECT, SORT)
RECOVER, 2-151/2-152 :
Syntax, A-12 :
RECOVER DATA 2-153, 5-6. 5—7
syntax, A-12.

recovery, (see crashproof transactlon recovery)

REDO, 2-155/2-156
redundant data elimination, 1-27
reformatting file, 2-85
RELATE
data types, 346
RELATE cali, 34
RELATE files .
vs KSAM files, 4-7
relation, (see file)
definition, 1-6 ,
restriction on, 2-166.
RECRGANIZE FILE, 2-6, 2—9 2—157/2—160

syntax, A-13

repot writer, (see QUIZ, RELATEs CREATE
manuat)

responses

multiple on one lme 1—3
restriction on relation .
example, 2-166
resume suspended output, 1-3
retention. of file, (see. domain).
ROMAN function, 1-14
ROUND function. 1-16
RPG .
data types 346
RTOTAL function,.1-21 .
RUN. 2-1

save transaction, 2—25
search item, (see !MAGE)
security, 7-1/7-6

account Ie\/el, 7-3 data types, 3-46, (see data types)

adding fields under, 2-9 - example from HLI, 3-67/371
ALLOW users and groups, 2-11 format of calls from, 3-2
DENY user and file access, 2-61 interface calls, (see HL!, RDB calls)
DISABLE group security, 2-67 spooling output, (see RDBLIST)
DISALLOW users and groups, SQRT function, 1-17
2-69 square brackets
ENABLE group security, 2-75 in command, 1-1
field level, 7-5 in matchstring, 1-22
file level, 7-3 standard deviation, (see STD_DEV)
group level, 7-3 starting up, i '
needing dictionary, 2-43 STD_DEV aggregate, 2-163
on IMAGE datasets, 4-5 string, (see character string)
on KSAM files, 4-9 SUBSTR function, 1-14
on MPE fites. 4-12 SUM, 2-185/2-186
on views, 64 pattern matching, 1-22
operation level, 7-5 syntax, A-14
outside of RELATE, (see MPE SUM aggregate, 2-163
security, privileged files) example, 2-169, 2-172
PERMIT file and user access, summarize a file, 2-37
2-131 SUMU aggregate, 2-163
provided by MPE, 7-1, 7-2/7-5 suspend output, 1-3
RDBDD., 75 ; switch.
record level, 7-5 ;oo definition, 1-8
segment global, {see global swntc‘nes)
closing extra, 3-8 local, (see local switches)
obtaining extra, 3-21 o location on command, 1-6
SELECT, 2-161/2-172 usage, 16 -
in a view, 6-2 : syntax definition, 1-1
sorting, 2-161 SYSTEM, 2-187/2-188
syntax, A-13 syntax, A-14
semi-outer-join, 2-172 system—defined fields, 1-25
separator character for ADD, 25
server process, D-1 T
SET INDEX 2-173/2-175
syntax. A-13 table, (see file}
SET PATH. 2-177/2-177 , TAIL function, 1-14
syntax., A-13 TAN function, 118
SHOW, 2-179,2-181 tape files
syntax, A-13 .putting on word boundarnes 2-85
SIGN function 1-17 target list, 2-161
sign type for field, 2-50 TERMINAL, 2-189/2-192
SIN function, 1-18 carriage control, 2-189
size of command, (see command) clear, 2-189 e
slashes lines on, 2-190
double, 1-3, (see EXIT) syntax, A-14
SORT. 2-183/2-184 types, 2-190
syntax. A-14 width. 2-190
sorting. (see SELECT, SORT, indexes) terminate output, 1-3
spaces terminating RELATE, 2-77
trailing, 2-6 ‘ text, (see character string)
spacing in a command, 1-2 text file
special characters, 1-3 list contents, 2-107
specifying fieldnames, 2-9. 2-48 time
SPL. {see HLI) current, 1-25

display used, 2-187
~fanctions, 1-19
"-print connect in RELATE, 2-77
system field, 1-25 '
TO filename- -
description;
total, (see SUM)
trailing spaces. 2-6
transaction
ABORT, 2-3
< BEGIN, 2-13
closing file durmg 2-21
COMMIT, 2-25
creating.file during, 2—47
erasing file 'during, 2-79.°
fimitations, 56 ¢ K
locking fites for, 2-109
iocking restrictions, 54 .
log file, 52
logging: 54, (see logging)
logging enabling for MPE, 55
logging enabling for RELATE,
5_5 . A

1-29

iogging implementation, 54
obtaining info from HL! -3-15
‘posting, 53
progessing, 5-1/5-9
purging file during, 2-139
recovery, 2-153, 56/59
unlockting files from, 2-193 -
trigonometric functions. 1-18
tuple, (see record)
type conversion, 1-13

errors from HL!, 347
functioris, 1-13
in expressions 1-10

to RELATE types- 3-46.
type of constant {(see constant)
types, (see data types)

allowed in expressions. 1-9

.- available. for-fields. 2-9, 2—48

definition. 1-6
descriptions,- 2-49
in other software, 346

returned from HLI, 345
U..
unary index. {see al!so index)
definition, 1—6
unary key

effect on ADD, 26 -
effect on CHANGE. 2-18
unary minus, 1-11
unary plus, 1-11

UNLOCK, 2-193/2-193, 5-2

syntax, A-15"
unsigned
definition, 1-6

d&scription, 248"

UNSIGNED function, 1-13
UPDATE, 2-195/2-197, (see change)
syntax, A 15 -
updates o
multi-user, 3—24
updating a view, 6-6, 6—8
upgrade

to 4.5, (see convers:on)
uppercase - format for flefds 2—51
UPS function, 1- 14 '
user

security,

system field,

(see~security)

FO .-
2

values
system—defined,
variables
bound,
in expression,
view, 60/6-10
adding to, 66
creation, 2-57/2-58
defining, 62
definition, 6-1
deleting from, 67
erasing, 2-79
¢ for security. 2-57
function not aHowed in.
illegal operations. 6-4
joining two filés, 65 -
name, 2-57
opening. 2-57, 6~44
purging, 2-143 °
reading. 64
security, 64
updating, 66, 68
using, 6-3

1-25

{see bound varlables)
1-10

it

1-21

WHERE condition
contents ailowed.
WORD function, 1-15-
words -
maximum in a record, 2-48

1-9

.
w ‘

zeroes

. feading, 2-6

© ZONED function, 1-13

zoned number
definition, 1-6
description, 2-49

READER COMMENT SHEET

We welcome your evaluation of this manual and its related software pro,d_J,c'f.' Your comments
and suggestions assist us in improving our publications and software..- Please use additional pages
if necessary. N

1. Does this manual clearly and accurately describe all the features of its associated

software?
2. Are the concepts and words in this manual easy to understand?
3. Is the format of this manual convenient in arrangement and readability?
4. Are the index and table of contents complete and useful?
5. Are the examples clear, correct, and informative?
COMMENTS:
Please mail to: PUBLICATIONS MANAGER

COMPUTER RESOURCES INCORPORATED
5333 BETSY ROSS DRIVE

P.O. Box 58004

SANTA CLARA. CA 95052

	IMG_0001
	IMG_0002
	IMG_0003
	IMG_0004
	IMG_0005
	IMG_0006
	IMG_0007
	IMG_0008
	IMG_0009
	IMG_a
	IMG_b
	IMG_c
	IMG_d
	IMG_0014

