APPLICATION BUILDER
REFERENCE MANUAL
RELATE™ 3000

Relational Data Base Management System

CR!, INCORPORATED
5333 Betsy Ross Drive
P. O. Box 58004
Santa Clara, CA 95052
(408) 980-9898

HPB-RF02
8803

{c) Copyright 1988 by CRI, Incorporated

RESTRICTED RIGHTS LEGEND: Use, duplication or disclosure by the Government is
subject to restriction as set forth in Subdivision (b)(c)(3)(ii) of the Rights in Technical
Data and Computer Software clause at 52.227-7013.

NOTICE

——

The information in this document and its associated software are subject to change
without notice.

CRI, INCORPORATED ("CRI") MAKES NO WARRANTY OF ANY KIND WITH REGARD
TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. CRI shall not
be liable for errors contained herein or for incidental or consequential damages in
connection with the furnishing, performance, or use of this material.

This document contains proprietary information which is protected by copyright. All
rights are reserved. No part of this document or its associated software product may be
photocopied, reproduced, or transiated to another program language without the prior
written consent of CRI. ‘

.......

Functions.

2. Terminal Interface

Terminal Types . . .

TABLE OF CONTENTS

.........................
.........................

.........................

ooooooooooooooooooooooooo

..........................

.........................

Character Mode vs. Line Mode vs. Block Mode

Special Keys.

Running BUILDER. .
Application Files . .

INITIAL Sections .
LAYOUT Section .
SCREEN Section .
TIMEOUT Section
VARIABLE Section
Array Variables . . .
Giobal Variables. . .
Record Pointer

Subroutines

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

Substitution Algorithm

Debugging Facilities.

4. Application Commands

BUILDER Commands

.........................

.........................

.........................

-1
1-3
1-5
1-7
-1
1-13
1-17

2-1
2-2

26

31
31
32
33

3-10
311
3-13
314
3-15
3-16
3-17
3-18
3-19
3-25

3-31
333

3-37
3-39

347

Using RELATE Commands _ 4-2

ARRAY ... ENDARRAY . . Tttt 44
Assignment. Tt 4-5
BREAK. 46
CALL PROCEDURE. /. ‘““""" 4-7
CALL SCREEN 7ot 49
CLEAR.l lliiii 4-10
CREATE PARTITION ' ' " - - 4-11
DISPLAY L 4-14
ERASE SCREEN. oo 4-15
EXIT . . 4-16
EXITARRAY liitoenes 4-17
FAIL ..o 4-18
FINISH 4-19
IF ... ELSEIF ... ELSE ... ENDIF 4-20
IGNORE ERRORS.~~~ ottt 4-21
MODIFY VARIABLE. """ - 4-22
PAUSE e 4-23
PROMPT L 4-24
PURGE PARTITION.~ ttttt0e 4-25
RECORD ADD. ‘7" " 4-26
RECORD DELETE.,.,.- """ 4-28
RECORD NEXT o nrrroeer 4-29
RECORD POINT. e e e e e e e e e e e 4-30
RECORD READ. - e 4-32
RECORD REPOINT, """ 4-34
RECORD RESET """ 4-36
RECORD REWIND e 4-37
RECORD UPDATE ' " - 4-38
REFRESHol 4-39
RESET, .. .l i 4-40
RETURN SCREEN. 4-41
SCROLL 00 442
SETCURSOR 4-43
SETOPTION.,20 444
SETPARTITION......................; 447
SET SCREEN loooienees 4-48
SET STATE oo 449
SHOW PARTITION 't 4-51
SHOW VARIABLES~~~ ottt 452
STREAM ... ENDSTREAM > """"~° 4-53
SUBMIT. 454
TRACE. 4-56
VERIFY. 457
WHILE ... ENDWHILE. " 4-58

5. Designing Screen-Based Applications

Creating an Application
Development Standards
Application Security
Use of Function Keys |
Call-Return vs. Set Screen
Help Screens

6. Programming Language Interface

Description.
Calling Conventions,~~~ ~“"“~"~"'°
Installing inSL
Installing in BUILDER _ .~ '
Call Summary~>°"

............................
.............................
.............................

..............................

.................................

coBoL

...............................

...............................

A. Command and Section Formats
B. Creating New Terminal Drivers
C. VPLUS/3000 Comparison
D. Script Files
E

Comment Sheet

5-1
5-3
53

135S 8LT

6-1
6-3

53

6-7

6-10
6-11
6-12
6-12
6-13
6-14
6-15

A-1
B-1
C-1
D-1
E-1

INTRODUCTION

This manual describes APPLICATION BUILDER, an application construction facility
available for RELATE(tm)/3000 — CR!'s Relational Data Base Management System.
RELATE/3000 is designed to provide database manipulation capabilities to both technical
and non-technical users. BUILDER extends this capability by enabling screen-based
applications to be quickly created for end-users that have littia knowledge of RELATE
databases, or even of computers in general.

BUILDER is both a tool and an environment for the creation and use of screen-based
applications. BUILDER commands are extensions to RELATE commands. Most RELATE
commands may also be executed from within BUILDER. BUILDER provides additional
capabilities specifically designed to control screen-based applications.

In order to most effectively use BUILDER, you should be familiar with RELATE.

CAPABILITIES AND FEATURES

The major features of BUILDER include:

%

Applications may be stored in standard HP EDITOR files or QEDIT files.
Application developers are not required to learn a new editor. Programs may be
used to assist in the creation of applications.

BUILDER can be used on virtually any cursor addressable CRT. BUILDER does not
recuire HP or HP-compatible block mode terminals, although block mode is also

supported.

New terminal types may be defined as required thus providing support for a wide
range of CRTs.

The straightforward BUILDER syntax allows a wide range of users to create their
own applications. Very little programming knowledge is required to create simple
applications, yet the full power of RELATE is available for complex applications.

Screen layouts and actions are stored in the same file for easy system
maintenance.

Debugging facilities are built-in to simplify system development.

Function keys and function key labeling are supported.

BUILDER can perform validity checking on a field by field or character by
character basis, thus increasing the responsiveness and user friendiiness of
applications.

The BUILDER language is a superset of the commands available in RELATE.
BUILDER can call SPL, COBOL, FORTRAN, and PASCAL subroutines that reside
in an SL for CPU intensive operations. For larger systems a method is available
to compile the subroutines into BUILDER itself.

Both screen-based and scrolled 1/O can be used in the same application.

Powerful substitution routines are built-in for menu oriented applications.
Application files need not be (but can be) compiled.

BUILDER applications can be run in batch mode.

BUILDER encourages installation-wide standards for field and error enhancements.

Jobs can be created and streamed directly from BUILDER.

iv

SECTION 1

CONCEPTS

NOTATION

The following notation is used to define the syntax of the commands described in this
manual:

CAPITALIZED WORDS are the names of commands or keywords in
commands.

lower—-case words identify words that are names or expressions to be
specified by the user.

[] (Square Brackets) are used to indicate that the enclosed item is
optional and may be omitted.

I (Vertical Bars) between items indicate that one of the items must
be chosen. '

... (Elipses) indicate that the previous item (or, if in square

brackets, the previous bracketed item) may be
repeated zero or more times.

Commands are recognized in any combination of upper and lower case letters. They are
processed as if only upper case characters had been used (except for information in
double quotes). Commands may be up to 1500 characters long before parameter
substitution takes place (as described later). Any commands which are RELATE
commands must not contain more than 1500 characters after the substitution.

All BUILDER commands must be completely written cut. No abbreviations are understood
unless specifically noted. Any command not recognized as a BUILDER command is passed
to RELATE. RELATE commands may be abbreviated as specified in the RELATE
reference manual.

1-1

& (ampersand)

1/

ControlH

Control-S

Control-Y

ESCAPE
RETURN

TAB

ENTER

RETURN/ENTER

SPECIAL CHARACTERS

An ampersand entered as the last non-blank character on a line
indicates that the command continues on the next line.

When executing the RELATE Command Interpreter through
BUILDER, the "//* terminates the Command Interpreter and
returns the user to BUILDER.

(or Backspace) One previously typed character is deleted each time
this key is used. If the cursor is at the beginning of a variable,
this key will cause a backtab to the beginning of the previous
field.

The Control-Q resumes output suspended by the Control-S.

The Control-S suspends output to the terminal. Output may be
resumed by entering a ControQ.

This sequence is used to terminate lengthy printout or cancel the
execution of an operation. See the CREATE PARTITION command
for additional information.

(sometimes labeled ESC, ALT, or ALTMODE) When pressed and
foliowed by another character, a function key operation will occur.

Pressing the RETURN key informs BUILDER that editing and entry
on the screen is completed and processing can begin.

(or ControlH) Moves the cursor to the start of the next variable in
the current screen. if another variable cannot be found, the cursor
will be placed at the first variable.

See Section 2 for descriptions of keys that will BACKTAB, HOME,
move the cursor LEFT, RIGHT, UP or DOWN, and REDRAW the
screen.

The ENTER key is used by applications running in Block mode to
indicate that editing and entry on the screen is completed and
processing can begin. If the application is NOT running in Block
Mode, this key should never be used as it can put invaiid data on
your screen.

Indicates that ENTER should be pressed if operating in Block
Mode, and RETURN should be pressed otherwise.

14

GLOSSARY

The definitions given below refer specifically to BUILDER:
actions — Commands attached to a variable, function key, or screen.

application — The result of creating and executing an application file. Sometimes used
synonymously with "application file”.

application file — An editor file containing one or more SCREEN sections and BUILDER
commands.

array screen — A screen that contains two or more variables with the same name. An
array screen allows several records from a file to be displayed at the same time.

block mode — A method of terminal data transfer where the data for a screen is
collected and edited by an intelligent terminal without intervention by the computer.
When an enter is issued the whole screen (or perhaps the unprotected variables) is
transferred in a large block to the computer for processing.

character mode — A method of terminal data transfer where individual characters are read
and acted upon.

creator — The person who uses BUILDER to create an application.

CRT - A Cathode Ray Tube. An abbreviation for terminals that use a television type
screen for output.

cursor — An underiine or inversed video mark on a screen that shows the operator where
the next character typed will be placed.

cursor addressable — The ability to move a cursor directly to any given point on the
screen by sending instructions to the terminal. In BUILDER, these instructions are
defined when a terminal is configured and are issued without explicit instructions by
the creator or user of an application.

device independent ~ A program is device independent if it can be used on many different
devices (terminals). If a program depends on functions keys, memory, or special
capabilities of any kind, it is not device independent.

end-user — The user of an application.

enhancement — Displaying a variable or text on a screen in inverse video, half-bright,
color, etc. Enhancements are normally used to indicate required variables or
variables in error.

entering screen — Signaling the computer that the current screen is complete and the
computer should take action on the data entered. The completion of a screen is
signaled by pressing the RETURN key.

ENTER section — this section is invoked through BUILDER with the use of the RETURN
key, not with the ENTER key. The ENTER key should NEVER be used with
BUILDER.

1-5

field - A column of information in a file. The same type of data is stored in the field
in each record. Each field has a length, a type, and restrictions as to content.

form — Same as a screen. A filk-in-the-blanks display presented on a CRT.

function keys - Special keys that, when pressed, cause the application to perform an
action. Often referred to as an fkey. In some modes, an fkey is simulated by
pressing the escape key followed by a number key.

glcbal — A variable which has been declared either in the GLOBAL section or in some

other screen previous to the current screen which has been reached by at least one
CALL SCREEN.

layout ~ The placement of variabies and information on a screen.

line mode — A method of terminal data transfer in which a line or a complete variable is
read and acted upon.

menu - A screen that displays several choices and allows the user to select one or more
of the choices.

message line — Normally, the message line is the last line on the screen. Text displayed
by BUILDER s generally placed in the message line.

partition — A table which contains status information on a set of open files. Partitions
correspond directly to the cursors described in the RELATE Host Language Interface
manual.

prompt — A message or character displayed to the user that indicates that the computer
requires input from the user.

RETURN/ENTER - Indicates that ENTER should be pressed if operating in Block Mode,
and RETURN should be pressed otherwise.

screen — A fill-in-the-blanks display presented on a CRT.

scrolling — The act of moving lines on a screen up to add new lines at the bottom of the
screen. Old lines typically disappear off the top of the screen.

terminal type ~ A string that identifies the maker and model number of a specific
terminal. (e.g., HP2623A or TVig20C.)

variable — A variable is a named area in an application which can store a single value.

Variables can be used in computations and can appear on a screen. Each variable
has a length, a type, and restrictions as to content.

1-6

EXPRESSION EVALUATION

Some BUILDER commands use expressions in their syntax. The expression analyzer used by
BUILDER is separate from the one used by RELATE. The BUILDER expression analyzer
is different because of the way variables are handled. In a RELATE command, a variable
in an expression such as “1+PARTNO" means the field PARTNO in the file that is the
current path. In BUILDER, PARTNO refers to the value of a variable in the BUILDER
application. All arithmetic in BUILDER is performed with floating point numbers. This
allows for approximately 16 digits of accuracy.

All commands described in this manual use the BUILDER expression evaluator. All
RELATE commands described in the RELATE Reference Manual use the RELATE
expression evaluator. Most of the time, this distinction can be ignored because the syntax
of both expressions is very close; advanced developers, however, may wish to know what
the differences are and when one or the other evaluator is being used.
Hierarchy
The hierarchy of expression evaluation is as follows:

1) unary +, -

2) NOT

3) L 3 J

4) =,/

5) + -

6) <, >, «= e, <>

7) AND

8) OR
Operators at the same level are not guaranteed to be performed in any particular order.
Parentheses may be used to override the above hierarchy or to emphasize the order of

evaluation. If nested parentheses are encountered, the inner expressions are evaluated
first.

Operators

An expression obtains meaning by connecting constants, variables, functions, and built in
variables with various operators. The standard operators available in BUILDER expressions —
are as follows:

NAME SYMBOL EXAMPLE MEANING

unary plus + +5 Positive five.

unary minus - 5 Negative five.

plus + 3+A Add three and the value of A.

minus - 3-A Subtract the value of A from three.

mulitiply * 3*A Multiply three times the value of A.

divide / 3/A Divide three by the value of A.

exponent *s A**2 The value of A squared.

NOT NOT NOT A 1, if A is not zero or blank.
Otherwise 0.

AND AND A AND B 1, if both A and B are non-zero or non-blank.
Otherwise 0.

OR OR A OR B 1. If A or B or both are non-zero or d
non-blank. Otherwise 0.

less than < A<3 1, if A is less than three.

less than Cm A<«=3 1, if A is less than or equal to three.

or equal

equal - A=3 1, if A equals three.

greater than > A>3 1, if A is greater than three.

greater than >m A>=3 1, if A is greater than or equal to three.

or equal

not ecual < A3 1, if A does not equal three.

Compering Alphabetic Data

When comparisons are made with alphabetic data, the shorter string is assumed to be
padded with blanks up to the length of the longer string.

1-8

Quotes Araund Constants

Date and text constants must be enclosed in quotes, in both BUILDER and RELATE
commands. Examples:

IF TODAY="7/4/84"

SELECT @ WHERE NEW_DATE="Xtoday"

Compearing Dates

Dates are compared as dates, not as alphabetic data. |f a date is compared to a string,
the string is evaluated as a date in the current BUILDER date format (see SET OPTION).

Comparisons are not allowed between dates and numbers.
Comparing Numeric and Aipha Data
A numeric variable whose value is zero or blank will compare as equal to either the

constant zero (0) or a blank string. In order to differentiate between a zero and a blank,
substitute the variable into a string (IF "%x"=" ") or check its length.

-9

1-10

SYSTEM DEFINED VARIABLES

The following special variables are defined within the BUILDER interpreter. These
variables may be used in BUILDER expressions. The value of each is normalily maintained
by BUILDER but may be changed by the application with an assignment statement. The
variables may also be substituted into commands; however, any calculation required to
determine the value of the variable will not be made prior to the substitution. (E.g.:

DISPLAY “THE TIME IS %$TIME"

will give no value for $TIME unless $TIME has been used earlier without substitution.
DISPLAY STIME

will work since no substitution is involved. However,
SHOW VARIABLE S$TIME

does not cause $TIME to be recalculated: it will only display the most recently calculated
time.) This will affect the substituted value of SCLOCKTIME, S$CPUTIME, SEOF,
$FOUND, S$STATE, and STIME.

NAME MEANING

$BREAK After a RECORD POINT or RECORD REWIND has been used with the
BREAK keyword, this will contain a number indicating which field in the
current key has changed value, with the most significant field being one.
If SBREAK is zero then BREAK has not been set. If $SBREAK is one
greater than the vaiue set with BREAK, then no field in the current key
has changed value.

SCHANGED A numeric variable whose value is set to 1 if the user has changed any
variable on the current screen or in response to a PROMPT. This is reset
only be assigning zero to $SCHANGED. See the $CHANGED function to
check individual variables.

SCLOCKTIME A numeric variable which contains the number of tenths of seconds since
midnight last occurred.

$CPUTIME A numeric variable that gives the number of CPU milliseconds that the
current process has accumulated.

SDATE An alphabetic variable which contains the current date in *M/D/Y"
format. The format of the date can be changed with the SET OPTION
command.

SDEVICE A string containing the terminal's device type.

$SEOF A numeric variable that indicates if an end of file occurred during the

last RECORD READ or RECORD ADD command. A value of one
indicates that an end of file was encountered, a value of zero indicates
otherwise. The value is reset to zero by RECORD REWIND, RECORD
RESET, and a RECORD READ to a valid record.

-1

SERRMSG

$SERROR

$FOUND

$INFORMATION

SKEY

$SRECORDS

SSCREEN
$STATE

$SUBSCRIPT

STIME
SVARIABLE

A string containing the error message corresponding to the last error
number.

A numeric variable that contains the number of the last error
encountered on a RELATE or operating system command being executed
after an IGNORE ERROR command within BUILDER. A value of zero
indicates that no error has occurred since the beginning of the
application or since the last IGNORE ERROR command.

A numeric variable that indicates if the current path (indicated by a
SELECT, OPEN FILE, SET PATH, etc.) contains a record or the last
RECORD POINT command found a record satisfying the search criteria.
A value of one indicates that a record was found, a vaiue of zero
indicates that a record was not found. The internal method of
evaluating $SFOUND may take a large amount of time for a complex
SELECT.

Returns the string specified with the INFO= parameter on the RUN
BUILDER command, if any. If INFO= was not specified, nothing is
returned. For example,

:RUN BUILDER.PUB.RELATE45;INFO="STARTUP"
will place “STARTUP" into $INFORMATION.

A string variable containing one character. This character is the value
of the last function key pressed (such as “1° if F1 was pressed) or the
first character of the last response from a PROMPT command which
contained no destination variable.

A numeric variable containing the number of records processed by the
last RELATE command. This value corresponds to to partition locations
29 and 30.

An alphabetic variable whose value is the name of the current screen.

An alphabetic variable that contains the name of the current state in the
current screen.

A numeric variable containing the current array varisble subscript value.
This variable is normally controlled by BUILDER but can be manipulated
by the application. See the Array Variables section for more
information.

Returns the time of day as a number in HHMMSS format.

A string containing the variable name where the cursor last resided.

1-12

FUNCTIONS

$BITS (expression, startbit [,count])
Returns the value of the indicated bits. The expression is converted to a 16
bit integer before the bits are extracted. The bits are numbered 0 through 15
starting with the left-most position. |f startbit is below O or above 15 a zero
is returned. If count is not specified, one bit is assumed. If count is
specified, it is treated modulo 16.

$CHANGED (varexpression)

Returns the valus 1 (TRUE) if the value of the variable whose name is a
result of the varexpression has been changed by the user. If the varexpression
results in the name of an array variable, only the current subscript of the
array is checked. Examples:

IF SCHANGED("ADDRESS")
or:

VARNAME:="ADDRESS"

IF SCHANGED(VARNAME)

This variable is considered to have been $CHANGED by the user if the user
types a new value into the screen or in response to a PROMPT. Once the
user has changed the vaiue of a variable, this function will continus to return
TRUE unless the application turns off the changed flag with:

CLEAR of that variable

RESET of that variable

INITIAL value is specified in a DECLARATION.
Also allowed is a numeric varexp. This will return a count of the number of
array variables with that $SUBSCRIPT which have been changed. If -1 is
specified, the count of non-array variables whose values have been changed is
returned.

SCONCAT (stringexpression [,...])
Returns a string composed of the concatenated strings. Leading and trailing
blanks are removed from the strings before the concatenation takes place
unless the strings are constants.

SDAY (dateexpression)
Returns an integer representing the day of the month for the date.

SDAY_DIFF (startdateexpr, enddateexpr)
Returns the number of days between the two dates. |If the enddate falls
before the startdate, a negative value will be returned.

SDAY_WEEK (dateexpression)
Returns an integer representing the day of the week of the date, where day 1
is Sunday and day 7 is Saturday.

SFORMAT_DATE (dateexpression, format)

Converts the indicated date to a new format. The format must be a valid
RELATE date format.

1-13

$IN (expression, matchitem1,)
Returns a value indicating which of the matchitems (1 through n) the first
expression is exactly equal to. If no match is found, zero is returned. The
expression may be a string or a numeric valus. The matchitems must be of
the same type as the first expression.

$ITEM (list, itemnumber [.alphabetic])
Returns the item from the list as indicated by the itemnumber. List is a
Character string containing items separated by commas. If the itemnumber is
less than one or the item does not exist, a null string is returned. If the
itemnumber references alphabetic information or the alphabetic parameter is
one, a string will be returned. Items within the list are either numeric or
alphabetic; the latter may be, but need not be, enclosed in opening and

element of the list are removed prior to being returned. Quotes take
precedence over parentheses. A numeric value is otherwise returned.

EXAMPLES:
a) NAME:-SITEM('FRED.SUE,JOE',WHICHNAME,1)

b) NAME:-SITEM('(FRED),(SUE),(JOE)',WHICHNAME,1)

c) NAMELIST:-"""FRED"',"SUE","JOE"'
NAME:-SITEM(NAMELIST,WHICHNAME,1)

d) NAME:="FRED"
AGE:=35
INFOLIST:-SCONCAT(NAME,',',AGE)
NEWNAME:-NTEM(INFOLIST,1,1)
NEWAGE:-SITEM(INFOLIST,Z,O)

e) LIST:-'(SMITH,FRED).(JONES,SUE),(BRO\NN,JOE)'
FULLNAME:-SITEM(LIST,WHICHNAME,1)
FlRSTNAME-SITEM(SITEM(LIST,WHICHNAME,1).2, 1)

$ITEMS (list [start, finish])
Returns a subset of the list. List is a character string as described in $ITEM
containing items separated by commas. If the start and finish parameters are
not included, the number of items in the list is returned. If start and finish
are included, the items are returned as a string.

$JCW (nameexpression)
Returns the value, set by MPE's SETJCW command, of the JCW whose name
is a result of the nameexpression. Examples:

X:=$JCWM"TERMTYPE")
JCW_NAME:="TERMTYPE"
X:=$JCWIJCW_NAME)

$LAST_DAY (dateexpression) _
Returns a date (month, day, and year) equal to the last day of the month in
the month and year of the original date.

$LENGTH (stringexpression)
Returns the position of the last non-blank character in the string.

1-14

$MATCH (stringexpression, matchstringexpression)
Returns the position in the string where the matchstring first occurs. !f the
matchstring does not occur in the string, a zero is returned. This definition is
a subset of the RELATE $SMATCH function of the same syntax and does not
recognize any of the special characters used in RELATE's $SMATCH.

SMONTH (dateexpression)
Returns an integer representing the month of the date.

SNEW_DATE (dateexpression, days)
Returns a date the indicated number of days before or after the original date.
If days is negative, a date before the original date will be returned.

$NUMERIC (stringexpression)
Returns a one if the string corresponds to a valid number. If the string does
not correspond to a valid number, a zero is returned.

$PAD (stringexpression, padstring, newlength [,mode])

Returns a string of newlength containing the original string padded with
padstring on the front or back as determined by the mode. If the mode is
not supplied or is zero, the padstring is applied before the first non-blank
characters of string. If the mode is non-zero, the padstring is placed after
the last non-blank character of string. The padstring, which also has leading
and trailing blanks removed, may contain more than one character and will be
repeated until string is newlength characters long.

SPARTITION (element)
Returns the value of the element in the current RELATE partition. If the
element references the first half of an item defined as a double word value,
both will be returned. Reference to an element not defined or to the second
half of a double word value will produce an error. For a complete description
of the contents of the partition, see the Cursor Format description in the
Host Language Interface section of the RELATE reference manual.

SRANDOM (number) If a non-zero number is fed to this function, it will initialize the
SRANDOM function seed for additional calls. If the same nomzero number is
fed to SRANDOM, it will initialize an identical series of "random” numbers.
It is suggested that the first call be something like SRANDOM (STIME).
Additional calls shouild use O (zero) as the number passed. $SRANDOM(0)
returns a random number between zero and .999...

$SRDBINFO(mode [,qualifier])
Returns information from the RELATE RDBINFO intrinsic. The information
returned and the functions' format depend on the mode and the qualifier. For
a complete explanation of the capabilities, please refer to the detailed
SRDBINFO discussion later in this section.

SREAD (parexpr, fldexpr, keyexpr [keyexpr [....]])
Returns the value(s) of the indicated field from the record designated by the
key expression in the current path of the indicated partition. Parexpr is an
expression that should evaluate to the name of an existing partition containing
a current path. Flidexpr is an expression that should evaluate to the name of
a field in that path. Keyexpr is an expression containing the value to be
searched for in the current index. Each additional keyexpr corresponds to

1-15

additional fields in the current index.

If more than one record is found to match the given key values, the values
for the requested field will be taken from all qualified records and
together, with a space between values, up to a length of 1600 characters.
Trailing blanks will be removed from each value before the append is
performed.

The SREAD will read all qualified records and leave the record pointer
positioned at the record after the last qualified record.

Example:

sses INITIAL
NOTE eadch of these filas contains the fields ERRNUM,
NOTE SEQUENCE, and TEXT. There maoy be several records,
NOTE with different sequence numbers, for each
NOTE error number.
CREATE PARTITION FRENCH
OPEN FILE FRMSG
SET INDEX ERRNUM
CREATE PARTITION GERMAN
OPEN FILE GERMSG
SET INDEX ERRNUM
PROMPT “WHAT LANGUAGE?"“, LANG

see DECLARATION
MSG; LENGTH=1500
LANG; LENGTH=10; UPPER; RANGE=“GERMAN" ,“FRENCH"

sse ENTER
IF some sort of error
NOTE This error is application error number 275e
MSG:-sREAD(LANG.”TEXT'.2750)
SCROLL MSG
ENDIF

$SUBSTR(stringexpression, start [.length])
Returns the portion of the string beginning with start for a count of length
Characters. The first character in the string is one. If the length is nct
specified, the remainder of the string is returned.

STEMPLATE (stringexpression)
Returns the string after it has been processed by the substitution algorithm.
For example, STEMPLATE("The color is %colorname.”) would return “The color
is red.” if the variable colorname contained the text "red".

$UPS (stringexpression)
Returns the string expression with all lowercase alphabetic characters
upshifted.

$YEAR (dateexpression)
Returns an integer representing the year of the indicated date, including the
century.

1-16

$RDBINFO

The $RDBINFO function simplifies the interface between the RELATE Host Language
Interface RDBINFO subroutine and a BUILDER application. Through this function the
application can verify that fieldnames exist in a file, the data type of a field, the size of
a file, indexes, etc.. The format of the call is:

$RDBINFO(mode [,qualifier])

If the mode is alphabetic, it is assumed to be the name of a field in the current path.
The function will return the number of the field. This value can be used as a qualifier
in a call to obtain information about the field. If the field does not exist in the current
path, a minus one will be returned. If the mode is "$SLINE", the number zero will be
returned. If the mode is alphabetic, the qualifier should not be specified.

If the mode is numeric, it corresponds directly to the RDBINFO modes as defined in the
Host Language Interface section of the RELATE manual. If the particular call returns
more than one value, these values will be placed into a string separated by commas with
alphabetic information placed in quotes. The order and type of each item wiil correspond
directly to the order and type of the HLI description. For example, if a file contains
field number 3 called TEXT, which is an alphabetic field containing 40 characters, a call
of the form $RDBINFO(201,3) would return this string:

“TEXT".4,1,20,40,0,1,1,1,0,0
This string can be manipulated with the $ITEM and $ITEMS functions. For example, the
number representing the data type can be obtained by using $ITEM(SRDBINFO(201,3).3).
Calls that return a single item will return a numeric value.

All modes except 202 and 203 have been implemented.

SECTION 2

TERMINAL INTERFACE

TERMINAL INTERFACE

An application implemented with BUILDER normally presents the end-user with a screen
environment. Each screen typically contains one or more blanks (variables) into which the
user places information. The format of the screens is under the control of the creator of
the application and is not dictated by BUILDER.

BUILDER is device independent and can be made to function on virtually any CRT that
allows direct cursor addressing. When BUILDER is installed, a configuration file
(BLDRTERM) is provided containing the information required to correctly interface with
many different devices. If a device at your installation is not included, anyone with
write access to the configuration file can create a new terminal type by entering the
operational characteristics of the device through BUILDER into BLDRTERM. See
Appendix B for further information.

BUILDER can operate in character, line, or block mode. The mode can be controlled on
an installation-wide basis by adjusting the driver default. The choice of which mode to
use will affect the user interface in a number of areas. Specifically, it will influence the
use of function keys, editing capabilities, cursor control, and, to a certain extent, the
design of the application. The trade-offs are discussed below.

Terminal Types

BUILDER is terminal independent. That is, any BUILDER application can work without
modification on any CRT that has cursor addressing. However, BUILDER must know what
type of terminal you are using in order to correctly use the capabilities of the terminal.
Because of this, when an application is started, BUILDER will normally prompt with:

Terminal Type?

This is a request for you to enter the manufacturer and model of the terminal you are
using. !f you are unsure, type "HELP" and a list of possible terminal types will be
displayed. If your particular terminal is not in the list, another by the same
manufacturer often will work. This list can be extended by someone on your site (see
Appendix B).

Once you have given BUILDER this information it will be remembered as long as you
remain logged on. When you log off, the computer knows that you may have moved to
another terminal and will ask you again when you log back in.

If your installation uses only one type of terminal, this prompt can be eliminated by
including the command:

SETJCW TERMTYPE=number
in the BUILDER UDC definition. The number must be the position (starting at 1) of the
desired terminal type in the list presented when "HELP" is typed in response to the
"Terminal Type?" prompt.

Whenever you specify the terminal type, BUILDER initializes the MPE job control word
(JCW) TERMTYPE to correspond to the proper terminal type. The terminal type will
therefore be known until you log off. If a valid terminal type is entered which does not
produce the proper results on the terminal, resetting the JCW to zero will cause
SUILDER to prompt for the terminal type again when BUILDER is restarted.

2-1

If BUILDER is run in batch mode, the terminal type should be included in the batch job
as data for BUILDER. Most likely the terminal type “JOB® shauld be used. See the
Script Files Appendix for additional information.

CMracterMo:hvs.Livas.Blod&Mocb

When the terminal type is specified, BUILDER locks in the configuration table for that
terminal type (see the Creating New Terminal Drivers Appendix) to determine which mode
the application should be run in. It is possible to have drivers for each terminal in each
mode by (perhaps) assigning a prefix or suffix to the device name or maintaining separate
configuration files for drivers for each mode.

Character Mode Description:

Data is transmitted to the computer and processed by the application one
character at a time. Each character is echoed to the terminal by BUILDER,
rather than by the operating system. As each key is pressed, the character is
transmitted to the computer. As the character is received by the computer, it
is passed immediately to the application for processing. Most characters are
simply echoed to the terminal and perform no special functions. However,
certain characters can be assigned to perform useful actions (such as cursor
positioning).

Character Mode Advantages: ,
- Immediate notification of errors upon completion of a variable.
= Function keys can be used for help easily, especiaily using the technique of help
on the variable where the cursor resides (SVARIABLE).
— Enhancement attributes such as required/optional, blinking/inverse, etc., can be
changed as other variables are completed.
Additional processing or calculation can be initialized based upon the completion
of a variable.
- Expensive block mode terminals are not required.
— Applications can be terminal independent.
- Special keys that generate one character are acted upon immediately without
having to terminate the Character sequence with a RETURN.
- Prohibitively expensive — and not fully functional — over packet-switching
networks or protocols (for example, X.25).

Character Mode Disadvantages:
~ Characters can be dropped on a busy system without type-ahead. This probliem
will decrease slightly as more users perform operations with BUILDER, and

benefits), such character drop may be unacceptable to a data entry clerk.

~ Special keys and function keys that emit more than one character (such a s
arrow keys on HP terminals and function keys on most terminals) cannot always
be processed correctly. However, if function keys cannot be used, function
sections can still be processed by using the ESCAPE key (described in the next
section).

2-2

Two-character Mode Description:
Data is transmitted to the computer one character at a time. Each character is
echoed to the terminal by the operating system rather than by BUILDER. The
computer saves each character until two are received, at which point both
characters are passed to the application for processing.

Two-Character Advantages:
—- All of the advantages of Character Mode, plus:
- Better handles special keys which generate two characters (such as arrow keys
and function keys on HP terminals).

Two-Character Disadvantages:
- Characters are processed in pairs, so a special key which generates t w o
characters pressed after typing a single character will transmit only the first
character of the special key. (See the section on Hewlett-Packard terminals.)

Line Mode Description:
Data is transmitted to the computer one character at a time but BUILDER
processes one variable at a time. The operating system echoes the characters
to the terminal and saves the characters until the "end of a line" is signalled
by the receipt of a RETURN, TAB (control-l), Function key, or the filling of a
variable on a screen. The saved characters are then passed to the application
for processing.

Line Mode Advantages:
- Most of the advantages of character mode, plus:
— No dropping of characters on a busy system.
- Function keys which generate more than one character but end in a RETURN
(such as on HP terminals) work well.

Line Mode Disadvantages:

- Special keys can be used but require a RETURN or other line—completion key to
be pressed after the special key is pressed to indicate "end of line” so that the
key can be processed. Since the operating system echoes these characters to
the terminal but BUILDER doesn't process them until a RETURN is received,
the action may appear to take place immediately (such as for an arrow key),
but in fact BUILDER will know nothing of its movement. In addition, in some
cases this movement can result in an invalid situation, such as the placement
of the cursor over a label, and may generate an error or other response when
TAB or RETURN is pressed, although BUILDER will generally place the cursor
in the proper position.

- Special keys which generate more than one character (such as arrow keys on HP
terminals) can be used in line mode. However, since BUILDER reads a variable
at a time, a portion of the sequence of an arrow key could terminate a
variable and leave the system in a mode in which it has not read the remaining
portion of the key sequence, resulting in the prompt “Which Function Key?”.

Block Mode Description: -
Data is transmitted between the computer and the terminal in blocks. The
individual characters are saved at the terminal until the user presses the
ENTER key or a Function key. As the application processes the data from the
terminal, it "saves” the answer in a block. When the application is ready to
transmit back to the terminal, the entire block is transmitted.

2-3

Block Mods Advantages:
= User can move over the Screen using any special cursor positioning and editing
keys before sending the screen to BUILDER with the ENTER key or a Function
key.
- Transmission is in blocks; there are fewer 1/0 interrupts for the computer and
transmission is therefore also considerably less expensive over packet-switching
networks or protocols (for example, X.25).

Block Mode Disadvantages:
~ There is no notification of errors until the entire screen is sent.
- There is no data validation until the entire screen is sent and processed.
= Only one error wiil be returned with each sending, so mulitiple errors o n a
Screen will require multiple sendings (and processing) of the full screen.
i i i . inverse/blinking, etc., cannot

7
d
3
3
n
;
g
B
B
g
&
8
g

be changed as variables are completed.

Additionai processing or calculation cannot be initiated when a variable is filled.

Variable sections will be processed, but not until the full Sscreen is sent.

Block mode terminals, which are generally more expensive, are required.

= Variables declared as POSITION will allow the user to type new values over the
existing information. However, BUILDER will remember the true value and
replace it whenever the screen is redrawn.

- POS_ENHANCE and TAB=CLEAR are ignored.

JUSTIFY, BLANK, and UPPER are not processed until the screen is sent.

~ Debug mode cannot be entered by pressing "Escape / Return.” However, f o r

debugging purposes, a function key with a deliberate syntax error in it can be

used to force BUILDER into debug mode.

All PROMPTs are done in CHARACTER or LINE mode, so the user must press

RETURN in response to PROMPTs instead of ENTER.

PROMPTs are aiso the only places in which the user can type control or escape

Sequences that BUILDER will recognize.

= Applications which are designed for use in character or line mode will not
always function well in block mode, for the above reasons.

Hewlett-Packard Terminals:
Hewlett-Packard terminals use two Characters for special keys. The first
character is usually Escape. This is an unprintable character but still is
transmitted to the computer. The second character iS an upper or lowercass
character. Therefore, each special key transmits at least two characters to the

computer.

user wants to initiate a function key sequence. Therefore, in line mode, the
user is prompted for "Which Function key?".

If the cursor is at the last position of a variable on the screen, there is not
enough room for all of the characters of the function key or special key
Sequence to be transmitted. Only the first character, usually an Escape, will
g0. Again, BUILDER thinks the user is beginning a function key sequence and
will prompt “Which Function key?" Pressing the number of the function key
desired (eg: type “1" for function key 1) completes the request properly.

In two—character mode, every two characters are processed, so the second
character of the special key is processed along with the Escape.

24

In line mode, a RETURN key must be pressed after using the special key to
complete the group of characters sent to the computer. Function keys can be
loaded to send the RETURN needed.

BUILDER provides several generic HP terminal types in the terminal

configurator:
HPFKEY Line mode
HPCHARFKEY 2-Character mode
HPBLOCK Block mode

Note that HP2640 terminals are not supported in block mode.

Special Keys
Some special keys found on virtually all terminals are used by BUILDER:
TAB Skips to the next variable on the screen.

BACKSPACE, DELETE Deletes the previous character. DELETE will only work on Block
Mode terminals.

ESCAPE Normally begins a function key sequence. If the terminal has function
keys, they can usually be used. For more information, see the
Function Key section below.

RETURN/ENTER Indicates that either RETURN or ENTER should be pressed, depending
on whether or not Block Mods is being used. See below.

RETURN Completes a screen in character or line mode. Also used to terminate
a response to a PROMPT.

ENTER Completes a screen in block mode. Do not use this key if operating
in character or line mode as the result is unpredictable.

Other keys on the terminal may perform special functions depending on the actual
configuration of the device. The following functions may be availabie on your terminal;
if they are available, they may use different keys depending on the terminal type. To
determine what keys perform these functions on a particular terminal, use the Control-H
function (H for help). Press the escape key, then hold the control key down and press
the H key.

The following special keys can be defined:

BACKTAB The cursor is positioned at the beginning of the previous variable.
Normally, this is a controi-8.

HOME The cursor is positioned at the first variable on the screen.

UP, DOWN The cursor is positioned at the beginning of the closest variable up or
down from the current variable. Normally, a control-U and controk-D
are used.

LEFT, RIGHT The cursor is moved right or left one character within a variable. If

the cursor is moved out of the current variable, the cursor is
positioned to the previous or next variable on the screen. Normally, a
control-L and controlR are used.

REDRAW The screen is cleared and then redrawn. Normally, a control-Z is
used.

keying, for example, a control-B to backtab. This works quite welil in character mode. In
line mode, the control-B8 would need to be followed by a TAB or RETURN in order to
have the request processed.

Function Keys

Screen-based applications often use special "function” keys that appear on many terminals.
Function keys are often labeled F1, F2, F3,... or PF1, PF2, PF3.... and a particular
terminal may have from zero to eight or more function keys. A number of inexpensive
CRTs do not have function keys so a special method has been developed to provide
function key Capability for these terminals. The method selected to emulate function keys
is called escape functions and will work on any terminal.

All terminals have a special key called the escape key. It is labeled ESCAPE or ESC or
sometimes ALT or ALTMODE. If the user presses the escape key, the prompt "Which
Function key?* will appear at the bottom of the screen. The ESCAPE thus serves to get
the application’s "attention” and denotes the beginning of a special function, Most built-in
function keys aiso begin with an escape (and as mentioned above, may or may not be
useful depending on the operating mode of the application). The response to the prompt
is the function key value. The application can be designed to perform special processing
when the key is pressed.

26

If the application is being run in line mode, the actual function keys on the terminal can
often be used. In this case, the configuration of the terminal will determine what
function the application actually sees. This allows a number of different terminals, which
emit different function key sequences, to operate the same application. For example, HP
terminals normaily emit an ESCAPE *p* RETURN when F1 is pressed. This can be
translated in the terminal driver to yield the function “1°. The function "1 may be
obtained on a terminal without function keys by pressing ESCAPE, "1".

On some terminals, the ESCAPE 1 sequence must be followed by RETURN. On some
terminals, the ESCAPE itself must be followed by RETURN before the 1 is pressed.

On some terminals, pressing a function key or cursor positioning key causes the prompt
“Which Function Key?” to be given if one of the following cases exist:

a) the cursor is positioned in a variable of LENGTH=1,

b) the cursor is positioned on the right-most character of a variable on the
screen.

c) A special key (function key, arrow key, etc) which generates a sequence of
more than one character and begins with an ESCAPE has failed to send the
entire sequence to the computer (see detailed description under Two—-Character
and Line Mode).

If a function key was pressed, type the value of the function key desired (e.g.: "1 for

Function 1). If a cursor positioning key was pressed, press RETURN to clear the prompt
from the screen.

-7

SECTION 3

APPLICATION BUILDER
ENVIRONMENT

BUILDER ENVIRONMENT

BUILDER is a program that interprets and acts on the contents of an application file.
An application file is an EDITOR or QEDIT file containing screen section delimiters and
commands. BUILDER uses the RELATE/3000 Host Language Interface (HL!) routines to
execute RELATE commands.

Creator Mode vs. User Mode

BUILDER runs in one of two modes: creator or user. When an application is being
developed, BUILDER should be run in creator mode. After the application has been
completed, BUILDER should be run in user mode.

The difference between creator mode and user mode rests primarily in the interpreter's
response to errors. If an error occurs in creator mode, the application file's name and
the line number that caused the error are displayed. BUILDER then enters DEBUG mode.
If an error occurs in user mode, the error is displayed in much the same way: however,
the user is not placed into DEBUG mode. Instead, if the error is in the INITIAL section
of the application, the application is terminated. If the error is in the INITIAL section
of a subsequent screen, the original screen is redisplayed. If the error is in another
section, the section is terminated. An error in user mode is generally caused by
insufficient data validation in the application or a failure to anticipate a processing
problem. An error in creator mode is usually a logical or typographic error in the
application.

When BUILDER enters DEBUG mode (which is not MPE's DEBUG mode), the creator is
given a number of options. These options include going into a simulated RELATE
Command Interpreter or invoking an editor.

If the creator goes into the Command Interpreter, the environment is not changed. Thus,
BUILDER commands can be issued to determine the state of the application and perhaps
correct the problem without actually terminating the test. Upon exiting the Command
Interpreter the application can be resumed. |f the error is more severe, the creator may
invoke an editor to adjust the application file and restart the test.

In creator mode, the user may invoke the editor or the RELATE Command Interpreter at
any time by entering a special escape function. This option is not available if the
application is running in user mode. A more detailed description of the capabilities of
DEBUG mode is given later in this section.

31

Running Builder

The UDC “BUILDER" is supplied by CRI and should be added to the commands available
at the user's site during the installation of the product. The UDC runs BUILDER in
Creator mode. Hence, to run BUILDER in creator mode, when the operating system
Prompt appears, the user can type:

- BUILDER
In addition, the name of the application file to use can be included on the same command
line; for example, for an application file called APFILE:

BUILDER APFILE

If you wish to set Up your omh UDC, creator mode is enabled by the aiternate entry
"CREATOR". If this entry point is not specified on the RUN command, BUILDER is run
in user mode. The entry point "ENDUSER” can be used to emphasize that BUILDER
should run in end-user mode. For example, include this line in your UDC to run BUILDER
in creator mode:

RUN BUILDER.PUB.RELATE45,CREATOR

If the application file name is not specified on the BUILDER command line, BUILDER
will execute the application found in the file BLDRAPP. BUILDER will attempt to open
this file when it begins execution. |f the file cannot be opened, BUILDER will prompt
with “Application File?”. A valid application file name must then be given.

The location, and hence content, of an application file can be hidden by creating a
NOHELP, NOBREAK UDC to invoke the application. The command sequence would be
similar to the following:

AP

OPTION NOHELP,NOBREAK

FILE BLDRAPP-APSYS/BIGBOSS.GROUP.ACCOUNT
CONTINUE

RUN BUlLDER.PUB.RELATE45,ENDUSER

RESET BLDRAPP

This sequence assumes the application exists in the file APSYS, which is protected by the
lockword BIGBOSS, and that BUILDER has been installed in PUB.RELATE4S. The
CONTINUE command will cause the UDC to process the RESET command (and hence
eliminate the reference to the file containing the application) even if BUILDER
terminates abnormally.

3-2

APPLICATION FILES

BUILDER application files are normally either editor files created with HP's EDITOR or
QEDIT files created with QEDIT, an editor for the HP/3000 by ROBELLE Inc. Any
program that creates compatible files may also be used to create application files.

An application file is divided into screens and each screen is divided into sections. Each
section contains information defining an aspect of the screen. Screens and screen
sections are separated from each other within the application file by delimiter lines.
Delimiter lines contain special characters at the beginning of the line. Any characters
may be used but they must be left jstified and must be followed, after one or more
spaces, by a section name. The first line in an application file defines the delimiter
characters for that application file.

A screen may contain the section names shown below. In this case the delimiter lines
contain three asterisks.

*** ACTION string

DECLARATIONS [STATE=statename]
*** ENTER [STATE=statename]

*** FUNCTION [character] [;LABEL="text"] [;STATE=statename]
*** GLOBAL [LINEDRAWs=linechar]

**% INITIAL EVERYTIME .

*** INITIAL [STATE=statename]

*s2 LAYOUT [LINEDRAW=linechar]

*** SCREEN screenname

*s: TIMEOUT

s VARIABLE [variablename]

All sections need not appear on every screen and the order in which the sections appear
is not important except for the SCREEN section and the ACTION sections. The screen
delimiter line marks the beginning of a new screen and must appear first.

EXAMPLE:

*** SCREEN FIRSTSCREEN
*xs LAYOUT
(screen layout definition)
s DECLARATIONS
(local variables used in screen definition)
2% FUNCTION 1
(commands executed if function 1 is pressed)
*s: ENTER
(commands executed when the screen is completed)
ss+ SCREEN SECONDSCREEN
s | AYOUT
(layout of second screen definition)
s ENTER
(commands executed when the screen is completed)

33

ACTION Section

delimiters ACTION string

Contains commands that are executed when a particular action is requested.

string Required. The string which is to be matched to the contents of the
ACTION variable when RETURN/ENTER is pressed. The string which
names an action section can be terminated with an atsign ("@"). The
atsign indicates that characters to the right of the atsign position in
the action variable should be ignored when matching the variable. The
absence of an atsign indicates that an exact match is required. Thus,
naming an action section "H” requires that "H* and nothing eise be
placed into the variable. If, however, the section is named "H@", any
text in the action variable which begins with an "H" will match.

When RETURN/ENTER is pressed, BUILDER checks the contents of the variable that is
declared in the DECLARATION section to be the ACTION variable. If an action variable
i not declared in the current STATE, ACTION sections will have no effect. The content
of the action variable is matched to the ACTION section names to determine which
section should be executed. If a match cannot be found, the ENTER section is executed.
BUILDER reads sequentially through the SCREEN for the matching ACTION section. The
first one it finds that matches will be the section executed.

EXAMPLES:

eee LAYOUT
ENTER CHOICE AND PRESS RETURN

[CHOICE)
1. ADD
2. DELETE
3. PRINT

sss DECLARATION
CHOICE:ACTION:RANGE-1/3
¢ees ACTION 1
CALL SCREEN ADD
¢*se ACTION 2
CALL SCREEN DELETE
sess ACTION 3
PRINT

DECLARATION Section

delimiters DECLARATIONS [STATE=-statename)

Specifies options for the variables defined on the screen layout and creates temporary
variables that can be used in computation but which are not part of the layout.

STATE Optional. When the SET STATE command is executed, the
declarations within the appropriate DECLARATION section are used to
modify existing variables. This can be used to change fields from
optional to required, change enhancements, set initial valuss, etc. The
NAME, LENGTH, ARRAY or GLOBAL options of a variable may not
be changed in a DECLARATION section containing a statename.

State names must start with a letter, contain only letters, numbers,
and underscores (“_"), and be no more than 15 characters long.

All variables used in a screen must appear in the LAYOUT or be declared in a
DECLARATION section that has no STATE. Lines in the DECLARATION section consist
of a list of variable names separated by commas (*,") optionally followed by a semicolon
(*;") and a list of variable options separated by semicolons. Declaration lines may begin
in any column and may be continued on additional lines by terminating each line with an
ampersand ("&"). Nothing other than declaration lines or blank lines may appear in the
DECLARATION section. The double dash ("—") may be used on any line in the

DECLARATION section to indicate that the rest of the line is comment.

If no options are specified, the variable defaults to an OPTIONAL ALPHABETIC variable.
If the variable appears in the LAYOUT, its default LENGTH will be its length in the
LAYOUT:; otherwise, it will default to LENGTH=10.

All the variables in the list are assigned the options specified in the option list. Each
line of the DECLARATION section consists of:

variablename(,variablename...]]

[;ALPHA | NUMERIC[;DECIMAL=number] | DATE[="format"]]
[OPTIONAL ! REQUIRED | DISPLAY | POSITION]
[;ACTION]

[:ARRAY=elements])
[;ARRAYORDER=ACROSS | DOWN]
[;BLANK[=YES | NOI]]
[:DEBLANK[=YES | NOIJ}
[;ECHO[=YES | NO | ON | OFF]]
[;ENHANCE=enhlist]

[;GLOBAL]

[;INITIAL=value]

[;JUSTIFY=LEFT | RIGHT | CENTER | NONE]}
[;LENGTH=length]
[;NAME=newname]
[;POS_ENHANCE=enhlist]
[;RANGE=rangelist]
[;SUB_ENHANCE=enhlist]
[;TAB=CLEAR 1| SKIP]
[;UPPER[=YES | NOJ]

35

DECLARATION Section

data type

DECIMAL =number

variable type

ACTION

ARRAY=elements

Optional. May be one of ALPHA, NUMERIC, or DATE. If not
specified, the default is ALPHA.

ALPHA: The variable may contain any printable character.
NUMERIC: The variable may only contain numeric values.

DATE[="dateformat”]: The variable represents a date in the given
format or, if a format is not given, in the current SET
OPTION DATE format. The format must be a valid
RELATE date format enclosed in quotes. Dates are
accepted and displayed in the indicated format.

This keyword can only be used on NUMERIC variables. Number
must be a positive integer referring to the number of decimal
positions to be displayed in the variable. If, instead of a number,
FLOAT is specified, the maximum decimal positions allowed by the
size of the variable are displayed. The value actually displayed is
the value used in calculations and for updating files. The default is
FLOAT.

Optional. May be one of OPTIONAL, REQUIRED, DISPLAY, or
POSITION. If not specified, OPTIONAL is the default. This
attribute applies to the variable only in the current screen; it is
not carried from one screen to another.

OPTIONAL: The variable is optional. A value need not be placed
into the variable. i

REQUIRED: The variable is required. If an automatic VERIFY
takes place (which can be turned off with the SET OPTION
VERIFY command), if the VERIFY command is executed, or
if the value of the variable is changed, an error is
generated unless data is entered.

DISPLAY: The variable is display only. The application can place
data into the variable but the user cannot position the
cursor onto the variable.

POSITION: The variable is treated as a DISPLAY variable but the
cursor may be positioned to the variable.

The variable is an ACTION variable. Only one variable on each
screen can be declared as an action variable. When
RETURN/ENTER is pressed, the value of the action variable
determines which ACTION section should be executed. If STATE
names appear on any DECLARATION sections, any SET STATE
command to a state matching one of these sections will cause the
variable to no longer be an ACTION variable. A screen need not
have an action variable.

Indicates that the variable is to be treated as an array variable

containing the specified number of elements. If this is not
specified, the number of eliements is determined by the LAYOUT

36

DECLARATION Section

of the current screen. This keyword is ignored if it specifies fewer
elements than appear on the screen. if more are specified than are
in the LAYOUT, the larger number will be used. (For further
information, see the ARRAY VARIABLES commentary later in this
section.) This keyword cannot be specified if the DECLARATION
delimiter line contains a state name.

ARRAYORDER=ACROSSIDOWN

BLANK[=YESINO]

DEBLANK[=YESINOQ]

Indicates if the array variable should be assigned subscripts left to
right (across) or top to bottom (down). By default, array elements
are assigned across.

If the value of the variable is zero, it will be displayed and
processed as a blank. |f BLANK is specified without YES or NO,
YES is assumed. The default if BLANK is not specified is NO.

If DEBLANK=NO, leading and trailing blanks are not removed when
the variable is used in the substitution algorithm. Enough blank
space must be left in the line at the location of the substituted
variable to accomodate the full length of the variable, or the
error "NOT ENOUGH WHITE SPACE" may be encountered. If
DEBLANK is specified without YES or NO, YES is assumed. The
default if DEBLANK is not specified is YES.

ECHO[=YESINOIONIOFF] If ECHO=NO, any values assigned or typed into the variable, on

ENHANCE=enhlist

GLOBAL

the screen or in response to a PROMPT, will not be displayed. If
YES or NO is not specified, YES is assumed. The default is YES.

This specifies the variable’'s display enhancement. By default, a
variable’'s enhancement is determined by its display option (either
OPTIONAL, REQUIRED, DISPLAY, or POSITION). If the default is
not appropriate, the enhancement may be changed. Enhlist should
contain one or more of the keywords (or their abbreviations)
BLINKING, HALFBRIGHT, INVERSE, UNDERLINE, or NONE
separated by commas. |f NONE is specified, none of the other
enhancements can be specified. |f SUB_ENHANCE is also used in
the same command or DECLARATION, whichever is specified last
takes precedence.

Indicates that the variable has been defined on a screen above the
current screen and that a new variable should not be created. By
default, a variable included in the DECLARATION section or in
the LAYOUT is assumed to represent a new variable in the
absence of this keyword. The keyword causes all attributes of the
variable to be duplicated in the current screen. The attributes
can selectively be overridden by inclusion of the declarative
keywords. This keyword cannot be specified if the DECLARATION
delimiter line contains a state name. Read the section on GLOBAL
VARIABLES for more detailed information.

37

DECLARATION Section

INITIAL=value

JUSTIFY=just

LENGTH=length

NAME=newname

POS_ENHANCE=enhlist

RANGE=rangelist

SUB_ENHANCE=enhlist

This specifies the value to be assigned to the variable whenever
the INITIAL section or appropriate SET STATE command is
executed. The value may be a quoted string or a numeric
constant. The value will be displayed when the screen is initially
drawn (or redrawn).

Indicates the lustification of data within the variable. The
justification must be one of: LEFT, RIGHT, CENTER, or NONE.
The default is LEFT. The variable is justified when data is
changed on a screen or assigned by an assignment statement.

The number of characters available for the variable is specified. A
veriable may not contain more than 1500 characters. If this
keyword is specified for a variable that appears in the LAYOUT,
earlier in the same DECLARATION, or in a DECLARATION
section with a state name, the length must match the originally
calculated length, or an error will result.

The variable name is Changed to the name specified. The new
name should be used when the variable is referred to in the other
sections. This keyword cannot be specified if more than one
variablename is specified on that line or if the DECLARATION
delimiter line contains a state name.

This will cause the variable to change enhancements to the
indicated list whenever the cursor is positioned on the variable.
The enhlist may contain the same items described in ENHANCE.

Requires that any vaiue entered into the variable be one of the
legal values specified in the rangelist. Rangelist is a list of
ranges separated by commas. A range is either: a single number,
& quoted string, or a range specified: llow] / [high). Either low
or high may be absent. Low or high may be numbers or quoted
strings. If the rangelist consists entirely of individual quoted
strings then BUILDER will match the user's input with the
rangelist until a partial match is found. If an unambiguous partial
match is found the variable will be set to the compiete value of
the response.

Specifies the display enhancements of the variable at the current
subscript. The enhlist may contain the same items described in
ENHANCE.

If used in the DECLARATION section, this will be the first
element of an array, or the variable itself for a non-array
variable. If ENHANCE is also specified, whichever enhancement
was specified last in the DECLARATION will take precedence.

Used in a MODIFY VARIABLE command, non-array variables are
considered to have a subscript of zero.

TAB=CLEARISKIP

UPPER([=YESINO]

EXAMPLES:

see LAYOUT

DECLARATION Section

Indicates the action BUILDER should take when a change has been
made to a variable and the TAB or RETURN/ENTER key is struck.
If CLEAR is specified, data in the variable beyond the cursor is
blanked. If SKIP is specified, the data is not blanked. The
default is SKIP for LEFT justified variables and CLEAR for
CENTER or RIGHT justified variables and dates.

All letters placed into the variable are converted to uppercase
before being used. The keyword cannot be specified with
NUMERIC. |If UPPER is specified without YES or NO, YES is
assumed. The default if UPPER is not specified is NO.

EMPLOYEE NAME:[ENAME]

SEX:[S]

AGE:[age] DATE HIRED:[hdate]

ses DECLARATIONS
ENAME,S,AGE;REQUIRED

S

AGE
HDATE
ANSWER

sss ENTER

i NAME=SEX_CODE;RANGE="M" "F*"

i NUMERIC:RANGE=1/120

:DATE="M/D/Y*
;LENGTH=1; UPPER; RANGE="Y" ,"N" ;REQUIRED

IF SEX_CODE="M"

PROMPT

ENDIF

“"DO THEY OWN A CAR?“, ANSWER

ENTER Section

delimiters ENTER [STATE-statename]

Contains commands that are executed, if an exscutable ACTION section isn't found, when
the user indicates that data entry is complete by pressing the RETURN/ENTER key.

STATE Optional. Depending upon the value of the current state the
appropriate ENTER section will be executed when the user presses
RETURN/ENTER. If no ENTER section is found with a matching state
name then the ENTER section without a state name will be exscuted.

State names must start with a letter, contain only letters, numbers,
and underscores ("_"), and be no more than 15 characters long.

Normally this section contains the majority of processing to be performed by the screen.
The ENTER key (which exists on some terminals) should only be used if operating in
Block Mode.

EXAMPLES:

*se LAYOUT
[eno] [naome] [oddress]

TYPE IN NEW DATA AND PRESS RETURN TO ADD
ese ENTER

IGNORE ALL ERRORS

RECORD ADD

IF $ERROR

FAIL $ERRMSG
ELSE

DISPLAY “"RECORD ADDED."
ENDIF

3-10

FUNCTION Section

delimiters FUNCTION [character] [;L ABEL="string"] [:STATE=statename]
FUNCTION sections contain commands that are executed in response to function keys.

character Recquired. Valid characters are uppercase A through Z (a lowercase
character entered as a function will cause the uppercase function to
execute), the numbers O through 9, and any special character except
semicolon (";"), double quote ("""), comma (“,"), period (“."), and slash
("7"), which are special functions defined in BUILDER. When a
function key is struck, the section corresponding to the key is
executed. All but one FUNCTION section must be named with a
single character. See the Creating and Modifying Terminal Drivers
Appendix for information on how to define F10 and above.

LABEL="text" Optional. If specified, the LABEL keyword must be followed by text
within quotes. This text will be used if the terminal has function key
labels. If the text contains a vertical bar ("1"), the text before the
bar will appear on the first line of the function key label and the text
after the bar will appear on the second line or be disregarded. If no
LABEL is specified and the terminal has function key labels, all
functions defined in the screen will be labeled as "F1", "F2", etc..

If the terminal doesn't have function key labels, the LABEL may be
displayed on the message line when it is not otherwise being used.
See the Creating Terminal Drivers Appendix for further information.

STATE Optional. Depending upon the value of the current state the
appropriate FUNCTION section will be executed when the user presses
a function key. If no FUNCTION section is found for that key with a
matching state name, then the FUNCTION section without a statename
is executed, if one exists. If a matching local function without a
statename does not exist then the matching function in the GLOBAL
section will be executed. Functions in the GLOBAL section may not
have STATES.

State names must start with a letter, contain only letters, numbers,
and underscores ("_“), and be no more than 15 characters long.

The number of the function key struck is placed into the built-in variable $KEY by
BUILDER. If the terminal does not have function keys, the ESCAPE key followed by a
character (and RETURN in line mode) will also cause the FUNCTION sections to execute.

If an unnamed FUNCTION section exists, it will be executed if a function key is pressed
which does not have a matching FUNCTION section.

F-1

FUNCTION Section

EXAMPLES:

¢¢s FUNCTION 1; LABEL= "READ|NEXT"
RECORD READ
1F $EOF
RECORD REWIND
RECORD READ
ENDIF
sse LAYOUT
CUST:{cnum]
sse FUNCTION B8; LABEL="EXIT"
NOTE If I press F8,BUILDER wil| give message
NOTE "Required varioble. Must have valye.".

NOTE Use the SET OPTION VERIFY command to fix

RETURN SCREEN

3-12

this.

GLOBAL section

delimiters GLOBAL [LINEDRAW=iinechar]

Defines INITIAL, DECLARATION, TIMEOUT, and FUNCTION sections available to the
entire application.

LINEDRAW Optional. If specified, a character must be specified to indicate that
the terminal's linedrawing set will be used. Valid characters are 1,
@ # $ °, % - = 4+ - /, and ". This character, when placed

vertically or horizontally adjacent to another LINEDRAW character
anywhere in a LAYOUT section, will result in a line on the screen. A
minimum of two adjacent characters are required to draw a line.
Single characters will not be altered. If run on a terminal without
linedrawing capability, each LINEDRAW character will be replaced
with a space. The character used to begin delimiter lines should not
be used as the LINEDRAW character. This LINEDRAW character will
be in effect for every LAYOUT section in the application unless
LINEDRAW is used explicitly for that LAYOUT section.

This section is similar to a SCREEN section. Any sections inside a GLOBAL section are
treated as global to the entire application. The GLOBAL section may contain a
DECLARATION section to declare global variables. The GLOBAL section may contain an
INITIAL section that is executed once at the start of the application. The GLOBAL
section may also contain FUNCTION sections to declare global function keys. These
function keys can be executed from any screen in the application unless superceded by a
FUNCTION section of the same name explicitly declared in a screen.

If a TIMEOUT section is included, it will be used for any screen that times out if the
screen doesn't have a TIMEQUT section of its own.

The GLOBAL section must appear in the first application file of your application. There
may only be one GLOBAL section in the application.

EXAMPLES:

ess GLOBAL
sse DECLARATION
ANSWER; LENGTH=1; UPPER; RANGE=™Y™" 6 “N*

see FUNCTION 7; LABEL="PREVIOUS|SCREEN"
PROMPT “OK TO EXIT?",ANSWER
IF ANSWER="Y™"
EXIT
ENDIF

sses SCREEN MAIN
see .+...body of first screen....

313

INITIAL Sections

delimiters INITIAL [STATE=statename]
delimiters INITIAL EVERYTIME

These sections contain commands that are executed before the screen is displayed.

STATE Optional. Indicates that this section contains commands that will be
executed when a SET STATE command with this name is executed.

State names must start with a letter, contain only letters, numbers,
and underscores ("_*), and be no more than 15 characters long.

The INITIAL section without a STATE name will be executed any time a CALL SCREEN
or SET SCREEN to the screen containing the INITIAL section is performed, or, if the
screen is the first screen in the application, when the application begins.

Assignment of defaults and other initialization tasks can be performed in these sections.
When the screen is displayed, any changes made in this section will appear. A REFRESH
command can be included in the INITIAL section to force the screen to be displayed
before the section is completed.

The INITIAL EVERYTIME section is executed after the INITIAL section and again before
the screen is redisplayed after any FUNCTION, ENTER, or ACTION section has been

executed. See the Execution Processing Loop discussion later in this section for a more

detailed description.

EXAMPLES:

sse INITIAL
OPEN FILE cusT
SET INDEX CNO
CREATE PARTITION MAIN_INVOICE
OPEN FILE INVMAS
SET INDEX CNO
SET PARTITION DEFAULT
ses INITIAL EVERYTIME
CHOICE:m®»
TIME:=$TIME

3-14

~—

LAYOUT Section

delimiters LAYOUT [LINEDRAW-~linechar]

Contains the format of the screen.

LINEDRAW Optional. If specified, a character must be specified to indicate that
the terminal's linedrawing set will be used. Valid characters are |, !,
@ # 8 ° * - = + =~ |/, and ". This character, when placed
vertically or horizontally adjacent to another LINEDRAW character
anywhere in the LAYOUT section, will result in a line on the screen.
A minimum of two adjacent characters are required to draw a line.
Single characters will not be altered. If run on a terminal without
linedrawing capability, each LINEDRAW character will be replaced
with a space. The character used to begin delimiter lines should not
be used as the LINEDRAW character.

Each line between the LAYOUT section delimiter line and the next delimiter line
encountered in the application file becomes a line on the screen. The layout should be
typed into the editor file as it should appear on the screen.

Variables are defined by surrounding their location with brackets and placing the name of
the variable between the brackets ([variablename]). Brackets will be displayed as blanks
when BUILDER displays the layout on the screen. There is no way to have a square
bracket appear in the final layout. The length of the variable does not include the
brackets. A variable name cannot exceed 15 characters, must start with a letter, and
may only contain letters, digits, and underscores (*_"). BUILDER follows RELATE
conventions when dealing with IMAGE data item names.

The last line of the screen is reserved as the message line and should not be used as part
of the layout. If the layout consists of more lines than can fit on a screen, the extra
lines are ignored. If the ‘layout is wider than the screen, the extra characters are

ignored.

EXAMPLES:

ses LAYOUT LINEDRAW=4+
AR S S L SR DR S e L L T T T T O OO O N R O RO U U G G,

+ INVENTORY ADDITION +
++4‘+++++++++'0’++++++++4‘++++++++++++"’++++++++"'+++++++++++++4‘
+ PART NUMBER: [port_num] +
+ QUANTITY RECEIVED: [qty] +
+ DATE RECEIVED: [rdate] +
+ MANUFACTURER NUMBER: [mno] +
+4‘#++++"'+*++“‘+++++
+ PRESS RETURN TO ADD; PRESS F1 FOR PREVIOUS SCREEN +

AR SRS SRR R AR R TR R R R R R X TR B R A ST GV AU AT IR

3-15

SCREEN Section

delimiters SCREEN scresnname

Defines the beginning of a new screen.

screenname Required. A screen name must be specified. A screen name must
not exceed 15 characters in length, must start with a letter and
contain only letters, digits, and underscores ("_"). A screen name
cannot be duplicated in the same application. This name can be
referenced by CALL SCREEN and SET SCREEN commands.

Anything between the Screen delimiter line and the next delimiter line is ignored by
BUILDER. This area can be used for comments.

3-16

TIMEOUT

delimiters TIMEOUT

Contains commands that are executed when the number of seconds indicated with the SET
OPTION TIMEOUT command have passed with no user input.

This will occur at any time a BUILDER application is waiting for a user response,
including PROMPTS, except while in DEBUG mode. A screen with no variables in the
LAYOUT section will not time out unless a PROMPT occurs.

The TIMEOUT section applies only to the current screen, not to any screens called by
this screen.
EXAMPLES:
see INITIAL
SET OPTION TIMEOUT=19

sse TIMEOUT
DISPLAY "PLEASE DO SOMETHING."

317

VARIABLE Section

delimiters VARIABLE [variablename)

Contains commands that are executed when the value of the indicated variable is changed
by the user.

variablename Optional. The name of a variable in the application with which this
sequence of actions should be associated. All but one VARIABLE
section must be named.

When a variable is changed by the user, the corresponding VARIABLE section is executed.
If a variable is used in a FAIL command the appropriate variable section will also
subsequently execute when the screen is completed. If a VARIABLE section does not
exist for the variable, the unnamed VARIABLE section is executed. If an unnamed
VARIABLE section does not exist, no actions are taken.

EXAMPLES:

sses LAYOUT

PART :[partnum] MANUFACTURER: [mnum]) PRICE:[price]

ses DECLARATION
OLD_PRICE; NUMERIC

¢ses VARIABLE PARTNUM
RECORD POINT USING PART_MAST
IF NOT $FOUND
FAIL "No such part number.*
ELSE
RECORD READ
ENDIF

¢*s VARIABLE PRICE
IF PRICE>OLO_PRICE
DISPLAY “Cost has increased."
ENDIF

3-18

ARRAY VARIABLES

The creator of an application may wish to design a screen that displays data from a
database file. This can easily be done by creating variables on the screen with the same
name as fields from the file and issuing a RECORD READ command to move data from
the file to the screen. However, sometimes it may be desirable to place several records
from a file onto the same screen. In this case, several variables on the screen must all
have the same name as a single field in the database file. This situation is handied by
array variables.

Definition

An array variable is a collection of variables that all have the same variable name. If a
screen contains one or more array variables then the screen is called an array screen. If
a variable appears three times on a screen, we say that there are three elements of the
array variable on the screen. The number of elements in an array variable is normally
determined by the number of times the variable appears in the LAYOUT, but can be
adjusted upwards with the ARRAY keyword in the DECLARATION section.

Subscript Numbers

Each element of an array variable is assigned a subscript number starting at zero. The
subscript numbers are assigned left to right and top to bottom on the screen
automatically by the screen system unless specified otherwise in the DECLARATIONS
section using the ARRAYORDER keyword. Most operations performed on variables will
occur only on one element of the array at a time. Which element is determined by the
$SUBSCRIPT built-in variable.

$SUBSCRIPT

At the beginning of the execution of a section, the current value of $SUBSCRIPT will be
the same as the variable where the cursor was positioned before execution of the section.
The current subscript may then be changed by an assignment to $SUBSCRIPT or by using
the ARRAY loop command.

If $SSUBSCRIPT is assigned a value that is higher than the number of elements in the
array, and an array variable is used, BUILDER will wrap around the array. For example,
in a 3-element array, the first element will be used whenever the value of $SUBSCRIPT
is 0, 3, 6, 9, and so on.

ARRAY/ENDARRAY Loops

The ARRAY command is used to loop through a sequence of commands once for each
defined array element. The array command consists of an ARRAY statement that begins
the loop and an ENDARRAY statement that ends the loop. All commands within an
array loop are executed once with a different array element each time through the loop.
An ARRAY loop is terminated at the ENDARRAY command when a reference is made
during the loop to a variable in the last element of any array or when no array element
is referenced within the loop. In addition, the EXITARRAY command can be used to
terminate a loop early, but it is recommended that this be avoided, if possible, since
BUILDER's array processing automatically handles many common array processing
situations. The last element of the array is not determined by the number of elements in
the layout, but by the definition of the variable.

3-19

If an assignment is made within an ARRAY loop to $SUBSCRIPT, it will affect all

ent commands that use array variables until an ENDARRAY command is executed.
In other words, an assignment can be made to $SUBSCRIPT within an
ARRAY/ENDARRAY loop if desired, but the change will only affect commands until the
ENDARRAY is reached, at which point the loop will continue as if no assignment had
been made.

EXAMPLES:

For example, consider the screen:

sees LAYOUT
DISPLAY RECORDS 1IN PARTS FILE

PART NUMBER DESCRIPTION COST . QUANTITY
[PARTNO] [DESCR] [cOoST] [aTY]
[PARTNO] [DESCR] [cosST] [aTY]
[PARTNO] [DESCR] [cosST] [aTY]
[PARTNO] [DESCR] [cosT] [aTY]
[PARTNO] [DESCR] [cosT] [aTY]
[PARTNO] [DESCR] [coST] [aTY]
[PARTNO] [DESCR] [cosT] [aTY]
[PARTNO] [DESCR] [cosT] ([aTY]
ses ENTER

ARRAY

RECORD READ
ENDARRAY

The preceding layout will display one record in each array element on the screen. There
are four array variables on the screen: PARTNO, DESCR, COST, QTY. FEach array
variable contains eight elements. Eight database records, therefore, can be displayed on
the screen at one time.

Array DECLARATIONS

If an array variable is REQUIRED and all variables on the current screen with the same
subscript are blank then a required variable error is not generated for that blank array
variable.

If an array variable is declared as GLOBAL and does not appear in the LAYOUT, then
the number of elements will correspond to the earlier declaration of the variable. If it
does appear in the LAYOUT section, the number of elements available will be the number
appearing in the LAYOUT, ignoring the array keyword if it is specified in the local
DECLARATION section.

Array screens are not limited to containing only array variables. For example:

3-20

sses LAYOUT
DISPLAY DETAIL LINES FOR INVOICES

CUSTOMER:[CNO] [CNAME]
INVOICE :[INVNO) DATE INVOICED:[DINV]
LINE PART QUANTITY PRICE TOTAL
NUMBER ORDERED EACH AMOUNT
[LNuM][PNO] [QTYORD] [PRICE J{TOTAMT
[LNUM J[PNO] [QTYORD] [PRICE J{TOTAMT
[LNUM J[PNO] [aTYORD] [PRICE J{toTAMT
[LNUM J[PNO] [QTYORD] [PRICE J{toTAMT
[LNUM][PNO] [QTYORD] [PRICE J{TOoTAMT
TOTAL OF INVOICE : [INVTOT
sse DECLARATION ‘
CNAME, DINV, INVTOT ;DISPLAY
PRICE, TOTAMT, INVTOT iNUMERIC; DECIMALS=2
QTYORD, LNUM, CNO, INVNO;NUMERIC
CNO, INVNO iREQUIRED
LNUM,PNO,QTYORD,PRICE, TOTAMT; DISPLAY
DINV iDATE=a"M/D/Y™
TEMPCNO i NUMERIC

seses VARIABLE CNO
NOTE Save CNO before clearing screen
TEMPCNO:=CNO
CLEAR SCREEN
RECORD POINT USING CUST; KEY=TEMPCNO
IF $FOUND
RECORD READ USING CUST
ENDIF

sses VARIABLE INVNO
RECORD POINT USING INV;‘KEY-INVNO
IF $FOUND
RECORD READ USING INV
ENDIF

RECORD POINT USING DETAILS; KEY=CNO, INVNO
IF $FOUND
INVTOT:=0
ARRAY
RECORD READ USING DETAILS
TOTAMT :=QTYORD«PRICE
INVTOT:=INVTOT+TOTAMT
ENDARRAY
ENDIF

ses INITIAL
DISPLAY "PLEASE WAIT FOR FILES TO BE OPENED. . ."
CREATE PARTITION CUST
OPEN FILE CUST

3-21

SET INDEX CNO
DISPLAY "2, . . v
CREATE PARTITION INV
OPEN FILE INV
SET INDEX INVNO
DISPLAY *1.,. . *
CREATE PARTITION DETAILS
OPEN FILE INVDET
SET INDEX CNO,INVNO,LNUM

Array Loop Nesting

ARRAY/ENDARRAY loops may be nested, and BUILDER will correctly track $SUBSCRIPT
in each loop. Be careful not to reference an element of the outer array loop within the
inner loop, as $SUBSCRIPT will reflect the inner loop count and the wrong element of
the outer array would be referenced. An example:

ses SCREEN PAYMENTS
ses LAYOUT
DISPLAY OF MONTHLY PRINCIPLE & INTEREST PAYMENTS

LOAN OF[YR]YEARS >> PRESS RETURN TO CALCULATE AMOUNTS
LOAN AMT[1 I1X[1 Ix[1 Ix(1 Ix{1 I1x[1 Ix[1 1%
(A JlP 1(P1 1P 1[P1 1[P1 1P 1P]
[A J(P2 lip2 JlpP2 J[P2 J[P2 jirP2 1(P2 1
(A 1(P3 1(P3 1(pP3 1[P3](pP3 1(P3]ipP3]
(A Jlr4 (P4 1(P4 1(Ps 1iP4 JlpP4 J[P4]
(A 1(P5 1[P5 1(P5 1(ps]iPs J(Ps 1(PS5]
(A 1[Ps 1(Pe 1(Ps 1(Pe 1(Ps 1(Ps 1(Ps]
(A Jip7 1(pP7 1(P7 1lpP7 1lp7 1(pP7 1(P7]
(A lirs llrs8 l(ps l(rs J(ps 1(Ps lipPs]
(A 1[Po 1lPs 1lPso 1lpPe 1lpPe 1(P9 llpPo]

ses DECLARATIONS
I: NUMERIC; DECIMALS=2; JUSTIFY=RIGHT
STINT,INCR,P1,P2,P3,P4,P5,P68,P7,P8,P9; NUMERIC

A,STAMT ,YR,AMOUNT, X i NUMERIC
A,I1,P1,P2,P3,P4,P5,P6,P7,P8,P9 iDISPLAY

STANMT i INITIAL=500080

INCR iINITIAL=0D.5

STINT ;INITIAL=6.5

YR ;INITIAL=30

MONTHLY_APR iNUMERIC; DECIMALS=4
INCRA iNUMERIC ;INITIAL=25000

sss ENTER
NOTE Display loan amounts storting ot $50,000 and going up by

NOTE $25,000. Display interest rates starting at 6.5% and
NOTE going up by .5%.
ARRAY
[:=STINT + (INCR-SSUBSCRIPT)
ENDARRAY

322

ARRAY
A:=STAMT + (INCRA‘$SUBSCRIPT)
ENDARRAY
ARRAY
AMOUNT : =A
X:=$SUBSCRIPT+1
ARRAY
MONTHLY_APR:=(1/12.00)/100.080
P(XX]):= &
AMOUNT s MONTHLY_APR/(1.80-(1.00/((1.00+MONTHLY_APR)es(YR+12))))
ENDARRAY
REFRESH
ENDARRAY

3-23

3-24

GLOBAL VARIABLES

A global variable is, in general, one whose value needs to be passed from one screen to
another.

Variable Declaration

Each variable has a place of origin: the screen in which it first came into existence
(was DECLARED). A variable is DECLARED by either:

a) appearing in the LAYOUT section of a screen; and/or

b) being listed in a DECLARATION section that doesn't have a STATE label in
either the GLOBAL section or any SCREEN.

GLOBAL keyword

At a variable’s point of origin, the GLOBAL keyword should NOT be specified. The
GLOBAL keyword is used for that variable in the DECLARATION section of screens
below its point of origin. The GLOBAL keyword means “this variable has been declared
previously.”

If a variable is declared (per above definition) in a screen and it is not explicitly
specified as a GLOBAL variable, it is assumed to be a NEW variable and will have no
connection with any variables in screens above it.

If the SET OPTION VARIABLE=GLOBAL command has been issued, or if no SET OPTION
VARIABLE command has been issued, and a variable is NOT declared in a given screen
but is used in that screen somewhere other than in the LAYOUT or DECLARATION, it is
assumed to be a GLOBAL variable; that is, it is treated the same as if it was listed in
the DECLARATION section with a GLOBAL keyword.

If the SET OPTION VARIABLE=LOCAL command has been issued, and a variable is not
declared in a given screen but is used there, an error will occur.

Availability of Use

If a variable’'s point of origin was the DECLARATION in the GLOBAL section, it can be
referenced from anywhere else in the application as a GLOBAL variable. If its point of
origin was a screen in the application, it can only be referenced in that screen or if that
screen does a CALL SCREEN to at least one other screen.

Phrased another way: picture your application as a hierarchy of screens with the GLOBAL
section at the top of the hierarchy and the first screen in the application directly below
that. Whenever a CALL SCREEN is done, the called screen becomes a new, iower level in
the hierarchy. When a SET SCREEN is done, the new screen replaces the previous screen
at the same level in the hierarchy. A variable can be referenced if its point of origin
was anywhere in the hierarchy higher than the current screen. (See the following chart.)

Matching variable names
A variable determined to be GLOBAL will match with the variable with the same name

that has the most recent point of origin, not with the first declared variable of the same
name. For example:

3-25

¢ese SCREEN A

seses DECLARATION
X

*es INITIAL
X:=2
CALL SCREEN B

sss SCREEN B

¢¢e DECLARATION
) 4

see INITIAL
X:=3
CALL SCREEN ¢

ses SCREEN C

sees DECLARATION
X; GLOBAL

sse INITIAL
X:=m4

In the above example, displaying the value of X in screen A will always show as 2. The
value of X in screen B will show as 3 before going to screen C. and 4 after returning
from screen C.

Another giobal variable example:

sss GLOBAL
see DECLARATIONS
NAME ; LENGTH=29

*es INITIAL
OPEN FILE CUSTOMER
NOTE This file contains fields NAME , ADDRESS, and CITY

¢ee SCREEN MAIN
s LAYOUT
PRESS F1 FOR NEXT SCREEN

¢ss DECLARATION
ADDRESS:; LENGTH=39

ses FUNCTION 1;LABEL="NEXT SCR*
CALL SCREEN NEXT

¢s+s SCREEN NEXT
¢ess LAYOUT
[cItY]

*se INITIAL
RECORD READ
NOTE The above command will read values into the NAME,
NOTE ADDRESS, and CITY veriobles.

3-26

¢ GLOBAL
Declared: G

++ SCREEN A
Declared: A

CALL SCREEN

NZ
ot SCREEN B | SET SCREEN ##+ SCREEN C
Declored: B Declared: C

CALL SCREEN

¢ SCREEN D | SET SCREEN J #+ SCREENE
Declared: D

Variables available for global use in screen E: G, A, C

3-27

3-28

RECORD POINTER

All of BUILDER'S RECORD commands:

RECORD ADD
RECORD DELETE
RECORD NEXT
RECORD POINT
RECORD READ
RECORD REPOINT
RECORD RESET
RECORD REWIND
RECORD UPDATE
$READ function
and all RELATE commands

affect or are affected by the current record pointer.

BUILDER actually maintains two pointers: one that points to the last record processed,
and one that points to the position in the current index that was most recently processed.

RECORD POINT, RECORD REPOINT, RECORD REWIND, and any RELATE command set
both of these pointers.

RECORD READ and RECORD NEXT look at the index pointer to determine which record
to read; if the current index pointer has already been read, then both the index and
record pointers will be moved to the next record, and that one will be read.

SREAD performs its own POINT and possibly several reads, leaving both the index and
record pointers positioned on the record AFTER the last record it read.

RECORD ADD alters the record pointer but does not affect the index pointer.

RECORD UPDATE and RECORD DELETE affect the record using the record pointer, not
the index pointer.

RECORD RESET has no effect on either pointer.
See each command for additional information on how the pointer is affected.

The net effect is that one partition can be used to both ADD and READ without losing
the READ pointer.

3-29

3-30

STATES

STATEs in BUILDER allow one screen to be used for several different purposes. The
screen's current STATE is defined by using some combination of the following:

*** DECLARATIONS [STATE=statename]

*** INITIAL [STATE=statename]

*** ENTER [STATE=statename]

*** FUNCTION [character] [;LABEL="text"] [;STATE=statename]
SET STATE statename

DECLARATION

A DECLARATION section with a STATE name attached acts only as a series of MODIFY
VARIABLES for the variables listed in that section which will take place whenever a SET
STATE is done to the indicated STATE. Hence, an unlabeled DECLARATION section may
still be necessary to define layout variables and create other variables. Variables modified
by a labeled DECLARATION section will not be unmodified when a different STATE is
set. If there is no labeled DECLARATION section for a STATE, the SET STATE
command will not execute any DECLARATION section.

INITIAL

An INITIAL section with a STATE name attached is executed every time you enter that
state (ie: with a SET STATE command). The uniabeled INITIAL section is only executed
when you come into a screen (ie: with a SET or CALL SCREEN command). If there is

no labeled INITIAL section for a STATE, the SET STATE command will not exscute any
INITIAL section.

ENTER

When RETURN/ENTER is pressed, an ACTION section will occur if appropriate. If no
ACTION section is appropriate, then the ENTER section with the appropriate STATE label
is executed. If there is no ENTER section so labeled, the unlabeled ENTER section is
executed.

FUNCTIONSs

Function key labels are redrawn to match the function keys for that state, if needed,
whenever a SET STATE is done. When a function key is pressed, the FUNCTION section
matching the current STATE, if there is one, is executed. If not, and there is an
unlabeled FUNCTION section matching the function key, it is executed.

SET STATE

The SET STATE command will:

1. Modify variables and set INITIAL values based on the DECLARATION section
~ matching that state if one exists.

2. Execute the INITIAL section for that state, if one exists.

3. Redraw the function key labels to match the function keys for that state.

3-31

EFFICIENCY

depending on how many variables are declared and how many function keys are redefined.
STATES are best used for operations that the user will be performing periodically
(specifically, as a replacement for moving from one Screen to a very similar one), rather
than frequently (such as checking for errors after a file update or other subroutine-type
operations).

3-32

EXECUTION PROCESSING LOOP

The interpreter executes an application by following a well defined sequence of steps.
These steps determine when to evaluate each of the individual sections. The creator
controls BUILDER's interface with the user and the processing by placing commands and
specifications into these sections.

At the highest level, the system displays a screen, waits for input, processes the input,
and then displays a screen again. The action taken by the system is determined by the
data input and the sections that exist in the application. A more detailed description of
this processing loop follows. This execution processing loop is interrupted when an error
occurs or SET SCREEN, CALL SCREEN, or RETURN SCREEN commands are executed.

1) Evaluate the LAYOUT section, if one exists.

2) Evaluate the unlabeled DECLARATION section, if one exists.

3) Execute the unlabeled INITIAL section, if one exists.

4) Execute the INITIAL EVERYTIME section.

5) Display the new screen layout or update any changes made to the existing layout.

6) (NonBlock Mode) Wait for TAB, a function key, RETURN, or until a variable has
been filled.

6) (Block Mode) Wait for a function key or ENTER to be pressed.

7) If the value of a variable was changed by the user (in block mode, all changed
variables are checked at this point), perform the actions in the VARIABLE section
associated with the variable.

8) If neither a function key nor RETURN/ENTER was pressed, continue at step 5.

9) If no FAIL or FINISH was encountered in a VARIABLE section, perform an
automatic VERIFY (unless disabled with the SET OPTION VERIFY command).

10) iIf no FAIL or FINISH or automatic BUILDER error has been encountered, execute
the appropriate FUNCTION, ACTION or ENTER section.

11) Whether or not a FAIL, FINISH, or automatic message was encountered, return to
step 4.

3-33

334

CHANGING SCREENS

There are two methods in BUILDER to move from one screen to another:

SET SCREEN name

or: CALL SCREEN name followed by RETURN SCREEN
SET SCREEN

1) The new screen is searched for in the current application file.

2) If the new screen cannot be found in the current application file, the screen name
stll Cannot be. oponet) et A N A e e openes, the stromn
name is searched for in the new file. |f the screen cannot be found, an error
resuits.

3) The previous screen definition and all variables defined on the screen are released.

4) The new screen is cbtained from the LAYOUT section and the normal processing

loop, described in the previous section, is begun.

CALL SCREEN / RETURN SCREEN

1)

2)

3)

4)

5)

6)

7)
8)

When the CALL SCREEN is executed, the new screen is searched for in the
current application file.

If the new screen cannot be found in the current application file, the screen name
is treated as a file name and the system attempts to open the file. If the file
still cannot be opened, an error results. If the file can be opened, the screen
name is searched for in the new file. If the screen cannot be found, an error
results.

The previous screen definition is released and all variables defined on the screen
are saved.

The new screen is obtained from the LAYOUT section and the normal processing
loop, described in the previous section, is begun.

If a CALL SCREEN is used, a RETURN SCREEN, not a SET SCREEN., should
always be used to return to the previous screen.

When the RETURN SCREEN is executed, the layout of the screen being returned
to is located. If the previous screen existed in another application file, the file
is accessed.

The existing screen and all variables defined by the screen are released.

The return screen is obtained from the LAYOUT section, and command execution
continues at the command after the CALL SCREEN command.

3-35

3-36

SUBROUTINES

A screen without a LAYOUT section is treated as a subroutine screen. CALL SCREEN
and SET SCREEN commands may be used to reference the subroutine screen. Commands
can be executed in such a screen without prompting the user for input or displaying
output. Subroutine screens are treated differently than other screens with respect to the
execution processing loop.

When a subroutine screen is called, the existing screen is not erased, and step 5 of the
Builder Interpreter's processing loop is not performed. The screen is not redrawn, and it
does not wait for input from the user. An ACTION or ENTER section is executed
immediately. The subroutine screen may prompt the user for data using the PROMPT
command.

if a CALL SCREEN is used, all variables from the calling screen may be referenced in
the subroutine screen. The subroutine screen may change any of the values available to
it.

A SET SCREEN will destroy the previous screen definition so variables from the previous
screen cannot be used in the subroutine screen, but actions can be performed in the
subroutine screen without requesting input from the user.

The final command in a subroutine screen should be a RETURN SCREEN or SET SCREEN.

If there is no LAYOUT section, BUILDER will loop continually through the ENTER section
until a CALL SCREEN, RETURN SCREEN or SET SCREEN is encountered.

See the Performance section for additional comments.

337

3-38

SUBSTITUTION ALGORITHM

Before a command is executed it is passed through the following substitution procedure.
This procedure substitutes data from variables defined in the application into the
command. The substitution takes place in all parts of any line in the section being
executed: within quoted strings, comments, and keywords. A command is not checked
for validity until after substitution has been done. ’

The substitution procedure first separates the command into words. A word is a sequence
of characters separated by blanks or by a special character. A word contains letters,
digits, or any of the following characters:

Percent sign ("%") as the first character.
Dollar sign ("$").
Underscore ("_").

If a word starts with a percent sign, the word is assumed to be a variable name known
at the current state of the application. The value of the variable, with leading and
trailing blanks removed (unless the variable was declared with option DEBLANK=NO), is
substituted into the command replacing the variable name and the percent sign. If the
variable was declared with DEBLANK=NO, the full size of the variable is used. If the
variable does not exist, the name is simply removed and no error is generated.

The substitution procedure also has several other capabilities that allow for optional
substitution of constant information and lists. These capabilities treat brackets ([1") and
braces (*{ }*) in special ways. All brackets and braces {not preceded by a percent sign
{("%") } must be paired or an error will be generated.

Any string enclosed in brackets is optional. If all of the variables within the brackets
contain blank values then everything between the brackets is ignored and removed from
the resulting command. If any variable within the brackets contains a non-blank value,
then all constants and all substituted variables within the brackets remain in the
command. The brackets are removed after the substitution.

Any string enclosed in double brackets (*[[* and *]]") is also optional. However, if any of
the variables within the brackets contain blank values, then everything between the
brackets is ignored. Otherwise, the enclosed string remains in the command. The
brackets are removed after the substitution.

Any string enclosed in braces is a list. A list is one or more optional variables separated
by commas or other delimiters. The following algorithm is used to compute the value of
the string within the braces. Nested braces or brackets are treated as variables in the
following context.

1) All characters until the first non-blank variable within the braces are ignored. The
variable is substituted into the string.

2) The next variable within the list is located. If another variable does not exist in
the list, the remaining characters are included and the substitution is completed.

339

3) If the variable found is blank, the characters between the last variable up to ane
including the current variable are removed. If the variable is non-blank, then—
include all the characters from the last variable until, and including, the current
variable. Continue at step 2.

If a character special to the substitution algorithm needs to be included in a command,
the character should be preceded with a percent sign. For example, to include a left
bracket in a command a %" should be entered (instead of st *[*). Likewise, to include
a single percent sign enter "%%".

All variables available to the application may be used in the substitution algorithm. This
includes system~defined variables such as S$DATE and SFOUND. All substitution is
performed before any execution, including the evaluation of functions and built-in
variables. If a system-defined variable which normally performs calculations is used (such

All BUILDER commands and most RELATE commands require that alphabetic information
be enclosed within qQuotes. There may be a problem when the message contains a
Substituted variable and the substituted variable contains a quote. For example, assume
the variable TEXT contains the string: THIS *IS" QUOTED. The variable TEXT contains
two quotes. After substitution the SELECT command

SELECT @ WHERE TEXTm"Xtext"

would normally be: -

SELECT @ WHERE TEXT="THIS “1s* QUOTED . *

But this would cause a RELATE syntax error. Because of this error, the substitution
routines, by default, change a single set of quotes to a double set. So after substitution
yYou would really get: :

SELECT @ WHERE TEXT=“THIS "njg=~ QUOTED. "

Now your command is syntactically correct. There are cases, however, when you don't
want the quotes changed. This capability to change quotes can be controlled with the
SET OPTION command.

Examples:
Assume the following variables and the following values:

COLOR ~=3
LINE ~=-
MARKER ~=2
EMPNO ~=1408

SALARY ~a=

DEPT ~=SALES
F1 ~=EMPNO
F2 ~=SALARY
F3 ~e

Fa ~=DEPT
FS5 ~a

P ~m

X ~=7

Then the following templates will be substituted to produce the corresponding RELATE
commands.

Original Command:
DRAW GRAPH X [;COLOR=Xcolor]
[:LINE=Xtine]
[:MARKER=Xmarker]
BY Y

Executed:
DRAW GRAPH X ;COLOR=3
iMARKER=2
BY Y

The "X" is not substituted into the above command because it is not preceded by a
percent sign.

Original Commond:
PRINT[:%xp] ixf1,xfz,XfS.Xf4.xf5}

Executed:
PRINT EMPNO,SALARY,DEPT

Original Command:
SELECT ® WHERE f[EMPNO=Xempno]
AND [SALARY=Xsalary]
AND [DEPT="Xdept"]}

Executed:
SELECT © WHERE EMPNO=1408
AND DEPT="SALES"

341

EXAMPLES:

sse SCREEN OPEN
see LAYOUT

NAMES OF FILES TO OPEN: [FNAME1]
[FNAME2]
[FNAME3]
PRESS RETURN TO OPEN FILES.
*se¢ ENTER
NOTE It on fname s left blank, don’'t do OPEN FILE ot ailt
[OPEN FILE XFNAME1]
[OPEN FILE XFNAME2]
[OPEN FILE XFNAME3]
*se¢ SCREEN REPORT
*se LAYOUT
EMPLOYEE SEARCH
LAST NAME OF EMPLOYEE: [LNAME]
FIRST NAME: [FNAME]
DATE OF BIRTH: [BDATE]
AGE: [AGE]
SALARY RANGE - Low: [LSAL] HIGH: [HSAL]

FILL IN KNOWN VALUES AND PRESS RETURN

s¢e¢ DECLARATIONS

BDATE; DATE="M/D/Y"
AGE; NUMERIC
LSAL,HSAL; NUMERIC; DECIMALS=2
sss ENTER
SELECT @ {WHERE [LNAME="XLNAME"] AND &
[FNAME="XFNAME"] AND &
[BDATE="XBDATE"] AND &
[AGE=%XAGE) AND &
[[SALARY>=XLSAL AND SALARY<=XHSAL]] }
IF $FOUND
PRINT
ENDIF

DEBUGGING FACILITIES

A number of debugging facilities have been incorporated into BUILDER. These facilities
are only available if the application is running in CREATOR mode. The facilities are
invoked automatically when an error is encountered during the execution of the
application in creator mode. The error, as well as the filename and line number of the
error, is displayed and then debug mode is entered. The facilities may also be invoked
with the °/* function (which consists of an ESC followed by a “/*). At this point, the
Creator may edit or modify the application status to fix the error and restart or resume
the application.

When debug mode is entered, the following prompt will appear:

Entering Debug Mode...

1=EDITOR, 2=COMMANDS, 3=RESTART, 4=-RESUME, 5=EXIT, 6=EDIT TERMINAL
DRIVER

(1-6)?

1=EDITOR

Selecting EDITOR will provide a second set of choices allowing entry into the HP editor,
QEDIT, or an editor of the creator's choice. .The application file in use by BUILDER is
closed before the editor is invoked so that the application under test can be changed.
When the editor is exited, control is returned to the debug mode prompt. Once an editor
has been chosen, the file RDBEDIT will be set to match the chosen editor and the editor
choices will not be repeated until after BUILDER has been terminated. If a file equation
exists for RDBEDIT before Debug Mode is entered, then this choice will go directly into
the editor am ified by RDBEDIT.

Ir ‘R.'D’&igrg'grd"fecﬁ‘} /'U-Zrcn«o; a valid edter prayram , Hrhs editen «ill L wed.

2=COMMANDS

Selecting COMMANDS enters a form of the RELATE Command Interpreter. From this
interpreter, most RELATE or any BUILDER commands may be executed. While in the
Command Interpreter, the status is the same as it was while executing the application.
That is, the same files are open, the same current partition, path, and index are in
effect, the same variables exist, etc. Any changes to this status will be maintained if
the execution of the application is continued. The substitution algorithm is applied to
commands executed in this mode. If "//*, END, or EXIT is entered, the Cornmand
Interpreter is exited and control is returned to the debug mode prompt.

The BREAK command can be used to directly enter the Command Interpreter in the
middle of a section. This command is available in both creator mode and end-user mode,
although it will not normally exist in a completed application.

3=RESTART
Restart will close all files and partitions, remove all variables, and restart BUILDER from

the beginning. BUILDER will prompt for the name of the application file to be used
(BLDRAPP). The previous value of BLDRAPP is the default.

4-RESUME

The RESUME option will redraw the screen and the application will continue from the _
point at which debug mode was entered.

S-EXIT

Exit will cause termination of BUILDER and a return to the operating system.

COMPILING AN APPLICATION FILE

To enter compile mode,
:RUN BUILDER.PUB.RELATE45,COMPILE: LIB=P

(BUI)LDER may not be installed in PUB.RELATE45. Verify where it is installed at your
site.

BUILDER will prompt for "Output File?". BUILDER will create a file with this name in
which to place the compiled version of your application.

BUILDER will then prompt for "Application File?” continually. This allows you to place
several related application files into one compiled output file. The first screen in the
first application file must be the initial screen of the application. When you have no
more application files, press RETURN. BUILDER will then terminate.

To use the compiled version, specify its filename as the application file.

The compilation process does not generate object code. Instead, the application is
compressed and certain tables are built which improve BUILDER's operation.

WARNING: Compiled BUILDER files are not guaranteed to be dowrward or upward
compatible. Installation of a new version of BUILDER may require the
recompilation of applications. This information can be found in the
release notes for the product.

SAMPLE APPLICATION

SAMPLE APPLICATION

sses GLOBAL
see FUNCTION 7; LABEL="PREVIOUS|SCREEN"
RETURN SCREEN

*#¢¢ FUNCTION 8; LABEL="EXIT"
PROMPT "ARE YOU READY TO EXIT?", ANSWER
IF ANSWER="y"
EXIT
ENDIF

sse DECLARATIONS
ANSWER; UPPER; LENGTH=1; RANGE=m"Y™" »"N»

**ss SCREEN MAIN
This is o sample application for a PARTORD file containing:

INVOICE: invoice number
PART: port number

QTY: quantity ordered
PRICE_EACH: price per part

sss LAYOUT
WELCOME TO THE PARTS ORDERS DATABASE
TODAY IS [today]

PLEASE ENTER THE LETTER OF YOUR CHOICE
AND PRESS RETURN: [e]

M - Multiple Iine screen
S - Single line screen

ses DECLARATIONS
TODAY; DISPLAY; DATE="M/D/Y"
C; NAME=CHOICE; ACTION; UPPER

sss INITIAL

TODAY:=$DATE

IGNORE ALL ERRORS

OPEN FILE PARTORD

IF $ERROR <> o
DISPLAY "UNABLE TO OPEN PARTORD FILE.*"
EXIT

ENDIF

SET INDEX INVOICE, PART

sse INITIAL EVERYTIME
CHOICE :m®* »

sse¢ ACTION M
CALL SCREEN MULTI

SAMPLE APPLICATION

¢se¢ ACTION S
CALL SCREEN SINGLE

¢¢¢ FUNCTION 7; LABELa" =

NOTE Can’'t return from here; override GLOBAL function

sses ENTER
FAIL "INVALID CHOICE“.CHOICE

*se¢ SCREEN SCAN
ese LAYOUT

CUSTOMER DATABASE

[invoice] [part] [aqty] [total
[invoice] Ipart] [qty] (total
[invoice] [part] [aty] [total
[invoice] [part] [aqty] [total
[invoice] [part } [qty } [totai
[invoice] [part } [aqty] [total
[invoice] [part] [qty] [totai
PRESS RETURN TO SAVE CHANGES ON SCREEN
¢*s DECLARATIONS
INVOICE, PART, aQrvyY, INVNO: NUMERIC
TOTAL, INVOICE, PART i DISPLAY
TOTAL i NUMERIC; DECIMALS=2
PRICE_EACH i NUMERIC; DECIMALS=2;
eses INITIAL
NOTE Autonoticolly read the first 8 records
RECORD REWIND
ARRAY

RECORD READ _
TOTAL:-QTY‘PRICE_EACH
ENDARRAY

*s+ VARIABLE QTY
TOTAL:-OTYOPRXCE_EACH

sse ENTER
ARRAY
RECORD POINT; KEY=INVOICE, PART
IF $FOUND
RECORD UPDATE
ENDIF
ENDARRAY

**e FUNCTION 1; LABEL= "MORE|RECORDS "
IF $SEOF
FINISH “"There are No more qualified records.
ENDIF
ARRAY
RECORD READ
TOTAL:-QTY.PRICE-EACH
ENDARRAY

ARRAY=7

Use FJ.

L

*se

LABEL="DELETE"
PART

FUNCTION 2;
RECORD POINT;KEY=INVOICE,
IF $FOUND

RECORD DELETE
ELSE
FAIL
ENDIF
NOTE -~
NOTE
NOTE

"CANNOT DELETE - DOESN'T
your pointer will now be
set of READs. Having a
DELETEs would help.

FUNCTION 3; LABEL="INVOICE|SEARC
PROMPT “"WHICH INVOICE (biaonk for
IF INVNO=*® »

RECORD REWIND
ELSE
RECORD POINT;
IF NOT S$FOUND
FAIL "INVOICE NOT FOUND"
ENDIF
ENDIF
ARRAY
RECORD READ
TOTAL:=QTYsPRICE_EACH
ENDARRAY

KEY=INVNO

FUNCTION
ODISPLAY "ONLY FUNCTIONS 1 THROUG
SCREEN SINGLE
LAYOUT

INVOICE NUMBER [invoice]

PART NUMBER [part
QUANTITY ORDERED [qty]
TOTAL ORDER [total

TYPE DATA AND PRESS RETURN T

DECLARATIONS
INVOICE, PART, QTY + NUMERIC
TOTAL i NUMERIC
PRICE_EACH ;i NUMERIC
*» VARIABLE INVOICE

FIND THE FIRST RECORD WITH
KEY=INVOICE

NOTE
RECORD POINT;
IF NOT S$SFOUND
CLEAR VARIABLE PART, QTY,TOTAL
ELSE '
RECORD READ
TOTAL:=QTYePRICE_EACH
ENDIF

SAMPLE APPLICATION

EXIST®"
displaced for your next

separate PARTITION for

H"

stoart of file)?",INVNO

H 3 AND 7 THROUGH 8 ARE DEFINED"

]

O ADD.

; DECIMALS=2; DISPLAY
: DECIMALS=2
THIS INVOICE §

. PRICE_EACH

SAMPLE APPLICATION

s¢s FUNCTION 1; LABEL="READNEXT™*
IF $EOF
FINISH “NO MORE LINES FOR THIS INVOICE"
ELSE
RECORD READ
ENDIF

¢*e¢ FUNCTION 2; LABEL="DELETE"
RECORD POINT; KEY=INVOICE,PART
I'F NOT $FOUND
FAIL "CAN'T DELETE - DOESN'T EXIST", PART
ELSE
RECORD DELETE
ENDIF

sse ENTER
RECORD POINT KEY=INVOICE, PART
1F NOT $FOUND
IGNORE ERROR
RECORD ADD
IF $ERROR
FAIL $ERRMSG
ELSE
CLEAR SCREEN
FINISH “RECORD IS ADDED"
ENDIF
ELSE
IGNORE ERROR
RECORD UPDATE
IF $ERROR
FAIL $ERRMSG
ELSE
CLEAR SCREEN
DISPLAY “RECORD IS ADDED"
ENDIF
ENDIF

SECTION 4

APPLICATION COMMANDS

BUILDER COMMANDS

BUILDER Commands

BUILDER commands that are longer than one line width may be continued on the next
line by placing an ampersand ("&") as the last non-blank character on a line. If an
ampersand is found to be the last nomblank character on a line, then the next line is
taken to be a continuation of the line.

Leading and trailing blanks on a line are ignored so indentation may be performed without
fear of running into the maximum command length prematurely. The maximum length of a
command is 1500 characters before substitution and 1500 characters after substitution. If
there are one or more blanks before the ampersand (*&") continuation character only a
single blank will be included in the resulting command string.

If leading blanks should be significant to the command (e.g., in a DISPLAY statement),
the leading blanks can be made significant by preceding the blanks with []*. The
brackets designate an optional substitution and will substitute nothing into the string.
Blanks after the brackets will then be significant with respect to the command.

Keywords in BUILDER commands may not be abbreviated unless explicitly described

otherwise. Plural keywords can be abbreviated to the singular (eg: VARIABLES to
VARIABLE).

4-1

RELATE COMMANDS

Using RELATE (and MPE) Commands

Any RELATE command that may be executed programmatically may be included in an
application. The substitution algorithm is applied to the command before it is executed
by RELATE. BUILDER passes any command that is not a BUILDER command to the
RELATE command interpreter. This means that operating system commands can be used
by preceding them with a colon (*:*). RELATE commands may be abbreviated as specified
in the RELATE reference manual. If RELATE cannot understand the command, an error

RELATE commands that go into prompt mode (eg: ADD, CREATE FILE, REPORT, etc.)
will overwrite part of the message line with their first line of output. If nothing is
currently displayed on the message line, this will have no noticeable effect. To preserve
text on the message line, precede the RELATE command with:

SCROLL "

RELATE understands any command line beginning with a colon (":") to be an MPE
command. Any programmatically executable MPE command can be requested through
RELATE. The substitution routine is applied to the command before it is passed to MPE. P

See the CREATE PARTITION command for comments on some RELATE commands. -

RELATEconmd:mtdanthovahasofmyvari&hsatuilHn functions of
BUILDER.

EXAMPLES:

ses DECLARATIONS
NEWDAY; DATE
*se FUNCTION 4
NOTE Date constants must be in quotes
SELECT NEWDAY-SNE'_DATE(SDATE.“Xolddotc”)
NOTE RELATE commands only affect the current fitle/path.

NOTE They do not affect the values of variables. The
NOTE current path now has one field called NEWDAY. If
NOTE I “DISPLAY NEWDAY", I will get blanks.

RECORD READ

NOTE Now the variable NEWDAY has o value in it, because the
NOTE first (in this case, the only) record of the SELECT
NOTE has been read into matching variaoblie names.

SELECT

4-2

RELATE COMMANDS

sees ENTER

OPEN FILE Xfnome ;PATHs=F
PRINT[:%p] {xfioldl.Xfiole.XfioldS}
SELECT @ WHERE Xfieid=Xvaiue
IF NOT $FOUND

DISPLAY "No records can be found for the search value.*
ELSE

ARRAY

RECORD READ

ENDARRAY

ENDIF

4-3

ARRAY...ENDARRAY

ARRAY
ENDARRAY

Loops through commands once for each array element.

Any commands that appear between the ARRAY command and the matchipg.ENDARRAY

through the Ioop. Any variable that is not an array variable can be used every time
through the loop. BUILDER maintains the current value of $SUBSCRIPT internally. The
duration of the loop is unaffected by assignments made to $SUBSCRIPT.

An array variable is a variable that appears more than once on the same screen. An
array screen is any screen containing one or more array variables. The $SUBSCRIPT
built-in variable is incremented each time through the locp. The loop terminates when
commands within the loop access the last element of any array variable, when no array
element is accessed within the loop, or when an EXITARRAY is encountered.

For further information on array processing, see the ARRAY VARIABLES discussion in
section 3.

EXAMPLES:
sss LAYOUT
[partno] [desc] [price]
[partno] [desc] [price]
[partno] [desec] [price]
[Partnoe] [desc] [price]
FimNext four records F2=Update these four records
ses FUNCTION 1
NOTE This reads records from the current path
NOTE until all array elements ore filled.
ARRAY
RECORD READ
ENDARRAY
¢se FUNCTION 2
NOTE This qgoes through each array element,
NOTE searches for the part number, ond updates the record.
SET INDEX BY PARTNO
ARRAY

RECORD POINT
IF NOT $FOUND
FAIL “PART NUMBER Xpartno DOES NOT EXIST.", PARTNO
ELSE
RECORD UPDATE
ENDIF
ENDARRAY

ASSIGNMENT

variablename = expression

Performs arithmetic or character manipulations and assigns the value of the expression to
the indicated variable.

variablename Required. The variablename must be the name of a variable defined
within the application.

expression Required. The expression must correspond to the rules given in the
EXPRESSION EVALUATION section. The expression is evaluated and
the result is assigned to the given variable.

The ":=" may not be separated by a space or appear on two lines.

EXAMPLES:

sss VARIABLE TIME
NOTE Date constants must be enclosed in quotes
NEW_DATE:="Xold_date"
MESSAGE:=$CONCAT("AGE FOR “.NAME," IS Xage")
sees ENTER
FILETYPE:=w"MPE"
FILEMODE:="SHARED"
COMMAND : ="OPEN FILE Xfname [;TYPE-xfilotypo]“
COUNT :=COUNT+1
START _DATE:="1/31/84"
MAXIMUM: =500/NUMBER

BREAK

BREAK

Causes control to be transferred to the BUILDER interpreter.

Any valid BUILDER command can be executed in the BUILDER interpreter. To return to
the application, enter a double slash (*77").

This command is most useful in debugging applications.

EXAMPLES:

s*ses ACTION DEBUG
BREAK
sse ENTER
IF HOSPITAL=" »
FINISH "MUST FILL IN HOSPITAL NUMBER",HOSPITAL

ELSE
NOTE my add doesn’t seem to work well... need to
NOTE check things out here
BREAK
RECORD ADD
ENDIF

CALL PROCEDURE
CALL PROCEDURE siprocname

Calls procedures written in SPL, COBOL, FORTRAN, or PASCAL. The procedure must be
resident in an SL and must conform to BUILDER calling conventions.

slprocname Recuired. The siprocname must be the name of a procedure that can
be loaded from the group, account or system SL (segmented library). If
no such procedure exists, this command will return an error.

Any procedure cailed in this way must contain exactly three parameters. All three
parameters must be integer arrays. |f the user's procedurs does not use any of these
arrays, they can be single word items as they are passed by reference.

The first array is the current partition being used in thelapplication. If it is used in
your procedure in any HLI calls (see the RELATE manual), RELATE assumes that it has
at least 50 words. It has already been initialized and filled by BUILDER.

The second array is the SCA (screen maintenance) table being used by the screen system.
There are currently no user routines available that use this array, and it should not be
manipulated by the user.

The third array is the PAR (parameter) array and contains information about the CALL
PROCEDURE command that called the procedure. If the application file has anything on
the same line as the CALL PROCEDURE command after the procedure name, BUILDER
will ignore the additional text. The procedure can obtain the information through the
PAR array (described below). This is useful for passing parameters to the procedure from
the application.

OFFSET CONTENT

The word address of the CALL PROCEDURE command.

The length (in bytes) of the entire command.

The byte offset into the command of the first nonblank character after the
procedure name. If no parameters are passed this value is zero.

PAR(1) minus PAR(2)

Not used.

The number of fields in the current path.

The word address of the data record maintained by BUILDER for the current
path.

The number of words in the data record.

The word address of the FLDs which comprise the current index.

The number of fields in the current index.

OON OOBdW NaO

Any operation that is CPU intensive or requires complex computation can be done in a
traditional programming language without requiring that the entire application be written
using traditional methods.

4-7

CALL PROCEDURE

EXAMPLES:

sese ENTER

CALL PROCEDURE COMPUTE'TOTALS
PROMPT "CUSTOMER NAME?*,CNAME

CNUM:=59

CALL PROCEDURE DB'UPDATE
NOTE The command after
NOTE CALL PROCECURE DB'UPDATE CUSTOMER

CUSTOMER Xcname
substitution is:

Xcnum

EASTERN LUMBER So

PROCEDURE COUPUTE'TOTALS(PRT.SCA.PAR);

INTEGER ARRAY PRT ,SCA,PAR;
BEGIN

<<note: do some processing>>

END

PROCEDURE DB’UPDATE(PRT.SCA,PAR):

INTEGER ARRAY PRT,SCA,PAR
BEGIN

INTEGER COMMAND'LEN.START‘OF’PARMS.LEN'OF’PARMS.

NUM'OF'FIELDS;

INTEGER POINTER COMMAND ,FIELD'INFO;

OCOMMAND : =PAR(®) ;
COMMAND ' LEN:=PAR(1);
START'OF 'PARMS=PAR(2);
LEN'OF'PARMS : mPAR(3);
NUM'OF*FIELDS:mPAR(S);

<<pointing to "CALL PROCEDURE DB*'UP. ..

<<PAR(1)
<<PAR(2)
<<PAR(3)

is=51
is=26 ,points
ism25

to

“CUSTOMER.. ..

“>>
>>
">>
>>

CALL SCREEN

CALL SCREEN screenname

Displays a new screen.

screenname Required. The screenname must be the name of a screen in the
current application file or the name of a file in the same group and
account as the original application file. MPE FILE equations are not
referenced.

When the CALL SCREEN command is issued, the current file and the location of the
CALL SCREEN instruction in the file are saved by BUILDER. When a RETURN SCREEN
command is issued, the screen from where the call was issued becomes the current screen
and the commands following the CALL SCREEN command are executed.

Before the CALL SCREEN command is processed the current values of the QUOTES,
SUBSTITUTE, and VERIFY options (see SET OPTIONS) are saved. A subsequent RETURN
SCREEN will return these items to their original values.

Calls may be nested. The maximum nesting level varies depending on the screens and
variables involved, but it is usually about 20. SET SCREEN commands may be issued
between the CALL and the RETURN without affecting the return location. A RETURN
SCREEN, not a SET SCREEN, should always be used to return to a screen where a CALL
SCREEN was used. Failure to do so results in a recursive grabbing of memory.

The CALL SCREEN command executes the INITIAL section of the new screen. It gets
the new screen layout, displays the new screen, waits for user input, and then begins
processing the new screen's actions. If the new screen initialization section contains an
error or there is an error in the screen layout, then the CALL SCREEN command returns
an error. If the specified file does not exist or operating system restrictions prevent the
file from being read, an error will aiso be returned.,

EXAMPLES:
ses ENTER
CALL SCREEN SCRS
DISPLAY “This will display after returning from SCR6"

CLEAR

CLEAR [ALLIRECORD [USING partitionname] ISCREEN | VARIABLE variablenamelist

[;SUBSCRIPT]]
Clears various groups of variables.
ALL Optional. If specified, all the variables in the application are cleared.
RECORD Optional. If specified, all the variables in the current screen which

also exist in the current path in the current partition are cleared.

USING Optional. If specified, the keyword must be followed by the name of
an existing partition. All variables in the screen which aiso exist in
the current path on the specified partition are cleared.

SCREEN Optional. If specified, all the variables in the current LAYOUT are
cleared.
VARIABLE Optional. Clears the indicated variables. This has the same effect as

an assignment of the form variablename:="" for all subscripts for each
variable in the list. Hence, if this is used on an array variable within
an ARRAY loop without the SUBSCRIPT parameter, the loop will not
occur again as the highest element of an array has been referenced.

SUBSCRIPT Optional. If specified, only variables that exist with the current
subscript value are cleared. The keyword must be used in combination
with the other keywords. For example, CLEAR RECORD;SUBSCRIPT
will clear all variables in the current path for the current subscript.

If no keywords are specified, 'SCREEN' is assumed.

EXAMPLES:

sse LAYOUT
ENTER CHOICE AND PRESS RETURN: [Xx)
1 - ADD RECORD 2 - CLEAR SCREEN

[cNoO] [NAME] [ADDRESS]

sses DECLARATION
X; ACTION

ess ACTION 1

NOTE

NOTE Clear all variaoables which also exist in the current path.

NOTE

RECORD ADD

CLEAR RECORD
sss ACTION 2

NOTE

NOTE Cleor all veriables in the toayout.

NOTE

CLEAR

4-10

CREATE PARTITION
CREATE PARTITION partitionname; SEGMENT=number

Creates the indicated partition and causes the partition to become the current partition.

partitionname Required. Partitionname must contain only letters, digits, and the
underscore ("_") character and must not currently exist. The length of
the partitionname cannot be more than 15 characters. The indicated
partition is created and made the current partition.

SEGMENT Optional. If specified, this keyword must be followed by an integer
between one and ten thousand. If this number has not been used
previously, BUILDER will create a new RELATE process. Normally,
one process is sufficient for performing all desired operations and this
keyword need not be used. Occasionally, however, more files need to
be open than can be accessed from muitiple partitions within the
default process. All processes remain active until BUILDER
terminates.

A partition can be thought of as representing a RELATE process. All RELATE commands
will affect only the current partition. Files opened in partition A cannot be referenced if
partition B is the current partition.

One partition is created automatically by BUILDER and is, by default, the current
partition. Its name is DEFAULT.

Segment Resources

If a file is to be opened in more than one SEGMENT, it must be accessed in SHARED or
SEMI-EXCLUSIVE mode in each segment.

Image databases are SEGMENT resources. This means that, once the database is open, it
need not be opened again in other partitions in the same SEGMENT, although different
sets may be opened in different partitions. In addition, purging the partition in which the
database was originally opened will not cause the database to be closed.

If a MODIFY FIELD is done to any file, it affects the basz 7i.2. This means that all open
paths to this file in the same SEGMENT will automaticaily have the same modification
made. If one path needs to have different field names, a SELECT is a better way to do
this.

Control-Y is only enabled in one segment at a time. By default, the original process
segment created automatically by BUILDER has control-Y enabled and it will be disabled
in all other segments. ControY will allow an enduser to interrupt any command,
including RECORD UPDATE and RECORD POINT. RELATE's SYSTEM command can be
used to disable Control-Y or to enable it in a different segment. MPE will only allow the
Control-Y to be enabled in one segment at a time. The SYSTEM command will only
affect commands executing in the SEGMENT in which it was executed. '

RELATE's TERMINAL command also only affects commands executing in the segment in
which it was executed.

-1

CREATE PARTITION

EXAMPLES:

sse GLOBAL
COMMENTS : This application ollows scanning and updating of
information about what animails are kept in which zoo
buildings.

sese INITIAL

CREATE PARTITION BLDG
OPEN FILE BLDG
SET INDEX BLDNUM

CREATE PARTITION A_READ
OPEN FILE ANIMALS
SET INDEX BLDNUM

CREATE PARTITION A_UPD
OPEN FILE ANIMALS
SET INDEX BLONUM, NAME

SET PARTITION DEFAULT

s+s SCREEN REVIEW
ses LAYOUT

BUILDING NUMBER:[BLD] BUILDING NAME:[BNAME]
CARETAKER :[CNAME]
ANIMAL NAME ANIMAL TYPE AGE DIET
[ANAME J{TYPE] [AGE] [DIET]’
[ANAME J{TYPE] [AGE] [DIET]
[ANAME J[TYPE] [AGE] [DIET] -
[ANAME J[TYPE 1 [AGE] {ofETY]
[ANAME J{TYPe] [AGE] [DIET]
[ANAME J[TrPE 1 [AcGE] [DIET]
[ANAME 1[TrPE 1 [AGE] [DIET]
[ANAME J[TYPE] [AGE] [DIET]

¢se DECLARATIONS
BLD; NAME=BLDNUM
ANAME : DISPLAY

¢¢e¢ VARIABLE BLDNUM
RECORD POINT USING BLDG
IF NOT $FOUND
CLEAR SCREEN
FINISH
ENDIF
RECORD READ USING BLDG
RECORD POINT USING A_READ
IF NOT $FOUND
CLEAR VARIABLE ANAME, TYPE, AGE, DIET
FINISH
ENDIF
ARRAY
RECORD READ USING A_READ
ENDARRAY

4-12

CREATE PARTITION

sees ENTER

IF $CHANGED("BNAME") OR $CHANGED ("CNAME")
RECORD UPDATE USING BLDG
RESET VARIABLE BNAME, CNAME
ENDIF
ARRAY
RECORD POINT USING A_UPD
IF $FOUND
RECORD UPDATE USING A_UPD
ELSE
FAIL "BAD PROBLEM HERE",TYPE
ENDIF
ENDARRAY

*#es FUNCTION 8; LABEL="EXIT"
EXIT

4-13

DISPLAY

DISPLAY [expression]

Places text into the message line of the screen (unless preceded by a SCROLL).

expression Optional. The expression can be any valid BUILDER expression. |f
the resuiting message is longer than the width of the terminal, it is
truncated on the right. If the expression is omitted, the message line
is cleared.

The cursor remains positioned after the last character in the message until another
operation causes the cursor to move. |f a RELATE or operating system command is
executed, the cursor will be returned to the left margin in case the command causes
output.

EXAMPLES:

ses ENTER

DISPLAY "THE ""Xfname“" FILE HAS BEEN LISTED TO THE PRINTER.*
s¢s FUNCTION 1 .

L:-$LENGTH(NAME)

DISPLAY L+10

4-14

ERASE SCREEN

ERASE SCREEN
Immediately clears the entire screen display.

The screen will be redrawn at the next automatic or explicit REFRESH.

EXAMPLES:

#es FUNCTION 3; LABEL=“PRINT*
ERASE SCREEN
PRINT

4-15

EXIT

EXIT

Terminates BUILDER.
EXAMPLES:

ess ENTER

IF $ERROR=BADERR

DISPLAY “"CATASTROPHIC ERROR. CANNOT CONTINUE"
EXIT

ENDIF

4-16

EXITARRAY

EXITARRAY

Allows early exit from an ARRAY loop.

Normally, an ARRAY loop will only terminate if the highest numbered element of any
array variable has been accessed during the latest loop or if no array variable has been
accessed during the latest loop. EXITARRAY causes control to pass immediately to the
command following the first ENDARRAY after the EXITARRAY.

EXAMPLES:

sse LAYOUT

{TEXT]
(TEXT]
[TEXT]
[TEXT]
*ss ENTER STATE=OLDWAY
FLAG:=9
ARRAY
IF FLAG
NOTE Notice I avoided using an array variabie
NOTE 80 now array loop will stop.
ELSE
IF TEXTmn"
NOTE | assume there's no more text ofter this.
FLAG:=1
ELSE
NOTE Do my normal updating & stuff
ENDIF
ENDIF
*ss ENTER STATE=NEWWAY
ARRAY
IF TEXTmn"®
EXITARRAY
ENDIF
NOTE Do my normal updating and stuff
ENDARRAY

4-17

FAIL

FAIL [expression] [,variablename]

Terminates in an error state the processing of the section being executed.

expression

variablename

EXAMPLES:

ENTER

Optional. A valid BUILDER expression whose results will be displayed
in the message line with FAIL enhancement (see SET OPTION).

Optional. If provided, the name must be of a variable on the current
screen. The specified variable is highlighted as an error variable and
the cursor is positioned to that variable. Subsequent use of VERIFY,
a function key or a RETURN/ENTER will cause the variable's
VARIABLE section to be executed.

IF PARTNO<=0

FAIL
ENDIF
DISPLAY

"PART NUMBER Xpoartno IS INVALID.", PARTNO

“PART NUMBER Xpartno IS VALID.™

4-18

FINISH
FINISH [expression] [variablename]

Terminates the processing of the section being executed.

expression Optional. A valid BUILDER expression whose results are placed into
the message line with FINISH enhancement (see SET OPTION).

variablename Optional. If specified, the cursor will be positioned to this variable
after the message is displayed.

EXAMPLES:

ses ENTER
IF REQUEST=a"A™

IF NOT $ERROR
FINISH “"Process "A° has been completed. "
ELSE
FAIL $ERRMSG
ENDIF
ELSEIF PROCESS="B"

FINISH "Process 'B' has been completed."
ELSE

FAIL "Invalid process requested."”, REQUEST
ENDIF

4-19

IF...ENDIF

IF condition
[ELSEIF condition 11...]
[ELSE]

ENDIF

Allows conditional execution of subsequent commands.

condition Required. May be any expression containing constants, screen variables
or built-in variables as described in the EXPRESSIONS section of this
manual. If the condition evaluates to zero or blank, then the condition
is false, otherwise the condition is true.

When the condition specified in the IF command is evaluated to be true, the commands
following the IF and before the next ELSEIF, ELSE, or ENDIF will be executed. When
the condition evaluates to faise, the commands following the IF command will be ignored
until an ELSEIF, ELSE, or ENDIF command is reached. If an ELSE command follows an IF
command, then the statements between the ELSE and the next ENDIF will be executed
only if the condition on the IF command was false. Neither an ELSEIF nor an ELSE need
be specified. As many ELSEIFs as desired may be used, but each ELSEIF must have a
condition associated with it.

The IF command must be totally contained within a section. There may be SET SCREEN
or CALL SCREEN commands within the conditional sections of the IF, but the IF,
ELSEIF, ELSE, and ENDIF must all be contained in the same section. IF structures can be
nested.

EXAMPLES:

ses ENTER
RECORD READ
IF $SEOF
DISPLAY “NO MORE DATA IN FILE.*
ELSE
OISPLAY "FOUND DATA IN FILE."
ENDIF
IF COST¢=0
FAIL “PRICES MUST BE GREATER THAN ZERO.", COST
ENDIF
IF TODAY=1
DISPLAY "TODAY IS SUNDAY."
ELSEIF TODAY>=2 AND TODAY<=86
DISPLAY “TODAY IS A WEEKDAY . "
IF TODAY=4
SCROLL "THIS IS THE MIDDLE OF THE WEEK."
ENDIF
ELSE
DISPLAY "TODAY IS SATURDAY. "
ENDIF

4-20

IGNORE ERROR

IGNORE [ALL] ERRORS
IGNORE ERROR error

Instructs BUILDER to continue processing if any error or a specific error is encountered
on the next command.

error Optional. If specified, the value indicates the number of an error
which should be ignored.

Normally, if an error is encountered when BUILDER is run in creator mode, processing
will suspend and the creator is given the option of entering debug mode. If an error is
encountered when BUILDER is in end-user mode, the error is reported and the section
executing is terminated. In either mode, the IGNORE ERROR command will allow the
application to take an action based on the error that occurred.

This command is only in effect for the single command immediately following the
IGNORE ERROR, and that one command is the only one that can cause $SERROR to be
set.

The syntax and operation of BUILDER's IGNORE ERROR command is identical to the
syntax and operation of RELATE's IGNORE ERROR command.

The error number can be determined by referencing the SERROR built-in variable. When
the IGNORE command is executed, it will set SERROR to zero. SERROR cannot be reset
in any other manner.

EXAMPLES:

ses ENTER
IGNORE ALL ERRORS
OPEN FILE TEST
IF $ERROR<>O
FAIL "The 'TEST' file cannot be accessed.*"
ENDIF
IGNORE ALL ERRORS
RECORD READ
I1F $ERROR<>O
DISPLAY S$ERRMSG
ENDIF

4-21

MODIFY VARIABLE

MODIFY VARIABLE variablelist; options

The characteristics of the indicated variables are changed to reflect the options specified.

variablelist

options

A
|

Recuired. A list of variablenames defined within the application,
Separated by commas.
DECLARATION section, separated with semicolons (":"). The

with the options provided. The NAME, ARRAY, LENGTH, and
GLOBAL options cannot be specified.

ny display or format modifications made to GLOBAL variables only affect the variables
ocally and will not be passed back with the variable after a RETURN SCREEN.

EXAMPLE:
*se LAYOUT
CUSTOMER NUMBER:[cust]
ADDRESS:[addr]

LR N

LR N

PHONE:[phone
DID WE SELL TO THEM THIS YEAR?[s]

TOTAL SALES:[tot_sales]
BALANCE DUE:[bal]
CREDIT STATUS: [ecr]

SALESPERSON:[salesman]
VARIABLE CUST
NOTE Obtain the desired data.
SELECT @ WHERE CUST=Xcust
RECORD READ
NOTE Adjust the customer number variable 80 it cannot be
NOTE chaenged.
MODIFY VARIABLE CUST;DISPLAY
VARIABLE s

IF SanN®
NOTE

Then don't gllow tabbing to others.

MODIFY VARIABLE TOT_SALES,BAL,CR;DISPLAY

ELSE

MODIFY VARIABLE TOT_SALES.BAL.CR:OPTIONAL
SET CURSOR TOT~-SALES

ENDIF

4-22

PAUSE

PAUSE [seconds]

Causes BUILDER to wait for the indicated number of seconds or until a key is struck.
The application will continue processing at the command following the PAUSE command.

seconds Optional. If specified, this must be a valid integer which indicates, in
seconds, how long BUILDER should pause. If not specified, BUILDER
will pause for one second. Striking a key will terminate the pause.

The PAUSE command is ignored in batch mode.

EXAMPLES:

ess ENTER
DISPLAY "PLACE SPECIAL PAPER IN PRINTER AND PRESS ANY KEY.*"
PAUSE 300
PRINT:P

4-23

PROMPT

PROMPT “text® [variablename]

Displays the text in the message line (unless preceded by a SCROLL) and waits for a
response. If a variablename is specified, the response is placed into it.

text Required. A string containing the message that should be displayed.

variablename Optional. If specified, this must be the name of an existing variable.
The user must press RETURN/ENTER before the response is validated
and then placed into the variable. If not specified, the system will
accept a one character response without waiting for RETURN/ENTER,
which is placed into the built-in variable SKEY.

Regardless of the interface mode of the application (LINE, CHARACTER, or BLOCK), the
prompt is read in LINE mode. If an escape is included in the reply, BUILDER cannot
interpret it until a RETURN is entered. This may cause the terminal in use to enter
undesired modes.

If a function key is pressed in response to the prompt and no variable name is specified,
the function key is treated as the response to the prompt and $KEY is cleared to blank.
If a variablename is specified, then the function section for the new function key is
executed and the PROMPT is reissued.

EXAMPLES:

sse ENTER
PROMPT "PRINT FILE?", FILENAME
OPEN FILE Xfilename
PRINT:P
sss FUNCTION 2
PROMPT “DO YOU REALLY WANT 7O EXIT?2"
IF $KEYm©ym™
EXIT
ENDIF

4-24

PURGE PARTITION
PURGE PARTITION partitionname
Releases the indicated partition.

partitionname Required. Partitionname must be the name of a partition created
with the CREATE PARTITION command. The specified partition is
released and all files attached to the partition, if not open in other
partitions, are closed. The partition may not subsequently be
referenced uniess it is recreated.

If the current partition is purged, DEFAULT becomes the current partition.

EXAMPLES:

ses ENTER
CALL SCREEN UPDATE

sse SCREEN UPDATE
ese INITIAL
CREATE PARTITION EMPS
OPEN FILE EMPS
SET INDEX ENUM

ses FUNCTION 7; LABEL="PREVIOUS|SCREEN"

PURGE PARTITION EMPS
RETURN SCREEN

4-25

RECORD ADD

RECORD ADD
[USING pertitionname]
[:VARIABLEi-varmmo I{varname, fidname){,varname {(varname, fidname)]l...]]

Adds one record to the file(s) referenced by the current path.

partitionname Optional. If specified, the partitionname must exist and should
reference a path to which the application has ADD access. If not
specified, the current partition is used. A record is added to the file(s)
referenced by the current path on the indicated partition. Note that
the USING clause, if present, must come before other optional clauses.

varname Optional. If specified by itself, the varname must be both a valid
BUILDER variable and a valid fieldname in the current file. |If
specified with a fldname, the varname must be a valid BUILDER
variable which wis[l be associated with the field specified by fldname.
If the VARIABLE= option is used, only those fields listed will be have
data added; all other fields will contain zeroces or blanks.

fldname Optional. The fldname must be a valid fieldname in the current file.

A' h‘c.ummg —ay be UV-«:L ol ~ e SWa. varrame .

The data for the record is taken from any variables in the application (or only those on
the current screen if SET OPTION VARIABLES—LOgAL is set) with names that match
fieldnames in the current path (exception: VARIABLE= clause).

If the add is unsuccessful, a BUILDER error will resuit and the $SERROR built-in variable
will be set to reflect the cause of the first error encountered. Additionally, the SEOF
built-in variable is set to one if an end-of-file occurred and zero otherwise.

If the current screen is an array screen, the data for the record is taken from the
element referenced by the current value of $SUBSCRIPT. If the add occurred within an
ARRAY loop, then the data is taken from the variables corresponding to the iteration
through the array locp. If all of the array variables used are blank, no record is added
and no error results.

EXAMPLES:

ess ACTION MAIN
IGNORE ERRORS
RECORD ADD
IF $SEOF
FAIL "Output file is full, the record could not be added."
ELSEIF $ERROR
FAIL $SERRMSG
ENDIF

4-26

RECORD ADD

¢e+s ACTION PARTS
ARRAY

IGNORE ERRORS
RECORD ADD USING PARTS
IF $EOF
FAIL "Output file is full, the record could not be added. "
ELSEIF $ERROR
FAIL SERRMSG
ENDIF
ENDARRAY

ses ACTION CONDITIONAL
NOTE Only odd daote into the PARTNUM and DESCRIPTION fields;
NOTE Use screen data from the PARTN and DESCRIPTION variables
RECORD ADD USING PARTS; VARIABLé?(PARTN,PARTNUM).DESCRIPTION

4-27

RECORD DELETE

RECORD DELETE [USING partitionname)

Deletes one record from the file(s) referenced by the current path.

partitionname Optional. If specified, the partitionname must exist and should
reference a path to which the application has DELETE access. If not
specified, the current partition is used. The current record on the
file(s) referenced by the indicated partition are deleted.

The cwrent record is set with RECORD POINT, RECORD ADD, RECORD NEXT,
RECORD REPOINT, and RECORD READ.

EXAMPLES:

sss INITIAL
CREATE PARTITION PARTS
OPEN FILE PARTS
SET INDEX PARTNUM
SET PARTITION DEFAULT
ses ENTER
RECORD POINT USING PARTS
IF $FOUND
RECORD DELETE USING PARTS
DISPLAY “The part has been deleted."
ENDIF

4-28

RECORD NEXT
RECORD NEXT [USING partitionname])

Reads a record from the file referenced by the current path without moving data from
the database fields into BUILDER variables.

partitionname Optional. If specified, the partition name must exist and should
reference a path to which the application has READ access. If not
specified, the current partition is used. The pointer moves on the file
referenced by the current path on the indicated partition without
actually reading data.

The $EOF built-in variable is set to 1 if the RECORD NEXT causes an end of file;
otherwise it is set to 0. An end-of-file is maintained by BUILDER for each partition.
Subsequent reads from the same partition will continue to return an end-of-file until the
end-of-file is reset. The end-of-file is reset if the current path on the partition is
changed or if a RECORD POINT, RECORD REPOINT, RECORD RESET, or RECORD
REWIND is performed.

EXAMPLES:

ese INITIAL
OPEN FILE CLASSES
SET INDEX ROOM
sse ENTER
RECORD REWIND; BREAK=1
RECORD READ
WHILE NOT S$EOF
SCROLL “"Xroom,Xlocation"
WHILE NOT S$EOF

NOTE Skip all other classes in this some room.
RECORD NEXT
ENDWHILE

RECORD RESET
RECORD READ
ENDWHILE

4-29

RECORD POINT

RECORD POINT [USING partitionname]
[;KEY-VUid)lelist]
[:BREAK=-num]

Uses the current index on the current path to locate a specific record.

partitionname Optional. If specified, the partitionname must exist and should
reference a path to which the application has READ access. If not
specified, the current partition is used. A record containing the
indicated key values is searched for in the file(s) referenced by the
current path on the indicated partition. Note that the USING clause, if
present, must come before other optional clauses.

KEY Optional. If specified, the keyword must be followed by one or more
variable names separated by commas. The content of the variables is
used to construct the key. If not specified, all variables which match
fields in the current index will make up the key.

BREAK Optional. If specified, the keyword must be followed by a numeric
value which indicates the number of fields in the key which shouid be
considered to cause a control break. The value cannot exceed the
number of fields in the current index. An end-of-file will be returned
on a record read, instead of reading a record, as scon as one of the
values of these fields changes. To read the file beyond the key
pointed to, BREAK should be specified as zero. If not specified and
KEY is not specified, BREAK is assumed to be zero. If BREAK is
not specified and KEY is specified, BREAK is assumed to be the
number of fields in the variablelist.

The search key used for the point is constructed from data in variables on the current
screen or from the supplied variablelist. If a field in the current index does not appear on
the screen, and the variablelist is not supplied, the point cperation will fail to find a
record and an error will resuit.

If a record is found in the file that matches the key constructed from the current screen
then the built-in variable $SFOUND is set to one, $SEOF is set to zero, and the current
record pointer is moved to that record. If a record cannot be found, SFOUND is set to
zero; in addition, SEOF is set to one if a non-zero BREAK was specified and zero
otherwise.

If an exact match is not found, RECORD RESET can be used to turn off SEOF (except in
IMAGE) and a RECORD READ will return the record containing the next higher value of
the key.

Any BREAK specified will remain in effect until another POINT, a RECORD RESET, a
RECORD ADD, or any RELATE command is done or an attempted RECORD READ
beyond the end of the file causes SEOF to be set. In any of these cases, the break will
be reset to zero.

4-30

RECORD POINT

EXAMPLES:

*se SCREEN S1
sse LAYOUT
PART #:[PARTNO] DESCRIPTION:[DESC]
QUANTITY ON HAND:[QOH]

ess INITIAL
OPEN FILE PARTS
SET INDEX PNO
sse VARIABLE PARTNO
NOTE Observe that the field in the file is PNO and the
NOTE variable is PARTNO.
RECORD POINT KEY=PARTNO
IF NOT $FOUND
STATUS :=3
FINISH "NO SUCH PART NUMBER"
ELSE
RECORD READ
ENDIF

sse SCREEN S2
sss LAYOUT

CUSTOMER § INVOICE DATE AMOUNT
[cNOo) [INVNO] [DATE] [AMT]
[cNO) [INVNO | [DATE] [AMT]
[cNO) [INVNO] [DATE 1 [AMT]
[cNO) [INVNO | [DATE 1 [AMT 1

TYPE ONE CNO AND INVOICE NUMBER, THEN PRESS RETURN TO READ
sses INITIAL
OPEN FILE INVOICES
SET INDEX CNO, INVNO
sese ENTER
RECORD POINT; BREAK=2
IF NOT $FOUND
FINISH "CUST #X%XCNO, INVOICE F§XINVNO NOT FOUND."
ELSE
ARRAY
RECORD READ
ENDARRAY
IF $SEOF
IF $BREAK<3
SCROLL “"END OF INVOICE #Xinvno"
ENDIF
IF $BREAK=1
SCROLL “END OF CUST #%cno"
ENDIF
RECORD RESET
NOTE The RESET ailows reading next time thru loop
ENDIF
ENDIF

4-31

RECORD READ

RECORD READ
S [USING pertitionname]
[;VARIABLE:varmm I{(varname, fidname){,varname | (varname, fidname)][...]]

Reads a record from the file(s) referenced by the current path.

partitionname Optional. If specified, the partitionname must exist and should
reference a path to which the application has READ access. If not
specified, the currerit partition is used. One record, at the current
index pointer, is read from the file(s) referenced by the current path
on the indicated partition. Note that the USING clause, if present,
must come before other optional clauses.

varname Optional. If specified by itself, the varname must be both a valid
BUILDER variable and a valid fieldname in the current file. If
specified with a fldname, the varname must be a valid BUILDER
variable which wijl be associated with the field specified by fldname.
if the VARIABLEA- option is used, only those BUILDER variables listed
will have values read into them.

fidname Optional. The fidname must be a valid fieldname in the current file.

Each RECORD READ reads one record from the current path in the current (or
requested) partition. If the record at the current index pointer has not yet been read, it
will be; otherwise, the current record pointer will be moved to the next record and that
one will be read. The current record pointer is affected by RECORD POINT, RECORD
REWIND, SHOW VARIABLES, $SREAD, and any RELATE command.

Any fields from the current path with the same name as variables in the application (or
only those on the current screen if SET OPTI{)N VARIABLES=LOCAL is set) are copied
into the screen variables (exception: VARIABLE® clause).

The $EOF built-in variable is set to one if the read caused an end of file, otherwise it is
set to zero. Except within an ARRAY loop, an attempted read resulting in the setting of
$EOF does not alter the content of any BUILDER variables. An end-of-file is maintained
by BUILDER for each partition. Subsequent reads from the same partition will continue
to return an end-of-file until the end-of-file is reset. The end-of-file is reset if the
current path on the partition is changed or if a RECORD POINT, RECORD REPOINT,
RECORD RESET, or RECORD REWIND is performed.

SEOF is also set to one if the READ would cause a change in values of fields in the
keylist previously set by a RECORD POINT, RECORD REPOINT, or RECORD REWIND.
The SBREAK system-defined variable can be checked to ascertain which field caused the
break.

If the current screen is an array screen, the data from the record is copied into the
element referenced by the current value of $SUBSCRIPT. If the read occurred within an
ARRAY loop, then the data is copied into the variable element corresponding to the
iteration through the array loop. Each time an $EOF is encountered during an ARRAY
loop, all referenced BUILDER array variables whose names are fields in the file are set
to blanks.

4-32

RECORD READ

EXAMPLES:

ess DECLARATIONS
TODAY;DATE="M/D/Y"

ses INITIAL
SELECT TODAY:=$DATE
RECORD READ
SELECT

ses ENTER
RECORD READ
IF SEOF
DISPLAY "No additional records exist in the file."
ENDIF
ARRAY
RECORD READ USING PARTS
ENDARRAY

4-33

RECORD REPOINT

RECORD REPOINT [USING partitionname)
[:KEY=variablelist]
[;BREAK=rum)]

Uses the current index on the current path to relocate a record that has previously been
read to preserve the multi-user checksum.

partitionname Optional. If specified, the partitionname must exist and should
reference a path to which the application has READ access. if not
specified, the current partition is used. A record containing the
indicated key vaiues is searched for in the file(s) referenced by the
current path on the indicated partition. Note that the USING clause, if
present, must come before other optional clauses.

KEY Optional. If specified, the keyword must be followed by one or more
variable names separated by commas. The content of the variables is
used to construct the key. If not specified, all variables which match
fields in the current index will make up the key.

BREAK Optional. If specified, the keyword must be followed by a numeric
value which indicates the number of fields in the key which should be
considered to cause a control break. The value cannot exceed the
number of fields in the current index. An end-of-file will be returned
on a record read, instead of reading a record, as soon as one of the
values of these fields changes. To read the file beyond the key
pointed to, BREAK should be specified as zero. |f not specified and
KEY is not specified, BREAK is assumed to be zero. If BREAK is
not specified and KEY is specified, BREAK is assumed to be the
number of fields in the variablelist.

The search key used for the point is constructed from data in variables on the current
screen or from the supplied variablelist. If a field in the current index does not appear on
the screen, and the variablelist is not supplied, the point operation will fail to find a
record and an error will result.

If a record is found in the file that matches the key constructed from the current screen
then the buiit-in variable $SFOUND is set to one and SEOF is set to zero. If a record
cannot be found $FOUND is set to zero: in addition, SEOF is set to one if a non-zero
BREAK was specified.

If an exact match is not found, RECORD RESET can be used to turn off $SEOF (except in
IMAGE) and a RECORD READ will return the record containing the next higher value of
the key.

This command is only useful for access to an updatable path open in shared mode. |t
allows BUILDER to find a record that has previously been read and verifies that no other
user has altered the record before an UPDATE or a DELETE is done. The checksums that
indicate the status of a record are maintained on a segment basis, so if the file is
opened in different partitions within the same segment, the checksums will be properly
maintained. :

4-34

EXAMPLES:

sses SCREEN XY2Z2
eses LAYOUT

PART NUMBER DESCRIPTION

RECORD REPOINT

QUANTITY ON HAND

[PNO] [DESC] [QoH]
[PNO] [DESC] [QOoH]
[PNO] [DESC] [QOoH]
[PNO] [DESC] [QOH]
[PNO] [DESC] [QOH]
see INITIAL
OPEN FILE PARTS; MODE=SHARE
SET INDEX PNO
ARRAY
RECORD READ
ENDARRAY
NOTE The first few records hove been read into the
NOTE screen. The user can now go out to lunch.
*es FUNCTION 1; LABEL="NO ERROR™
NOTE In order to updote the records on the screen,
NOTE the current record pointer must be returned to
NOTE each record in turn.
ARRAY
RECORD POINT
IGNORE ERRORS
RECORD UPDATE
IF $ERROR
DISPLAY SERRMSG
ENDIF
ENDARRAY
NOTE This method will find the record and make the update,
NOTE even if some records were updoted by other peopie
NOTE while the user was out to lunch.

#ee¢ FUNCTION 2; LABEL="ERROR"
ARRAY
RECORD REPOINT
IGNORE ERRORS
RECORD UPDATE
IF $ERROR
DISPLAY SERRMSG
ENDIF
ENDARRAY
NOTE With this method,
NOTE that

NOTE out to lunch will

4-35

an attempted UPDATE on a
another person altered while the
generate

record
user was

an error.

RECORD RESET

RECORD RESET [USING partitionname)

Resets SEOF and the end-of—file indicator on the current (or specified) partition. A
subsequent RECORD READ on the partition will return the next record in the file.

partitionname Optional. If specified, the partitionname must exist and should
reference a path to which the application has READ access. |f not
specified, the current partition is used.

This command is designed to be used in conjunction with RECORD POINT with a non-zero
BREAK. Since reaching a break causes an end-of-file condition, and BUILDER will not
read from a path with an end-of-file condition, RECORD RESET needs to be called in
order to continue reading after a break has occurred. This command does not alter the
current BREAK and KEY settings, nor does it alter the current position of the record
pointer.

EXAMPLES:

ses FUNCTION 1 ; LABEL="INITIAL"
NOTE The KEY= gives me an implied BREAK=1
RECORD POINT KEY=2ZIPCODE
IF NOT $FOUND
FINISH "NO SUCH ZIP cooeg*
ENDIF
ARRAY
RECORD READ
ENDARRAY

*sse FUNCTION 2 ; LABEL="MQORE"
IF $EOF
NOTE This means sometinme through the last loop, $EOF was set
RECORD RESET
ENDIF
ARRAY
RECORD READ
IF $SUBSCRIPT=0 AND $EOF
FINISH "NO MORE IN FILE"™
ENDIF
ENDARRAY

4-36

RECORD REWIND

RECORD REWIND [USING partitionname)
[:BREAK=fieids]

The current path on the indicated partition is rewound and the end-of-file indicator for
the partition is reset. A subsequent read from the path will return the first record in
the path.

partitionname

BREAK

EXAMPLES:

FUNCTION
NOTE Rea
RECORD RE
NOTE It
IF SEOF

RECORD
RECORD
ENDIF

Optional. If specified, the partitionname must exist and should
reference a path to which the application has READ access. |f not
specified, the current partition is used.

Optional. If specified, the keyword must be followed by a numeric
value which indicates the number of fields in the key which should be
considered to cause a control break. .The value cannot exceed the
number of fields in the current index. An end-offile will be returned
as soon as one of the vaiues changes. To read the portion of the file
beyond the key pointed to, BREAK should be specified as zero. If not
specified, BREAK is assumed to be zero.

1;LABEL="NEXT*"
d another record
AD
at end of file, return to beginning

REWIND
READ

4-37

RECORD UPDATE

RECORD UPDATE
5 [USING pertitionname]
[;VARIABLE:warmma I{varname, fidname)_,varname | (varname, fidname)li..]]

Updates the current record (as established by a previous RECORD READ, RECORD
NEXT, RECORD POINT, RECORD REPOINT, SHOW VARIABLES, $READ function, or any
RELATE command).

partitionname Optional. |If specified, the partitionname must exist and shouid
reference a path to which the application has UPDATE access. If not
specified, the current partition is used. A record is updated on the
file(s) referenced by the current path on the indicated partition. Note
that the USING clause, if present, must come before any other
optional clauses. :

varname Optional. If specified by itself, the varname must be both a valid
BUILDER variable and a valid fieldname in the current file. If
specified with a fldname, the varname must be a valid BUILDER
variable which wil] be associated with the field specified by fldname.
if the VARIABLE; option is used, only those fields listed will be
modified; the values in all other fields will remain the same.

fldname Optional. The fidname must be a valid fieldname in the current file.

Any variables in the application (or only those in the current screen if SET OPTION
VARIABLES=LOCAL is used) that have the same name as fields from the current path are
copied into the recorcLPeing updated. All other fields in the record remain unchanged
{exception: VARIABLE= clause).

EXAMPLES:

sss ENTER
RECORD POINT
IF NOT $FOUND
DISPLAY “The requested record cannot be located."
ELSE
RECORD UPDATE
ENDIF

4-38

-

REFRESH

REFRESH [SCREEN]

Instructs BUILDER to update the content of the screen to reflect the current values of
variables in the application.

SCREEN Optional. If specified, the keyword instructs BUILDER to redraw the
entire screen as opposed to simply updating its content. This action is
normally only required after output to the terminal has been done by
anything other than BUILDER and RELATE and the original screen has
been destroyed or moved.

If REFRESH is executed in the INITIAL section it will also cause the screen to be
displayed. Normally, BUILDER does not update the screen until the end of a section is
reached. In some situations (particularly those involving a long processing delay)
periodically updating the screen provides a friendlier system.

The PROMPT command will not automatically cause a REFRESH. If intermediate results
need to be displayed, a REFRESH should be performed before the PROMPT.

. EXAMPLES:

ses INITIAL EVERYTIME

NOTE Read next customer

RECORD READ

NOTE The new customer data is not yet displayed

REFRESH

PROMPT “Is this customer OK?"

IF $KEY <> "vy~*

CALL SCREEN SPECIAL_REPORT

ENDIF

NOTE This is where an automatic refresh is done
sse ENTER

:RUN BIGPRNT

REFRESH SCREEN

4-39

RESET

RESET [ALLIRECORD [USING partitionname] ISCREEN IVARIABLE varisbienamelist

[/SUBSCRIPT])

Resets the value returned from the SCHANGED function for various groups of variables.

ALL

RECORD
USING
SCREEN

VARIABLE

SUBSCRIPT

Optional. If specified, all the variables in the application will no
longer be flagged as having been changed by the user.

Optional. If specified, all the variables in the current screen which
also exist in the current path in the current partition are no longer
flagged as having been changed by the user.

Optional. If specified, the keyword must be followed by the name of
an existing partition. All variables in the screen which also exist in
the current path on the specified partition are no longer flagged as
having been changed by the user.

Optional. If specified, all the variables in the current LAYOUT are
no longer flagged as having been changed by the user.

Optional. Resets the indicated variables. If an array variable name is
specified, all subscripts of the variable are reset.

Optional. If specified, only variables that exist with the current
subscript vaiue are reset. The keyword must be used in combination
with the other keywords. For example, RESET RECORD;SUBSCRIPT
will reset all variables in the current path for the current subscript.

If no keywords are specified, SCREEN is assumed.

This command has no effect on the $SCHANGED built-in variable, which indicates if ANY
variables have been changed by the user. To reset the $CHANGED built-in variable, its
value must be set to zero.

EXAMPLES:

see ENTER

IF $CHANGED("ADDRESS") OR $CHANGED("CITY")
RECORD ADD USING NEWADDR
RESET VARIABLE ADDRESS.CITY

ELSE

RECORD UPDATE USING CUSTOMER
$CHANGED : =0
RESET SCREEN

ENDIF

RETURN SCREEN

RETURN SCREEN

Causes a return from a previously executed CALL SCREEN command.

If more than one CALL SCREEN command is pending, then the last one executed is the
one returned to. If no CALL SCREEN commands are pending, then this command returns

an error.

EXAMPLES:

sess ENTER
DISPLAY "Calling SCREENB. "
CALL SCREEN SCREENB
DISPLAY "Returned from SCREENB.
s+e¢ SCREEN SCREENSB
sse LAYOUT

sses ENTER
DISPLAY “"Processing SCREENB."

RETURN SCREEN

441

SCROLL

SCROLL [expression]
Scrolls a message at the bottom of the screen.

expression Optional. The expression can be any valid BUILDER expression. If the
result of the expression is longer than the width of the terminal, the
message is split into two or more lines, and each line is scrolled
Separately onto the bottom of the screen. Except when a word fills
the entire line, a string is always split between words. If the
expression is omitted, a blank line is placed at the bottom of the
screen.

Unlike the DISPLAY command, the SCROLL command can be used to write multi-line
messages. The SCROLL command will scroll the screen up one line and write the
message on a new line at the bottom of the screen.

The cursor remains positioned after the last character in the message until another
Operation causes data output.

Any PROMPT or DISPLAY after a SCROLL in the same section will also cause the
screen to scroll. The screen will be redrawn automatically at the end of the section.

EXAMPLES:

sees ENTER
RECORD READ
WHILE NOT S$EOF
SCROLL "NAME=Xname, ADORESS=Xaddress"
RECORD READ
ENDWHILE

Positions the cursor to the beginning of the indicated variable.

SET CURSOR variablename

SET CURSOR

variablename Recquired. The variablename must be an OPTIONAL, REQUIRED, or

The SET CURSOR command also causes a REFRESH to be executed.

POSITION variable on the current screen.

EXAMPLES:

see LAYOUT

COMMAND: [CLINE]

INVOICE NUMBER: AMOUNT :

[INVNO 1 [AMT]
[INVNO] [AMT]
[INVNO | [AMT]
[INVNO] [AMT 1

¢se INITIAL EVERYTIME

SET CURSOR CLINE
ENTER

PROMPT “WHICH INVOICE (1-4)2" . x

$

SUBSCRIPT:=mXx-1

SET CURSOR INVNO

LR N

L]

L

DECLARATIONS
X: NUMERIC

SCREEN REPORT
LAYOUT

DATE :
[DATE
[DATE
[DATE
[DATE

PRESS RETURN TO GENERATE REPORT

DEPARTMENT DESIRED:[DNO
JOB NUMBER: [J4NO

DECLARATION
JNO; POSITION
ONO; REQUIRED

ENTER

SET CURSOR JUNO

REFRESH

STREAM USER.ACCT
OPEN FILE X
SELECT ® WHERE DEPT=XDNO
EXECUTE XRPT

ENDSTREAM

SET OPTION

SET OPTION
[DATE = “‘dateformat”)
[ENHANCE = (type = enhlist)]
[MESSAGE = CLEAR 1 KEEP]
[QUOTES = ON | OFF | YES | NO]
[SUBSTITUTE = ON | OFF | YES | NO]
[TAB = CLEAR | SKIP | DEFAULT]
[TIMEOUT = ssconds]
[VARIABLE = LOCAL | GLOBAL]
[VERIFY = [ENTER[,FUNCTION]] I NONE]

Selects operational characteristics of the BUILDER application.

DATE Optional. If specified, the keyword must be followed by a valid date
format specification. Subsequent references to the SDATE built-in
variable will return the current date in the format specified. Also, any
additional variables declared as DATE with no format specified will
use this format.

ENHANCE Optional. If specified, the keyword must be followed by the item to
enhance and the enhancement mode. The type must be one of the
following:

ACTION The default enhancement for ACTION varisbles.

BUILDER The defauit enhancement for messages automatically
emitted by BUILDER (e.g., syntax error messages).

DISPLAY The default enhancement for DISPLAY variables.

ERROR The enhancement for variables in error.

FAIL The display enhancement for messages generated by the
FAIL command.

FINISH The display enhancement for messages generated by the

FINISH command.

MESSAGE The display enhancement for messages generated by the
DISPLAY and SCROLL commands.

OPTIONAL The default enhancement for OPTIONAL variables.

POSITION The default enhancement for POSITION only variables.
PROMPT The default enhancement for the text contained within
a prompt.

REQUIRED The default enhancement for REQUIRED variables.

The type keyword must be followed by one or more of the keywords
(or their abbreviations): BLINKING, HALFBRIGHT, INVERSE,

444

—

SET OPTION

UNDERLINE or NONE, separated by commas.

The defauit enhancement types are determined by the configuration of
the terminal driver.

MESSAGE Optional. If specified, the keyword must be followed by either
CLEAR or KEEP. CLEAR causes anything displayed in the message
line to be cleared as soon as a TAB, RETURN/ENTER, or function key
is used. KEEP causes anything displayed in the message line to remain
until something else is displayed. The new setting remains in effect
for all screens until is is explicitly altered. KEEP can prevent function
key labels from being displayed on terminais where the labels are
displayed on the message line.

The default is CLEAR.

QUOTES Optional. If specified, the keyword must be followed by YES, NO,
ON, or OFF. If NO or OFF is specified, the substitution algorithms
will not replace a quote (") with two quotes (**). If YES or ON is
specified, the substitution is enabled. This applies only to the current
screen.

The defaulit is ON.

SUBSTITUTE Optional. |If specified, the keyword should be followed by YES, NO,
ON or OFF. If NO or OFF is specified, subsequent commands are
evaluated without the substitution algorithm that is normally
performed. If YES or ON is specified, the substitution algorithm is
enabled. This applies only to the current screen.

The default is ON.

TAB Optional. If specified, the keyword should be followed by CLEAR,
SKIP, or DEFAULT. The new setting for this option becomes the
default TAB option for all variables created after this command has
executed (on CALLED or SET screens). It also overrides any previous
setting for a GLOBAL variable redeclared after this command has
executed. If CLEAR is specified, after this command, when a TAB is
pressed to jump to the next variable, all characters in the variable
after the cursor will be set to blanks before numping to the next
variable. If SKIP is specified, when a TAB is pressed, the cursor skips
to the next variable without changing any information in the original
variable. Specifying DEFAULT uses the BUILDER default for TAB.

The default is SKIP for LEFT justified variables and CLEAR for
CENTER or RIGHT justified variables and dates. ol
“oer VeNE
e\

TIMEOUT Optional. If specified, the keyword must be followed by, an integer
indicating the number of seconds to wait for a user to press a key
before executing a TIMEOUT section. Setting TIMEOUT equal to zero
turns off the timeout checking.

The TIMEOUT value applies only to the current screen. A SET
OPTION TIMEOUT in the GLOBAL INITIAL section affects only the

4-45

SET OPTION

VARIABLE

VERIFY

EXAMPLES:

ENTER

first screen in the application and PROMPTS in the GLOBAL INITIAL
section.

If there is a TIMEOUT section in the screen, that TIMEOUT section
will be executed; otherwise, the GLOBAL TIMEOUT section will be
used. If neither TIMEOUT section can be found when a time-out
occurs, an error will be generated.

Optional. If specified, the keyword must be followed by the keyword
LOCAL or GLOBAL. Use of GLOBAL indicates that any variable in a
called screen that is not declared as a GLOBAL may still reference a
global variable if its name is the same and it doesn't appear in the
LAYOUT or DECLARATION. If LOCAL is specified, no variable will
be treated as global unless it is declared as GLOBAL in the
declaration section.

The default is GLOBAL.

Optional. If specified, the keyword must be followed by the keyword
ENTER or FUNCTION (or both) or the keyword NONE. Use of the
keywords ENTER or FUNCTION will cause BUILDER to verify the
contents of all variables on the screen when RETURN/ENTER or a
function key is pressed. If NONE is specified, this verification is not
performed and the VERIFY command must be used if verification is
desired. This command applies only to the current screen.

The default is ENTER, FUNCTION.

SET OPTION ENHANCE=(ACTION=],B)
SET OPTION SUBSTITUTE=OFF
SELECT CONSTANT="Xfnaome=",6 FNAME
SET OPTION SUBSTITUTE=ON

SET OPTION TIMEOUT=690

PRINT

TIMEOUT

SCROLL "“LOGGING YOU OFF THE SYSTEM"

EXIT

SET PARTITION

SET PARTITION partitionname

The partition with the specified name becomes the current partition.
partitionname Required. The given partitionname is made the current partition.

The partition must have been previously created with the CREATE PARTITION command.
The special partitionname DEFAULT can be used to reference the partition automatically
created by BUILDER.

EXAMPLES:

ese INITIAL

CREATE PARTITION PARTS

OPEN FILE PARTS

CREATE PARTITION CUSTOMER

OPEN FILE CuUST

SET PARTITION DEFAULT
ses ACTION 1

SET PARTITION PARTS

SET INDEX PARTNUM

SET PARTITION DEFAULT
see ACTION 2

RECORD READ USING CUST

SET PARTITION PARTS

SET INDEX CNUM

RECORD POINT

WHILE NOT S$SEOF

RECORD READ
ENDWHILE
SET PARTITION DEFAULT

SET SCREEN

SET SCREEN screenname

Displays a new screen.

screenname Required. This screenname must be the screen name from a SCREEN
delimiter line from within the current application file, or the name of
an application file in the same group and account as the original
application file. MPE FILE equations are not referenced.

The SET SCREEN command is executed immediately. No commands following the
command in the section will be executed. All variables defined on the screen are
removed and can no longer be accessed. The SET SCREEN command executes the
initialization section of the new screen, gets the new screen layout, displays the new
screen, and waits for user input. If the new screen initialization section contains an
error or there is an error in the screen layout, then the SET SCREEN command returns
an error.

In general, do not use SET SCREEN to exit a screen that has been entered using CALL
SCREEN. Instead, use RETURN SCREEN.

EXAMPLES:
sse ENTER
SET SCREEN SCRS
DISPLAY “This DISPLAY commond will never be executed"

SET STATE

SET STATE statename

Changes the state of the current screen.

statename Required. Name of new state. A state name must begin with a
letter, contain only letters, digits, and underscores (*_*). and be no
more than 15 characters long.

Changing the state will cause the DECLARATION section associated with the state to be
evaluated, the INITIAL section for the STATE to be executed, and the function key labels
to be redrawn to reflect the new state. Any variables declared as ACTION variables must
be redeclared as ACTION variables if the state has a DECLARATION section of its own,
or they will no longer be ACTION variables.

Whenever the RETURN/ENTER key or a FUNCTION key is pressed, the ENTER or
FUNCTION section associated with the current state is executed.

EXAMPLES:
sse LAYOUT
EMPLOYEE NUMBER: [num]
LAST NAME: [lost] FIRST NAME: [first]
DATE HIRED: [h_date]
DATE TERMINATED: [t_date)]

¢ses DECLARATION
H_DATE,T_DATE;DATE
NUM;NUMERIC;RANGE=1/

sse DECLARATION STATE=ADD
NUM,H_DATE,LAST,FIRST; REQUIRED
T_DATE; DISPLAY

see¢ DECLARATION STATE=CHANGE
NUM,H_DATE; DISPLAY
FIRST.LAST,T_DATE; OPTIONAL

¢ss DECLARATION STATE=SEARCH
NUM;OPTIONAL
LAST, FIRST, H_DATE, T_DATE; DISPLAY

see¢ INITIAL STATE=SEARCH
CLEAR SCREEN

ess FUNCTION 1
SET STATE ADD

sse FUNCTION 2
SET STATE CHANGE

SET STATE

¢tee FUNCTION 3
SET STATE SEARCH

¢ee FUNCTION 4; STATE=ADD
RECORD ADD

¢es FUNCTION 4; STATE=CHANGE
RECORD UPDATE

see FUNCTION 5; STATE=SEARCH
RECORD POINT
IF $FOUND
RECORD READ
ENDIF

SHOW PARTITIONS

SHOW PARTITIONS

Displays the names of all partitions that currently exist. This command is most useful in
debugging applications.

EXAMPLES:

ese ENTER
CREATE PARTITION PARTS_PART
OPEN FILE PARTS
CREATE PARTITION CUSTOMER_PART
OPEN FILE CUSTOM
SHOW PARTITIONS

Displays:
PARTS_PART

DEFAULT
CUSTOMER_PART (Current)

4-51

STREAM...ENDSTREAM

STREAM [logon]
ENDSTREAM

Allows a job to be streamed from BUILDER.

logon Optional. If specified, the logon must contain at least a valid user
and account name and any required passwords. The logon may contain
all parameters available on the MPE JOB command (excluding the
keyword JOB). If not specified, the entire JOB command shouid
immediately follow the STREAM command.

If logon is included, the commands between the STREAM and ENDSTREAM commands
must be RELATE commands. The BUILDER stream facility will create a job containing
the logon, the command RELATE, the commands between the STREAM and ENDSTREAM
commands, an EXIT and an IEOQJ.

If logon is not included, the commands between the STREAM and ENDSTREAM commands
are placed directly into a file and streamed. The STREAM command should be followed
by a JOB command; the ENDSTREAM command should be preceded by an EOJ.

Before the commands are streamed, the substitution algorithm is applied. This can be
used to place passwords, program names, etc., into the job. If a more flexible mechanism
is required, the SUBMIT command can be used.

When the STREAM command is executed, BUILDER creates a file called BLDRJOB in the
session temporary domain. Any existing file of the same name is purged. When the
ENDSTREAM command is executed, the file is closed and streamed. |f desired, the file
can then be saved and renamed by the application.

The STREAM and ENDSTREAM commands must be entirely contained within a single
action section of an application.

EXAMPLES:

sees ENTER
STREAM DATA.SALES/chctpol-;OUTCLASS-FASTLP
OPEN FILE SLSDATA
REPORT USING SLSREP{
ENDSTREAM

The following example will produce the same results:

ses ENTER

STREAM
tyoB DATA.SALES/Zocctpala;OUTCLASS-FASTLP
IRELATE
OPEN FILE SLSDATA
REPORT USING SLSREP1
EXIT
LEOJ

ENDSTREAM

SUBMIT

>EXIT

>I1E0J
SUBMIT JoOB
sseo FUNCTION 2
OPEN FILE SALES
>PAGE HEADING=("SALES BY REGION"),("AS OF Xtoday")
>FIELDS=(REGION), (TOTAL)
>GO0
SUBMIT REPORT:P
see FUNCTION 3
PROMPT "FILENAME TO SAVE LETTER AS?" ,fname
>Ace Services
>110 South Central
>CHICAGO, 1L
>Xtoday
>
>DEAR Xcontact:
IF STATUS="PAST DUE"
>Xlaotemsg
ELSE
>Xstdmsg
ENDIF
>
>SINCERELY,
>
>Xuser
SUBMIT FILE
:SAVE BLDRSBMT
:PURGE Xfname
:RENAME BLDRSBMT, Xfname
DISPLAY “LETTER "“%Xfnaome"" HAS BEEN CREATED. "

VERIFY

VERIFY

Validates the contents of ali variables.

Compares all variables against the requirements given in the DECLARATIONS section and
verifies that the VARIABLE sections for all variables whose vaiues have changed have
been executed. The execution of this command will verify that numeric variables only
contain numeric data, that variables with ranges are within the specified bounds, and so
forth.

VERIFY is normally executed automatically whenever a FUNCTION key or
RETURN/ENTER is pressed. This can be changed by the SET OPTION VERIFY command,
which can disable automatic verification in either or both instances.

When a screen variable is changed by the user, BUILDER will always attempt to verify
the content of the variable. The content is checked against any RANGE (as specified in
the DECLARATIONS) and any associated VARIABLE section is executed. |f an error is
encountered, the variable is highlighted and the cursor is returned to the variable. If the
value is changed again, the variable is reverified. The user may TAB out of a field that
has failed verification. When RETURN/ENTER or a function key is pressed, or VERIFY is
executed, all variables on the screen that failed verification are again verified.

EXAMPLES:

sse LAYOUT

NAME OF FILE TO OPEN:[fname]
LOCKWORD:[lockword]
PRESS F1 TO EXIT

¢se DECLARATIONS
FNAME, LOCKWORD ;REQUIRED

sse INITIAL
SET OPTION VERIFY=NONE

ess FUNCTION 1
NOTE This function can be executed becouse no outomatic

NOTE verification is done.
EXIT
sss ENTER
NOTE Make sure verificotion is done sometime.
VERIFY

OPEN FILE Xfnaome/Xlockword

SECTION 5

DESIGNING
SCREEN-BASED APPLICATIONS

CREATING AN APPLICATION

The process of creating and debugging an application is a straightforward three-step
process.

1. Using HP's EDITOR or QEDIT (or any other editor that creates a compatible file),
Create a file containing screen delimiters, BUILDER commands, and RELATE commands.
Keep this file under any name. This is your "application file”.

2. Run BUILDER in CREATOR mode (this can usually be done by simply typing
BUILDER). When BUILDER requests "Application File:", respond with the name of the
file you created above.

3. if BUILDER detects an error and you are running in CREATOR mode, it places you in
BUILDER Debug mode. From there you can edit your application file or use BUILDER or
RELATE commands to adjust your data or the application, then resume or restart the
execution of your application.

The ability to debug interactively from debug mode using an editor and the BUILDER
interpreter makes debugging simple and fast. Using the editor, you can make changes
directly to your application and resume execution at the point the error was detected.

If you choose to enter RELATE from debug mode, you are actually entering the BUILDER
interpreter interactively. You can now enter any RELATE command and any BUILDER
command exactly as you would when placing the command into your application file. This
includes specifying variables to be substituted into commands.

'For example, if you have a variable on your screen called TEXT, and you are in the
BUILDER interpreter, you can ascertain its value in a number of ways:

)JDISPLAY TEXT
JDISPLAY “"The vaiue of text is %text”
JSHOW VARIABLE TEXT

You can see what files are currently open:
JSHOW PATHS

You can change the values of variables or perform actions just as you could in your
application file.

JOPEN FILE %filename
JRECORD READ
JDISPLAY NAME
JNAME:="MARY"
JRECORD UPDATE

51

DEVELOPMENT STANDARDS

The consistent use of standard practices and techniques simplifies the development of
applications. The list of standards need not be long to be effective. The standards
should address basic techniques for transfer of control and processing, the use of function
keys, internal application documentation, readability factors such as indentation and
utilization of upper and lower case characters, the order of sections in a screen, etc.
The layout of the screens is also of importance. This includes the use and location of
SCreen names, screen headings, version numbers, and variable enhancements. This section
describes a number of techniques which can be used in developed applications.

Application Security

BUILDER allows you to protect an application or parts of an application from
unauthorized use. The four principle methods of securing an application are described
below. An assumption is made that when a system is delivered to the end-user most of
the screens used in the System will have been placed into a single application file.

The simplest way of securing an application involves using MPE for logon passwords,
possibly UDCs to start the application and possibiy a lockword on the application file.
This method takes very little time to set up or alter and requires little additional input
by the user. The pPrimary drawback of this method is that users can only be restricted
On an application basis and cannot be restricted to individual functions within an
application.

A slightly more complex and flexible method is to restrict certain functions and
operations by the logon name of the user. In this case, the user need not learn any new
passwords. Because checks must be mads for each user at each restricted function, this
method can create problems if the number of users becomes large. Additionally, the
application file must be edited when the security matrix needs to be changed, which could

The final method results in the most flexible access control. The method consists of a
file into which the security matrix is placed. The matrix consists of at least the screen
name from which the function is requested, the function name, and the user names of
those allowed to perform the function. Before a function is performed, this file is
checked to verify that the user has the appropriate authorization. This method adds
slightly more code to the application than the others but results in greater flexibility.
Specifically, access capabilities can be changed by adding, deleting, or updating the
authorization file, and do not require a re-release of the application. If these changes
are made frequently, it is possible to add an area to the application, appropriately
secured, to assist with this task. Another major benefit of this approach is the ability to
get a complete summary of the security situation simply by looking at the file.

53

The first method can continue to be implemented with CALL SCREENS. The second
method would likely require the use of SET SCREEN commands, rather than attempting to

CALL through several levels of intermediate screens based on the entered text, especially
since the latter requires that you also RETURN SCREEN through the same levels. In
general, SET SCREEN allows implementation of non-hierarchical systems, or the use of
non-hierarchical access through a hierarchical system. The use of SET SCREEN will
increase the number of “paths” through an application and thus make it more difficult to
test. Also, a SET SCREEN, SET SCREEN sequence will exscute more slowly than a
CALL SCREEN, RETURN SCREEN sequence.

The nesting level of CALLs is finite. It is possible to construct an application so that a
CALL is made, but a RETURN is never executed. This will eventually cause a table
overflow in BUILDER. If a CALL SCREEN is used, make sure that the only way to
return is through the use of RETURN SCREEN and not a SET SCREEN.

Help Screens

On-line help is one of the best ways to make an application user—friendly. Even if a
manual for the application exists, it can't be assumed that the users will read it,
understand it, or even have access to it. Even users who have learned the application
may forget portions if it is not used periodically.

There are several techniques for providing heip. Perhaps the primary technique is the use
of understandable error messages. The application should detect errors and print some
useful messages on the display line of the screen. The messages should be specific and
should assist in correcting the problem. Such messages are much better than the
generalized messages generated by RELATE and better than the use of an error number
(even if the error is described in the manual for the application).

Help can also take the form of one or more screens of information that can be displayed
in response to a function key or instructions given during the use of an application. If
the help information is contained on several screens, users should be allowed to view the
first screen for as long as desired. When & user wishes to continue, he or she can press
a key. If the sequence of help screens is long, a way should be provided to terminate
the heip sequence prematurely.

If help is contained on a single screen, the screen should normally be CALLed. This will
cause BUILDER to save all of the information on the current screen before displaying the
help screen. If the help information consists of a sequence of screens, the first should be
CAlLLed and the subsequent screens should be SET. Help can also be placed in a
SCROLL command. The advantage of using the SCROLL command is that the screen
being described is not erased before the help is given.

As noted above, help can be invoked in a number of ways. The most flexible method is
through the use of a function key. When a function key is used, BUILDER will remember
the current location of the cursor. This information can be obtained through the
SVARIABLE built~in variable. This method allows help to be associated with individual
fields on the screen as well as the overall screen. Because BUILDER operates in
character or line mode, calling a help screen will not cause any data the user has placed
on the current form to be lost.

IMPROVING PERFORMANCE

Here are some guidelines on improving the execution speed of a BUILDER application,

1.

10.

11.

12.

13.

14.

15.
16.

Line mode is slightly faster than character mode. Block mode is faster for
initial data entry because no verification is done, but slower if any errors
are found as each pressing of ENTER will cause all variables to be
reverified.

Whenever possible, open each file in a separate partition. Do RECORD
processing commands with the USING option or SET PARTITIONs instead of
SET PATHs. BUILDER typically has enough memory for 10 to 15 partitions.

Do not use SELECT to validate key vaiues. Use RECORD POINT followed
by SFOUND. Use SELECT only to do joins and complex file operations.

When using a SELECT command, try it through RELATE to verify that it is
not creating a temporary index.

Within IF-ENDIF blocks, use FAIL or FINISH with a message instead of
DISPLAY if no further processing needs to be done.

COMPILE the application.
ARRAY loops are more efficient than WHILE loops.

Use RELATE commands whenever possible to process multiple records, rather
than looping (especially the DELETE, LET, COPY, and UPDATE commands).

Use the RANGE and INITIAL options in the DECLARATION section instead
of BUILDER code to initialize and validate values for variables.

Opening files takes time - open as many as possible at the beginning of the
application and refrain from closing.

Do all SET INDEXes when the file is opened and avoid doing elsewhere
unless absolutely necessary. It is faster to have two partitions for the same
file with different current indexes.

A CALL SCREEN followed by a RETURN SCREEN is faster than two SET
SCREENS.

Repeating identical code in several places gives faster execution than
treating it as a subroutine screen, aithough maintenance becomes more
involved.

"Stack” variable names in the DECLARATION section (eg: X,Y,Z2; NUMERIC)
and commands (eg: CLEAR VARIABLE A.B.C).

Use of LINEDRAW siows down the drawing of screens on some terminals.
Use STATEs instead of several separate screens with similar LAYOUT

sections. Do not use STATEs for actions performed frequently by users or
as subroutines.

57

SECTION 6

PROGRAMMING LANGUAGE INTERFACE

BUILDER PROGRAMMING LANGUAGE INTERFACE

BUILDER was designed to allow the development of complete applications, but some
applications will require more speed or complexity than that provided by BUILDER
commands. For this reason the CALL PROCEDURE command was included to allow the
application developer to leave the BUILDER environment and write some of the
application in a traditional programming language (SPL, FORTRAN, COBOL I, or
PASCAL). A set of procedures is provided to perform communication between thess
subroutines and BUILDER.

To use the package, the application developer writes a subroutine conforming to the
BUILDER calling conventions (described in this section) and places it in a group, account,
or system SL. When a BUILDER application is run that executes a CALL PROCEDURE
command to this subroutine, BUILDER looks first in the group, then account, then system
SL for the subroutine. Note that BUILDER looks in the group and account in which the
user is logged on, not the group and account in which the BUILDER program resides.

WARNING: It is possible for a user written routine invoked from BUILDER to invalidate
the BUILDER environment resulting in program aborts or erronecus
processing. CRI! will attempt to resolve problems resulting from the use of
these routines. However, this service is not provided under the standard
software maintenance contract and must be purchased on a time and
materials billing basis.

6-1

SUBROUTINE CALLING CONVENTIONS

There are two conventions that may be used for writing subroutines. The first convention
is more straightforward, but requires substantial overhead each time a new procedure is
called. The second method requires that an extra interface routine be written by the
application developer, but requires less overhead and may be used to permanently install
the subroutines into the BUILDER interpreter.

Method 1

Each subroutine must contain exactly three parameters, each of which is an integer array.
The first parameter is the current partition in BUILDER at the time of the CALL
PROCEDURE command. The second parameter is a table defining the current state of
BUILDER. This may be used in future releases for some purposes. The last parameter may
be used to pass information from the CALL PROCEDURE statement. See the CALL
PROCEDURE documentation for further information.

Example:
SUBROVUTINE TEST(CUR.SCA.PAR)
INTEGER CUR(1),SCA(1),PAR(1)
(o .. perform computation
RETURN
END

The subroutine should be compiled and placed into a group, account, or system SL relative
to where the end user is using the application. Once the subroutine is resident in the SL
it may be called directly by BUILDER's CALL PROCEDURE command. The subroutine
may call the communication routines to communicate with the BUILDER program,

Method 2

The application developer writes a special routine called CMDUSERO1, which in turn cails
all the other subroutines written by the application developer. When BUILDER encounters
a CALL PROCEDURE command it searches for the CMDUSERO1 routine, which will then
pass control along to the appropriate subroutine. In this method there are no calling
conventions required for the individual subroutines. In order to call a subroutine, the
subroutine must not only exist in the SL but must also be called by the CMDUSERO1
routine.

The calling convention for CMDUSERO1 is (SPL example):

PROCEDURE CMDUSER®1(NAME,NUMBER,CUR,SCA,PAR) ;
BYTE ARRAY NAME;

INTEGER NUMBER;

INTEGER ARRAY CUR,SCA,PAR:

The CUR, SCA, and PAR arrays are exactly as described in method 1, and these may be
passed down to a subroutine as required.

6-3

INSTALLING ROUTINES IN AN SL

The communication package is supplied with BUILDER as a USL file called PLEUSL. This
USL file can be installed in the group, account, or system SL so that it can be called by
subroutines written by the application developer.

The following MPE command can be used to install the communication package in a group
or account SL.

:SEGMENTER

-SL St

-USL PLEUSL

—~PURGESL SEGMENT,PLEUSL
—ADDSL PLEUSL

-EXIT

The following MPE command can be used to install a segment of user subroutines into an
SL. Assume that the USL file containing the subroutines is called USERUSL and the
segment name is USERSEG. If method 2 is used as the calling convention, CMDUSERO1
shouid also be contained in this segment.

:SEGMENTER

-SL SL

-USL USERUSL

~PURGESL SEGMENT,USERSEG
—ADDSL USERSEG

-EXIT

COMMUNICATIONS PACKAGE CALL SUMMARY

The communications package provides an interface between the data structures maintained
by BUILDER and a subroutine written in a traditional language. The routines allow data
to be retrieved and updated and partitions to be accessed and adjusted.

CALL NAME DESCRIPTION

BLDRGETVAR Move data from a BUILDER variable to a subroutine.

BLDRPUTVAR Move data to a BUILDER variable from a subroutine.

BLDRGETCUR Get the RELATE cursor given a BUILDER partition name.

BLDRPUTCUR Infc:r_';r_\ BUILDER that the current path has changed in the
partition.

6-7

BLDRPUTVAR

BLDRPUTVAR (name, data, datalen, error)

Moves data from a variable in the host language procedure into a variable in the

BUILDER application.

data

datalen

error

Required. A character array terminated by a blank, rull, or
backslash of a maximum of 15 characters. This contains the name
of a BUILDER variable.

A character array of length DATALEN containing the alphabetic
value to be placed into the specified BUILDER variable.

Required. An integer containing the length of the DATA variable.
If DATALEN is longer than the BUILDER variable the data will be
truncated and ERROR=-1 returned. If DATALEN is shorter than
the BUILDER variable then the BUILDER variable will be padded
with blanks to the right.

An integer containing the error number returned by this call.
Zero means no error. A one means the variable is not known by
BUILDER. A minus one means data has been truncated.

All data, including numbers, are treated as alphanumeric data and should be placed into
the variable as ASCII characters. If the BUILDER variable is an array variable then the
value of the current subscript will be changed.

BLDRPUTCUR

BLDRPUTCUR (partitionname, partition, error)

Returns an updated partition, fetched by BLDRGETCUR, to the BUILDER program.

partitionname Required. A character array terminated by a blank, null, or
backslash of a maximum of 15 characters. This should contain the
name of an existing BUILDER partition.

partition An integer array of 50 words containing an HL! partition.
error An integer containing the error number returned by this call.

Zero means no error. A one means the partition name is not
known by BUILDER.

This routine is required if the procedure uses the RELATE HL! calls to change the
current path. This routine is not required if only RDBREAD, RDBPOINT, RDBDELETE,
RDBUPDATE, or other calls that do not change the current path are executed.

6-1

FORTRAN PLE INTERFACE EXAMPLE

$CONTROL USLINIT, SEGMENT=SEG2
SUBROUTINE PLETEST(MAINCUR,SCA,PAR)
INTEGER MAINCUR(1),SCA(1),PAR(1)
CHARACTER+15 NAME
CHARACTER+80 DATA
INTEGER DATALEN, ERR
INTEGER CUR(5e)

CALL BLDRGETVAR("FIRST ".,DATA,80,ERR)
CALL BLDRPUTVAR("SECOND “".DATA,80,ERR)
CALL BLDRGETCUR("MAIN ",CUR,ERR)

CALL RDBCLOSE(CUR)

CALL BLORPUTCUR("MAIN “,CUR,ERR)
RETURN

END

6-13

PASCAL PLE INTERFACE EXAMPLE

TYPE
small_int = -32768..32767;
intorray = ARRAY [1..508] of smali_int;
string15s = PACKED ARRAY [1..15] of CHAR;
stringse = PACKED ARRAY [1..88] of CHAR;
PROCEDURE pletest (VAR maincur, sca, par : intarray);
VAR
name : stringt1s;
data : stringB8e;
dotolen,err : small_int;
cur i intarray;
daoatalen : small_int;
{BUILDER externalsi
PROCEDURE bldrgetvar (VAR bldrvar string15;
VAR data string860;
VAR daotalen smalil_int;
VAR err small_int); external SPL;
PROCEDURE bidrputvar (VAR bidrvar stringt1s;
VAR data string86;
VAR datalen small_int;
VAR err small_int); external SPL;
PROCEDURE blidrputcur (VAR par string15;
VAR cur intarray;
VAR err small_int); external SPL;
PROCEDURE bldrgetcur (VAR par string1$;
VAR cur intorray;
VAR err small_int); externa!l SPL:
BEGIN
datalen:=89;
bldrgetvar ("first ', data, datolen, err);
bldrputvar (*second ', datae, datalen, err);
bidrgetecur ('main ', cur, err);
rdbclose (cur);
bldrputcur ('main ', cur, err);
END;

$-15

APPENDICES

APPENDIX A

COMMAND and SECTION FORMATS
PART | — COMMANDS

ARRAY ... ENDARRAY

Performs automatic looping through array variables.

variablename := exprassion
Performs arithmetic or character manipulations and assigns the value of the
expression to the indicated variable.

BREAK

Causes the application to suspend and invokes the BUILDER command
interpreter.

CALL SCREEN screenname

Displays a new screen and saves the current screen for a subsequent return.

CALL PROCEDURE slprocname

Executes a procedure in an SL written in SPL, COBOL, FORTRAN, or
PASCAL. '

CLEAR [ALLIRECORD [USING partitionname] ISCREEN IVARIABLE variablenamelist
[;SUBSCRIPT]]

Clears sets of variables.

CREATE PARTITION partitionname [:SEGME N T=number]

Creates the indicated partition.

DISPLAY [expression]

Places text into the message line.

ERASE SCREEN

Clears the entire screen display.

A-1

PURGE PARTITION partitionname

Purges the indicated partition.

RECORD ADD [USING partitionname]
[;VARI ABLEf-varnamel (varname, fidname)[,varname | (varname, fidname)]|...]]
Adds a record to the file(s) referenced by the current path in the current or
specified partition.

RECORD DELETE [USING partitionname)
Deletes a record from the file(s) referenced by the current path in the
current or specified partition.

RECORD NEXT [USING partitionname]
Reads a record from the file(s) referenced by the current path without
moving data from the database fields into BUILDER variables.

RECORD POINT [USING partitionname] [KEY=variablelist] [:BREAK=num]
Locates a record in the file(s) referenced by the current path in the current

or specified partition.

RECORD READ [USING ﬁrtitionname]
[:VARIABLE&varname!(varname.f Idname)[,varname | (varname, fidname)]l...1]

~

Reads a record from the file(s) referenced by the current path in the current
or specified partition.

RECORD REPOINT [USING partitionname] [KEY=variablelist] [;BREAK=num)]
Re-locates a record in the file(s) referenced by the current path in the
current or specified partition in preparation for a delete or update.

RECORD RESET [USING partitionname]
Resets the end-of-file on the current or specified partition. A subsequent
read using the partition will retrieve the next record.

RECORD REWIND [USING partitionname] [;BREAK=fields}]

Rewinds the file(s) referenced by the current path in the current or specified
partition.

A-3

SET SCREEN screenname

Causes a lateral transfer of control to a new screen.

SET STATE statename
Changes current state of screen. This will cause the DECLARATION section
associated with this state to be evaluated, the INITIAL section to be

executed, and the function key labels to be redrawn to reflect the new
state.

SHOW PARTITIONS

Displays the partitions which currently exist.

SHOW VARIABLES [OPTIONS]) [variablenamelist]
Displays variables known by BUILDER and their options.

STREAM [logon] ... ENDSTREAM
Causes the creation of a file (BLDRJOB) which is streamed.

SUBMIT INTO filename
SUBMIT REPORTI:P]
SUBMIT JOB

Causes the creation of a file (BLDRSBMT) which is either closed, streamed
as a job, or used by CREATE to produce a report.

TRACE ONIOFF
Enables or disables the display of commands as they are executed by
BUILDER.

VERIFY

Verifies that all changed variables contain valid data as described in the
DECLARATION of the variable and as determined by the variable's
VARIABLE section (if any).

WHILE condition ... ENDWHILE

Causes looping within a command section.

A-5

delimiters INITIAL [STATE=statename]

Contains commands that are executed before the screen is displayed.

delimiters INITIAL EVERYTIME
Contains commands that are executed after the INITIAL section and before

the screen is redisplayed after a FUNCTION, ENTER, or ACTION section has
been executed.

delimiters LAYOUT [LINDRAW=linechar]

Contains the format of the screen.

delimiters SCREEN screenname

Defines the beginning of a new screen.

delimiters TIMEOUT

Contains commands that are executed when the number of seconds indicated
by SET OPTION TIMEOUT have elapsed with no user input.

delimiters VARIABLE [variablename)

Contains commands that are executed when the value of the indicated
variable is changed by the user.

APPENDIX B

CREATING AND MODIFYING TERMINAL DRIVERS

The screen system in BUILDER is table-driven. The tables are stored in the BLDRTERM
file in the directory where BUILDER is installed. If a user has write access to this file,
the file can be updated to adjust existing terminal driver characteristics and to add new
terminal types. When BUILDER is invoked, it will normally prompt:

Terminal Type?

When "NEW" is entered to this request and the user has write access to the BLDRTERM

file, the configuration section of BUILDER is entered. The configuration is accomplished

through a question and answer sequence. in most menus, BUILDER will prompt for:
CHOICE?

Enter the number of the action to perform. Typing a "?" will regenerate the list of valid

responses.

In the configuration, items appearing in brackets represent the existing and defau!t vaiues.
To retain the indicated value, the RETURN key may be pressed. To remove the
indicated value, enter a space and then press RETURN. If a desired sequence consists of
several characters, the characters should be separated by spaces.

To include a printing character simply type the character. The keyword ESC may be
entered to indicate an escape; a caret (***) may be used to indicate a control character.
For example, a control-H, which normally corresponds to a backspace, wouid be entered
as “"H. Nomprinting characters can be entered by placing a pound sign (“#°) in front of
the decimal value of the character. For example, a DEL could be entered as #177.
When the sequence is subsequently displayed, printing characters will be displayed as
printing characters and control characters will be displayed as control characters,
regardiess of how they were entered.

B-1

8) Delete type.
The configurator will respond with:
Delete terminal type:
Enter the name of the terminal type to be deleted and press RETURN. The
terminal type will be deleted.

1) HELP
2) Sove configuration.

3) Discard configuration changes.

4) CHARACTER, LINE, or BLOCK mode driver. (]
$) Cursor positioning sequences.

6) Device sequences.

7) Input key definition.

8) Enhaoancement sequences.

9) Initialize and Reset sequences.
19) Function Key specification.
11) Character mode typeahead limit. {)
12) Function key labe!l specification.
13) Linedrawing sequences.
14) Block mode driver sequences.

The MAIN MENU starts the configuration process and determines if the additions or
changes are made a permanent part of the configuration file. The default operating mode,
either character or line, can be adjusted at this point.

2) Save configuration.
Any changes made to the terminal configuration are saved in the BLDRTERM
file. The system will then return to the TERMINAL CONFIGURATION
MENU.

3) Discard configuration changes.
Changes made to the configuration are ignored. The system will return to
the TERMINAL CONFIGURATION MENU.

4) CHARACTER , LINE, or BLOCK mode terminal driver. (]
Enter either "C" (for character), "L" (for line), or "B* (for block).

5) Cursor positioning sequences.
The CURSOR POSITIONING SEQUENCES menu is displayed.

6) Device sequences.
The DEVICE FUNCTIONS menu is displayed.

7) Input key definition.
The INPUT KEY DEFINITIONS menu is displayed.

8) Enhancement sequences.
The ENHANCEMENT SEQUENCES menu is displayed.

_ 9) Initialize and Reset sequences.
The INITIALIZATION meru is displayed.

B-3

6) Sequence to separate row/column numbers. []
Enter the sequence, if any, that is used to separate row numbers from

column numbers in a cursor positioning sequence.

7) Sequence to finish cursor sequence. []
Enter the sequence, if any, that is used to indicate the end of a cursor

positioning sequence.

8) ROW or COLUMN specified first. (]
Enter ROW if the row number should be given first when BUILDER issues a
cursor positioning sequence. Enter COLUMN if the column number should be
given first.

9) Column number representation. [l
Enter 1, 2, or 3 to indicate how the column numbers should be represented
in the cursor positioning sequence. If 1 is entered, the sequence is displayed
as a single character, modified by the response to questions 11 and 13. If 2
or 3 is entered, the sequence is displayed in ASCII in 2 or 3 digits.

10) Row number representation. []
Enter 1, 2, or 3 to indicate how the row numbers should be represented in
the cursor positioning sequence. If 1 is entered, the sequence is displayed as
a single character, modified by the response to questions 12 and 14. If 2 or
3 is entered, the sequence is displayed in ASCIl in 2 or 3 digits.

11) Left column number. {]
Enter the value of the leftmost column number on the terminal. Typical
values for this position are 0, 1, and 32.

12) Top row number. []
Enter the value of the uppermost row number on the terminal. Typical values
for this parameter are 0, 1, and 32.

13) Increment right. []
Enter the value to be added to the value supplied in question 11 to move
the cursor to the right by one character position. This vaiue is typically 1,
but may occasionally be -1.

14) Increment down. []
Enter the value to be added to the value supplied in question 12 to move
the cursor down one line. This value is typically 1, but may occasionally be
-1.

Device Functions

1) HELP

2) Return to the main menu.
3) Clear screen.

4) Clear line.

$5) Clear partial screen.

6) Home cursor (top LEFT).
7) Home DOWN cursor.

8) Move cursor LEFT.

9) Move cursor RIGHT.

PN P e ey e
tond b bl beved bt Gl o

14) Insert character mode ON. []
Enter the sequence that will turn on the mode that causes all characters
Subsequently typed to be inserted in the line rather than repiacing
characters. Characters are not shifted from one line to the next, but are
lost as they are shifted off the right side of the current line.

15) Insert character mode OFF. []
Enter the sequence that will turn off insert mode.

Input Key Definitions

1) HELP

2) Return to the main menu.
3) Meta-key. []
4) Home cursor. []
5) Backspace. []
6) Cursor UP. []
7) Cursor DOWN. [}
8) Cursor LEFT. [1]
9) Cursor RIGHT. []
10) TAB. []
11) Backtab. [)
12) Re-drow screen. []

Options 4 through 11 define keys which cause BUILDER to reposition the cursor location.
Each of these items requests the following information:

CHAR(s) output by <keyname> key. []
Enter the actual character emitted by the terminal when the appropriate key is
pressed. For example, the backspace key will normally emit a controlH.

Does this key echo its function. []
Enter YES if the key causes the terminal to respond in the same manner as the
description of the key. For example, if the backspace key causes the cursor to be
backed up one character by the terminal enter YES. Enter NO if the key does not
echo its function.

Does this key destructively write characters onto the screen. {1
Enter YES if the key erases a character on the screen when it is struck. Enter
NO if the key does not change the content of the screen.

Is this a special key on the keyboard. (]
Enter YES if the label on the key is not the same as the function that the key

performs. For example, if the terminal has a key containing a left arrow which
can be used to move the cursor one character to the left enter YES.

3) Metakey. []
Enter the key that will be used to start special function key sequences.
This should normally be the ESC key.

4) Home cursor. []

Enter the key that, if entered, should cause the menu to home the cursor to
the topmost variable on the screen.

B-7

Enhancement method. [}

Enter either CHAR, HP, MODE, or NONE. If CHAR is entered, the display
enhancement sequence is assumed to occupy a character on the display. |If
HP is entered, the display enhancement sequence does not occupy a
character on the display. |f MODE is entered, the terminal only recognizes
a single enhancement type that does not occupy a character on the display.
NONE indicates that there is no enhancement sequence for this enhancement.

Begin enhancement. [}

Enter the sequence that should be used to begin the particular enhancement
desired.

End enhancement. []

Enter the sequence that should be used to end the enhancement.

6) Define default variable enhancements.

The DEFINE VARIABLE ENHANCEMENTS menu is displayed.

7) Define default message line enhancements.

The DEFAULT MESSAGE LINE ENHANCEMENTS menu is displayed.

Single Enhancements

1)
2)
3)
4)
5)
6)
7)
8)
9)
190)
11)
12)
13)
14)

HELP. .
Return to the main terminal enhancement menu.
INVERSE method (1).
Begin INVERSE.

End INVERSE.

UNDERLINE method (2).
Begin UNDERLINE.

End UNDERLINE.
BLINKING method (3).
Begin BLINKING.

End BLINKING.
HALFBRIGHT method (4).
Begin HALFBRIGHT.

End HALFBRIGHT.

HHHHHHHHHHHH
HHHHHHHHHHHH

See the TERMINAL ENHANCEMENT SEQUENCES menu for explanations of these items.

Default Variable Enhancements

1) HELP.
2) Return to the main terminal enhancement menu.
3) OPTIONAL variables.

4) REQUIRED variobles.

5) DISPLAY only variables.
8) POSITION onily variobles.
7) Variables in error.

8) ACTION variables.

Options 3 through 8 allow assignment of default display enhancements for variables. The
default values shouid correspond to the number in parentheses of the terminal
enhancement mode desired, as shown in the three ENHANCEMENTS menus. For example,
if the default REQUIRED variable enhancement should be U, B (underline and blink) a 6
should be entered.

Default Message Line Enhancements

1) HELP.

2) Return to the main terminal enhancement Aenu.

3) Automoatic BUILDER messages. []

4) DISPLAY command messages. []

5) FINISH command messages. (]

86) FAIL command messages. (]
[]

7) PROMPT text.

Options 3 through 7 allow assignment of default display enhancements for various types of
messages emitted by BUILDER. The defauit values should correspond to the parenthetical
number of the terminal enhancement mode desired, as shown in the three
ENHANCEMENTS menus. For example, if FAlLure messages should be enhanced with U, B
(underline and blink) a 6 should be entered.

Initialization
1) HELP.
2) Return to the main menu.
3) Initial sequence 1. [}
4) Initial sequence 2. [1]
S5) Initial sequence 3. (]
8) Initial sequence 4. @]
7) Initiael sequence 5. [1]
8) Initial sequence 6. (]
9) Initiaol sequence 7. (1]
19) Initial sequence 8. []
11) Initial sequence 9. (]
12) Initiol sequence 10. []
13) Escape echo sequence. {]
14) Reset sequence. []

3) Initial Sequence 1. []
Enter the sequence that should be used to initialize the terminal. This might
include the escape or control sequences to do such things as clear the screen

B-11

Option 11 will display a menu similar to this menu and allow the definition of function
keys 9 through 16.

When a function key definition is performed, the system will request:

CHAR(s) output by F§ key []:

Does key destructively write characters onto screen []:
ls this o special key on keyboard []:

Equivalent to what escape function []:

CHAR(s) output by F# key []:

The characters actually output by the function key should be entered, not
including any carriage return or sequence terminators.

If the function key is programmable, for best resuits it should be
programmed to issue a single character (see INITIALIZATION menu), and this
character should appear here.

If the full function key sequence (see INITIALIZATION) terminates with a
carriage return, then the driver can be set to run in LINE mode; however,
other special keys may not work since they don't terminate with RETURN.
Generally, CHARACTER mode is used, and the character mode typeahead
limit should be set to the number of characters, not including the carriage
return, that the fkey outputs (see MAIN MENU to set these values).

Does key destructively write characters onto screen [J:

If the use of the function key disturbs the content of the screen, answer
yes.

Is this a special key on keyboard []:

If there is a key on the keyboard labeled as the appropriate function key,
answer YES.

Equivalent to what escape function []:

When the function key is struck, BUILDER will actually respond with this
character. This is the character that can be used along with the ESC key in
lieu of an existing function key (for example: an "ESC 1" can be typed by
the user instead of pressing function key 1; or an "ESC :" could be set up
here to execute function 10). This is also the character that the FUNCTION
section in the BUILDER application file should be labeled with (eg:
"FUNCTION 1" for function 1; “FUNCTION :" for function 10).

Function Key Label Specification

1)
2)
3)
4)
5)
6)
7)
8)
9)

HELP.

Return to the main menu.

Width of each function key display window. []

Number of lines in display window. []

Function key labels are displayed on message |line? []

Specify lead-in sequence for setting F1-F8 labels.
Specify lead-in sequence for setting F9-F16 labeis.
Specify trailing sequence for F1-F8.

Specify trailing sequence for F9-F16.

B-13

5) Frequency of Init/End Sequence.
This determines how long the terminal remains in linedraw mode:
CHAR:resend the start sequence before each linedraw character.
LINE: will remain in linedraw mode for the rest of the line after the start

sequence.
SCREEN: will remain in linedraw mode until the end sequence is sent.

Block Mode Sequences

1) HELP.

2) Return to the main menu.
3) Block Mode type.

4) Bltock Mode ON.

5) Block Mode OFF.

6) Page Mode.

7) Field Mode.

8) Keyboard Lock.

9) Keyboard Unlock.

1) Format Mode ON.

11) Format Mode OFF.
12) Stort Protected.
13) Stort Unprotected.
14) Field Separator.
15) Block Separator.
16) Transmit Block.

17) Transmit Position.
18) Transmit Stotus

19) Useful Status Bits.
20) Valid Block Status.
21) Block Mode Timeout.
22) Block Mode Retry Count.

-y
L I iy)

HU—QHHHH'—!HI—!HHHHHHH
HHHHHHHHHHHHQ—II—.HH

B-15

APPENDIX C

VPLUS/3000 COMPARISON

VPLUS/3000 is a screen management utility provided by Hewlett-Packard. BUILDER and
VPLUS can generally implement the same systems, but several major conceptual
differences exist. For those familiar with VPLUS, this section will describe these
differences.

Orientation

VPLUS is a collection of subroutine calls available to programmers. These calls simplify
a screen level interface between an application and an end-user. VPLUS calis are
embedded in an application program written in a traditional language. This program
essentially controls the interface by determining which screens to display, as well as
processing the contents of the screens. The application program is responsible for
interfacing with any data files required, as input or output, by the application.

BUILDER is an interpreter designed specifically for applications, st as BASIC
interpreters are used for highly interactive program development. BUILDER has a built-in
screen system, and, uniike VPLUS, this screen system is not called explicitly by an
application. Instead, those commands executed to perform certain operations cause
implicit screen actions. BUILDER has the capacity to call external procedures written in
traditional languages to perform complex or CPU intensive operations. BUILDER can also
execute complete programs. Normally, applications can be developed entirely with
BUILDER facilities—without using these more traditional mechanisms.

it should be apparent, then, that VPLUS and BUILDER occupy very different positions in
regard to applications. VPLUS can be thought of as being “under” an application program
providing support functions. BUILDER is "above” the application, which is written in a
higher level language, and when necessary can call user written routines to provide
support functions. VPLUS programs must explicitly control the user interface; BUILDER
applications, for the most part, implicitly control the user interface.

User interface

VPLUS is designed to work on HP and HP-compatible terminals in block mode. A major
benefit of block mode is that users can fill and edit an entire screen worth of
information without computer interaction. The value of this capability increases as the
distance between the user and the computer is increased, particularly if the interface is
through DS lines or a packet switching network (such as X.25). A major problem with
block mode is that it provides a rather poor user interface because of this lack of
communication. In block mode, the computer generally responds only to a function key or
the ENTER key. Errors in data and feedback from the computer cannot be obtained until
these keys are pressed.

BUILDER operates in either character or line mode. Either mode allows a high degree of
user interaction during the data entry process. BUILDER sections are available to ailow
data validation as each variable is entered. This validation can consist of simple format
checking or can be as complex as validating the existence of keys. It is possible to
ignore these capabilities and present an environment similar to VPLUS by simply deferring
any validation until the screen is completed.

VPLUS returns information in character format, which must then be translated into the
appropriate format for use in the application. These translations are usually quite simple

and in the hybrid situation can either be done bafore the subroutine is called, which wiil

then allow passing of character strings or long values, or in the subroutine, which would
then perform the same conversions that would have been required with VPLUS.

C-3

APPENDIX D
SCRIPT FILES

BUILDER provides mechanisms that will allow the construction of application test
"scripts,” off-line testing using these scripts, and demonstrations. To create a script,
either an editor can be used or BUILDER can be placed in a mode in which data and
commands entered by the user are echoed to a file. This script can subsequently be used
as a substitute to on-line entry of the data.

Script File Format

The script file should be an unnumbered ASCII file. The file should contain the data and
commands that would normally be required to execute the application interactively,
including, if run on-line, responses to the Terminal type? and Application File? prompts. if
run in batch, responses to these prompts should be included as data for the BUILDER
program rather than as part of the script file. Text should be entered as is, and
commands must begin with a backslash character ("*).

The following commands are available:

\E ESCAPE (for function keys)

\Q QUIT

\R RETURN

\T TAB

\~X control-X (or any other character)

\ A backslash

\#num# The ASCIl character corresponding to num.

\% The beginning of a comment. The comment extends to the end of the line.
\P Pause for one second.

\W Wait for key to be pressed to continue.

A typical sequence would look like this:
1\r3\t\t11-3-83\r\e1

This sequence corresponds to entering the digit 1, a RETURN, the digit 3, TAB, TAB, the
date 11-3-83, RETURN, and ESCAPE 1 (function key 1). The sequence can be created
through an editor or by BUILDER if the echo capability is enabled.

Creating a Script File with ECHOing

The echo capability can be enabled in two ways. To enable the echo capability while
BUILDER is running, an ESCAPE period (ESC.) function should be entered. BUILDER will
rescond with a request for a file name into which the commands should be placed.
BUILDER will create a new ASCIl file with 72 byte records and a default length of 1023
records. All keystrokes, including data and special keys, entered by the user will be
placed into the script file in the format described above. The only exception is that
function keys, rather than being output in a generic fashion (\E1 for function key 1), are
output with exactly the character(s) that the function key on that terminal generate (for
example, *A for function 1 on a WY50).

If a new screen is entered, the screen name will be placed in a comment line.

Examples:
Activity

Occurring

terminal
initialization

enter
a screen

JOB
no output

SCREEN name

user presses F1 \el\r

layout
is displayed

_ Builder
terminates

no output

no ocutput

QFFLINE
=INITIAL=

*** SCREEN name

\e

@(00,23)@(00,23)
which function key?
1

=CS=

@(03,00)

MY SCREEN TITLE
@(00,23)

etc not including
fkey labels

=RESET=

WYS0

\e':\e+ etc*

*** SCREEN name

\e

\e\e=7 \e=7

\eT

which function key?
1

\e+\g=

#MY SCREEN TITLE
etc including

fkey labeis

\ef\r\eA 10\e=7**

* Initialization sequence from terminal configurator.
** Terminal reset sequence from terminal configurator.

Testing Applications

The use of scripts and

application.

BUILDER is t
equated to B
on it. The

output should be saved
Discrepancies should be checked to dete

problem in the application.

D-3

logs can be used to validate a new release of an existing
To do this, a script is created for the current release of the application.
hen run with this script as input and a disc or tape file as output (which is
LDRLOG). To validate the new application, the original script should be used
and then compared with the original output.
rmine if the changes were by design or are a

APPENDIX E
SPECIAL FUNCTION SEQUENCES FOR HP TERMINALS

¢ses SCREEEN TEST
sse LAYOUT
Special function sequences for HP Terminals.

Home cursor.
Turn off function key labels.
Turn on function key laobels.

Copy graphicse plane.

Copvy alphabetic plane (current page).
Turn on numeric pad designation.
Turn on graphics pad designotion.
Skip lines on built—in printer.
Turn on the graphics plane.

Turn on the alphabetic plane.
Exit

MmO © ® N B O KN -

ACTION [A]
sse¢ VARIABLES
A: ACTION
ESC; LENGTH=1; INITIALm"*
CODE; LENGTH=1
sse INITIAL EVERYTIME
A:m® o
see ACTION 1t
NOTE This action homes the cursor.
DISPLAY "Xescka®cOY"
PAUSE 5
sees ACTION 2
NOTE This action turns off the function key labels.
DISPLAY “"Xesckjo"
sses ACTION 3
NOTE This action turns on the function key labels.
DISPLAY "XesckjB"
sss ACTION 4
NOTE Copy the graphics plane to the printer.
DISPLAY "Xesckp7s86dF"
NOTE Must prompt for completion code.
PROMPT “Completion code?", CODE
sse ACTION 5
NOTE Home the cursor and copy the current poge to the printer.
DISPLAY “XesckaOcOY[Xesckp3IsSdF]"
NOTE Must prompt for compietion codes.
PROMPT "Completion code?", CODE
NOTE Roll the screen down one line.
DISPLAY "[Xesc]T"
sss ACTION 8
NOTE Change to numeric pad.
DISPLAY "Xesc&koo"

INDEX

A

abbreviation of commands, -1, 41
action, -5, 3-6
declaring variable, 3-6
enhancement, 4-44
enhancement default, B-11
variable, 34
ACTION section, 3-3, 34, 3-33
example, 34, 347, 4-6, 4-10,
4-14, 4-27, 447, E-1
syntax, A-6
ACTION variables
in states, 4-49
adding records, (see RECORD ADD)
algorithm
for screen execution, (see
execution order)
for substitution, 3-39
alias, (see NAME)
ALPHA, (see variable options)
ALPHA option, 3-6, (see variable
options)
alpha variables, (see variable options)
in uppercase, (see UPPER option)
ALT, (see escape)
ampersand, 1-3, 4-1
appearance of variables, (see variable
enhancements)
application
continuing, 344
creating, 5-1
design, 5-2/5-6
development, (see creator mode)
execution, 3-33
function keys, 54
help screens in, 55
restarting, 3-44
security in, 5-3
testing, (see script)
application file, -5, 3-1, 3-3/3-10, 343
compiling, 3-45
default, (see BLDRAPP)
delimiter lines, (see delimiter)
sections, (see screen sections)
specifying, 3-2, D-1,3-35"
arithmetic operators, (see operators)
ARRAY, 3-6, 3-19, 3-19/3-20, 44, (see
array screen)
blank variables, 4-26
changing enhancement, 3-8

down or across, (sse ARRAYORDER
option)
early loop termination, 4-10, 4-17
example, 3-20, 3-22, 348, 44, 4-12,
4-17, 427, 4-33, 4-35, 4-36
global, 3-20
number of elements, 3-19, 3-20
performance of looping, 5-7
subscripts, (see SUBSCRIPT)
variable, 44, (see ARRAY,
ARRAYORDER)
wrapping around, 3-19
ARRAY option, 3-6
array screen, 1-5
adding from, 4-26
example, 3-22, 4-12, 4-35
reading into, 4-12, 4-32
updating from, 4-12
ARRAYORDER, (see variable options)
ARRAYORDER option, 3-7, (see variable
options)
arrow keys, (see down, left, right, up)
assignment, 4-5
example, 347, 4-5, 4-14, 4-31, E-1

backspace, 1-3, 2-5
defining key, B-8
backtab, 2-6
defining, B-8
batch, (see STREAM, SUBMIT)
script files, D-1
submitting a process, (see STREAM)
terminal type, 2-2
batch mode, (see SUBMIT)
beginning a screen, (see INITIAL)
BITS function, 1-13
BLANK in block mode, 24
BLANK option, 3-7
blanks
in array variables, 4-26
in DISPLAY command, 4-1
in substitution, 3-7, 3-39
leading and trailing, 1-13, 4-1
BLDRAPP, 3-2, 343
BLDRECHO, D-2
BLDRGETCUR, 6-10
BLDRGETVAR, 68
BLDRIN, D-2
BLDRJOB, 4-53
BLDRLOG, D-3

substitution)
syntax, 1-1
comments, (see NOTE)
after screen name, 3-16
in code, 4-2
in DECLARATION, 35
comparison
dates, 1-9
strings, 1-8
zeros, 1-9
compiling, 3-45
performance, 5-7
completing a screen, (sse ENTER)
CONCAT function, 1-13
conditional execution, (sse IF, WHILE)
configuration, (see terminal)
continuation character, (see ampersand)
continuing an application, 3-44
Control-B, 2-6
Control-D, 2-6
Control-H, 1-3, 25
Control-L, 2-6
Control-Q, 1-3
Control-R, 2-6
Control-S, 1-3
Control-U, 2-6
Control-Y, 1-3, 4-11, 4-52
Control-2, 2-6
CPUTIME system variable, 1-11, 4-52
CREATE, 454
CREATE PARTITION, 4-11, 4-12, 413
example, 3-14, 4-12, 4-25, 4-28,
447, 4-51
creating an application, 5-1
Creator mode, 1-5, 3-1/3-2, 343, 5-1
error in, 3-1
running in, 5-1
CRT
configuring, (see terminal)
definition, 1-5
current
date, (see DATE system variable)
screen, (see SCREEN system
variable)
state, (see STATE system variable)
time, (see TIME system variable)
current record, 3-29, 4-2, 4-30, 4-32,
4-38, 4-52
cursor, 1-5, (see POSITION)
changing enhancement, 3-7
defining motion, B~-7
defining positioning, B—4
last position of, (see VARIABLE)
positioning, (see FAIL, FINISH,
SET CURSOR)

-3

positioning with keys, (see TAB,
backtab, down, left, right, up)
cursor addressable, 15
cursor positioning, (see FINISH)

D

database
Image, 4-11
DATE, (see variable options)
date comparisons, 1-9
date format, (see variable options) _
changing, (see FORMAT_DATE, SET
OPTION)
quotes around, 1-9
date functions, (see functions built-in)
DATE option, 3-6
DATE system variable, 1-11, 4-44
DAY function, 1-13
DAY_DIFF function, 1-13
DAY_WEEK function, 1-13
DEBLANK option, 3-7
debug mode, (see creator mode)
: commands, (see BREAK, SHOW
PARTITION, SHOW VARIABLES,
TRACE)
entering, 3-43
in block mode, 24
timeout, 3-17
debugging, 3-43, 4-6, 451, 4-52, 4-56
DECIMAL, (see variable options)
DECIMAL option, 3-6, (see variable options)
DECLARATION section, 3-3, 3-5, 4-22
checking against, 4-57
comments in, 3-5
example, 3-9, 3-13, 3-22, 3-42, 347,
349, 4-12, 4-33, 443, 4-57
global, 3-13
performance, 5-7
DEFAULT partition, 4-25, 447
defining a screen, (see LAYOUT section)
definition of variables, (see DECLARATION
section, variables)
deleting records, (see RECORD DELETE)
delimiter lines, 3-3
development of application, (see application
design, creator mode)
device configuration, (see terminai)
device independent, 1-5, 2-1
DEVICE system variable, 1-11
DISPLAY, 4-14, (see variable options)
after scroll, 4-42 '
enhancement, 4-44
enhancement default, B-11
example, 3-10, 3-18, 349, 4-2, 49,

FAIL, 4-18
enhancement, 4-44
enhancement default, B-11
example, 3-10, 318, 349, 3-50,
44, 4-18, 4-19, 4-20, 4-21,

4-27
field
definition, 1-6
information, (see FLD, RDBINFOQ)
renaming, 4-11
file
applicatic):n, 1-5, (see application
file

application defauit, (see BLDRAPP)

commands from, (see BLDRIN,
BLDRSCPT)

commands into, (see BLDRECHO)

creation, (see SUBMIT)

end of indicator, (see EOF)

info about, (see RDBINFO)

job default, (see BLDRJOB)

output to, (see BLDRLOG,
BLDROUT)

procedure, 56

reading records from, 3-19

rewinding, (see RECORD REWIND)

script, (see BLDRSCPT)
terminal info, (see BLDRTERM)
updating, 3-6, (see RECORD
commands)
file lookup
for security, 5-3
file manipulation, (see record
processing)
finding a record, (see RECORD POINT)
FINISH, 4-19
enhancement, 4-44
enhancement default, B-11
example, 4-19, 4-31, 4-36, 4-58
FLD table, 4-7
FLOATing decimal point, 3-6
form, 1-6
FORMAT_DATE function, 1-13
FORTRAN, (see CALL PROCEDURE,
programming language interface)
example, 6-13

FOUND system variable, 1-12, 42, 4-52

after point, 4-30, 4-34
example, 3-22, 4-12
function key, 1-3, 1-6, 2-6, 3-11, (see
FUNCTION section)
$KEY, 311

configuring, B-11, B-12
configuring iabels, B-13
ESCAPE method, 2-7
global, 3-13
in character mode, 2-2
in line mode, 2-3
in PROMPT, 4-24
labels on, 3-11, 445
not reading, 2-7
period, D-1
slash, 3-43
use of, 54

function keys
configuring, B-4

FUNCTION section, 3-3, 3-11, 3-33
example, 3-12, 3-13, 349, 4-2, 44,

4-14, 4-24, 4-25, 4-35, 4-36, 4-37,
4-50, 4-55, 457

syntax, A-6

functions
of keys, 2-5

functions buiit-in
BITS, 1-13
CHANGED, 1-13
CONCAT, 1-13
DAY, 1-13
DAY_DIFF, 1-13
DAY_WEEK, 1-13
FORMAT_DATE, 1-13
IN, 1-14
ITEM, 1-14
ITEMS, 1-14
JCW, 1-14
LAST_DAY, 1-14
LENGTH, 1-14
MATCH, 1-15
MONTH, 1-15
NEW_DATE, 1-15
NUMERIC, 1-15
PAD, 1-15
PARTITION, 1-15
RDBINFO, 1-15, 1-17
SUBSTR, 1-16
TEMPLATE, 1-16
UPS, 1-16
YEAR, 1-16

functions built-int
READ, 1-15

G

GLOBAL, (see variable options)

GLOBAL option, 3-7, (see variable options)
effect of MODIFY VARIABLE, 4-22
when changing screens, 3-35

LENGTH function, 1-14

LENGTH option, 3-8, (see variable
options)

line mode, 1-6, 2-1, 2-3
performance, 5-7
terminal configuration, B-3

LINEDRAW, 3-13, 3-15
performance, 5-7

linedrawing characters, 3-13, 3-15

list processing, (see ITEM, ITEMS)

logging BUILDER activity, (see
BLDRLOG)

logical operators, (see cperators)

locping, (see ARRAY, WHILE)
early termination, 4-10, 4-17
in ENTER section, 3-37
infinite, 4-4

MATCH function, 1-15
menu, (see screen)
definition, 1-6
message
displaying, (see DISPLAY, FAIL,
FINISH, PROMPT, SCROLL)
for errors, (see error message)
scrolling, (see SCROLL)
message line, 1-6, 3-15
clearing, 4-14, 4-45
duration of messages, (see SET
OPTION MESSAGE)
enhancement defaults, B~11
filling, 4-14, 4-18, 4-19, 4-24
RELATE command overwriting, 4-2
saving, 445
mode
block, (see block mode)
Character, (see character mode)
creator, (see creator mode)
debug, (see creator mode)
line, (see line mode)
user, (see user mode)
MODIFY FIELD, 4-11
MODIFY VARIABLE, 4-22
effect on global variable, 4-22
example, 4-22
SUB_ENHANCE, 3-8
MONTH function, 1-15
MPE
commands, 4-2
job, (see STREAM, SUBMIT)
MPE job, (see STREAM, SUBMIT)
MPE STREAM, 56

-7

NAME, (see variable options)
name of screen, (see screen name)
name of variable, (see variable name)
NAME option, 3-8, (see variable options)
nesting

CALL SCREEN, 49
networks, 2-2, 2-4
new terminal, (see terminal configuration)
NEW_DATE function, 1-15
NONE, enhancement, 3-7
NOT ENOUGH WHITE SPACE, 3-7
notation, 1-1
NOTE, 4-2

example, 4-17, 4-36

blank when zero, (see BLANK option)
choosing bits from, (see BITS)
with decimal places, (see DECIMAL
option)
NUMERIC, (see variable options)
NUMERIC function, 1-15
NUMERIC option, (see variable options)
numeric variables, (see variable options)

o

offline, (see batch)
OFFLINE terminal type, D-2
OPEN FILE
example, 4-12, 4-35
operating system commands, 4-2
errors, 1-12
operators, 1-8
hierarchy of evaluation, 1-7
OPTIONAL, (see variable options)

OPTIONAL option, 3-6, (see variable options)

enhancement, 4-44

enhancement default, B-11
options on variables, (sse DECLARATION

section, variables)

changing, (see MODIFY VARIABLE)
output

logging, D-2, (see BLDRLOG,

BLDROUT)

resuming, 1-3

suspending, 1-3

terminating, 1-3

P

packet-switching, 2-2, 2-4
PAD function, 1-15

PAR table, 4-7

partition

N

RECORD REWIND, 3-29, 4-32, 4-37
example, 3-12, 3-48, 3-49, 4-29,
4-37
record search
found indicator, (see FOUND)
RECORD UPDATE, 3-6, 329, 4-38
example, 44, 4-13, 4-35, 4-38,
4-40, 4-50
records processed in command, (see
RECORDS)
RECORDS system variable, 1-12
redrawing screen, 2-6, (sse REFRESH)
defining key, B-8
REFRESH, 4-39
example, 4-39, 443
RELATE
access to, 343, 46
commands, 3-29, 4-11, (see
command)
cursor, (see partition)
exiting, (see slashes)
interpreter, 3-1, 4-6
partition, (see partition)
performance, 5-7
RELATE command
effect on BREAK, 4-30
report creation, (see SUBMIT)
report writer, (see CREATE)
REQUIRED, (see variable options)
REQUIRED option, 3-6, (see variable
options) '
do not check for, 3-12, (see SET
OPTION)
enhancement, 4-44
enhancement default, B-11
on array variables, 3-20
RESET, 1-13, 440
example, 4-13, 440
restarting application, 3-44
RETURN key, 1-3, 2-5
pressing, (see ACTION, ENTER)
RETURN SCREEN, 3-35, 4-9, 4-41
example, 3-12, 4-25, 4-41
RETURN/ENTER, 1-6, 25
rewinding file, (se¢ RECORD REWIND)
right, 2-6
defining key, B-8
right justified, (see JUSTIFY option)
rows in terminal, B4
running a program, 56
running BUILDER, 3-2
INFO= parameter, 1-12

S

SCA table, 4-7

screen

array, 1-5, (see array)
changing to another, 3-35/3-37, (see
CALL SCREEN, RETURN
SCREEN, SET SCREEN)
clearing, 4-15, (see CLEAR)
completing, (see ENTER, ENTER
section)
current, 1-12
definition, 1-6
entering, 1-5
oexample, 347
execution, (see execution)
format of, (see LAYOUT section)
helps, 55
initializing, (see INITIAL)
last line, (se@ message line)
lines on, 3-15
name, 3-16
order of execution, (see execution)
redrawing, (sse REFRESH, redrawing)
starting, (see SCREEN section, SCREEN
secton)
subroutines, (see subroutines)
transferring by function, 54
variable on, 3-15
screen section, 3-3, 3-16, (see ACTION,
DECLARATION, ENTER, FUNCTION,
GLOBAL, INITIAL, LAYOUT, SCREEN,
VARIABLE)
example, 3-3, 349, 4-35, 441, 4-43
order of, 3-3
syntax, A-7
SCREEN system variable, 1-12
scripts, D-1, (see BLDRIN, BLDRSCPT)
SCROLL, 441
before RELATE commands, 4-2
example, 4-20, 442, 4-58
for help, 55
large values, 4-52
scrolling, 1-6
searching for a record, (see RECORD POINT)
sections
of a screen, (see screen sections)
order of execution, (see execution)
start of, (see delimiter lines)
security in application, 5-3
SELECT, 4-2, 4-11, (see commands RELATE)
changing variables, 4-3
example, 1-9, 349, 4-2, 4-22, 4-33,
443, 446, 450
performance, 5-7
record found, (see FOUND)
SET CURSOR, 443

fee e .
. o o
Toe ~ . .
PR
“)
: .
“y TR .
Y -
R .
¢

SRS Y ;o :
I - Py LR :
L
. % . P e
. o
ks B o
HES =
MR ~ "
Y oa o
(S . o
-

VARIABLE)
T

TAB, 445, (see variable options)
backwards, (see backtab)
clearing after, (see TAB option)
in block mode, 24
skipping after, (see TAB option)

TAB key, 1-3, 2-5
defining, B-8

TAB option, 3-9, (see variable options)

table, (see FLD, PAR, SCA)

TEMPLATE function, 1-16

temporary variables, (see variables)

TERMINAL, 4-11
block mode, 1-5
character mode, 1-5
configuration, 2-1, 2-2, B-1/B-15
eliminating prompt for, 2-1
for script file, D-1
Hewilett-Packard, 2-4
mode, (see character mode, line

mode)
presetting, 2-1
type defined in UDC, 2-1
types, 1-6, 2-1

terminal setup, 4-11

terminal type
effect on log, D-2

terminal types
for Hewlett Packard, 2-5

terminating execution, (see FAIL,
FINISH)

terminating output, (see output)

terminating RELATE, (see slashes)

TERMTYPE JCW, 2-1
example, 1-14

testing applications, (see script)

TIME system variable, 1-12, 4-52

TIMEOUT, 3-17
disabling, 4-45
example, 3-17, 446
global, 3-13
setting, 4-45

TIMEOUT section, 4-46
syntax, A-7

TRACE, 456

ubcC
BUILDER, 3-2
for security, 5-3
NOBREAK, 3-2

=11

NOHELP, 3-2
setting terminal type, 2-1
underline, (see ENHANCE, POS_ENHANCE,
SUB_ENHANCE)
defining, B8-9
for different items, 4-45
variable enhancement, 3-7
up, 2-6
defining key, B-8
updating records, 3-6, (ssé RECORD
UPDATE)
UPPER, (see variable options)
UPPER option, 3-9, (see variable options)
in block mode, 24
uppercase, (see UPPER)
uppercase function, 1-16
UPS function, 1-16
user actions - saving, (see BLDRECHO)
ussr mode, 3-1/3-2
error in, 3-1
user name for security, 5-3

v

values

checking for changed, (see CHANGED)

initial, (see INITIAL option)

valid for variable, (se¢ RANGE option)

variable

action, (see action variable)

array, (see array)

changed value, (see CHANGED system
variable)

changing enhancements, (see MODIFY
VARIABLE)

changing value, (see VARIABLE system
variable, assignment)

clearing, (se¢ CLEAR, TAB)

definition, 1-6

enhancement defaults, B-11

enhancements, (see NONE, blinking,
halfbright, inverss, underline,
variable option ENHANCE)

error flagging, (see FAIL)

for help, 5-5

initial value, (see INITIAL option)

uustification, 3-8

length of, (see LENGTH)

name, 3-15, (see LAYOUT)

on screen, 3-15

options, (see DECLARATION section,
enhancements)

passing, (see GLOBAL)

" positioning cursor on, (see FAIL,

FINISH, SET CURSOR)

o

- f : L
Lok

. R
w .
B s
.
H v e
e
-
e . [

READER COMMENT SHEET
BUILDER Reference Manual
HPB-RF02
8803

We weicome your evaluation of this manual and its related software product. Your comments
and suggestions assist us in improving our publications and software. Pleass use additional
pages if necessary.

1. Does this manual clearly and accurately describe all the features of its associated
software?

2 Are the concepts and words in this manual easy to understand?

3 Is the format of this manual convenient in arrangement and readability?

4. Are the index and table of contents complete and useful?

5

Are the examples Clear, correct, and informative?

COMMENTS:

From (Optional): NAME:
PHONE:
COMPANY:

ADDRESS:

	IMG_0001
	IMG_0002

