
SHARR

NOTICE
SHARP strongly recommends that separate permanent written
records be kept of all important data. Data may be lost or altered
in virtually any electronic memory product under certain
circumstances. Therefore, SHARP assumes no responsibility for
data lost or otherwise rendered unusable whether as a result of
improper use, repairs, defect, battery replacement, use after the
specified battery life has expired, or any other cause.
SHARP assumes no responsibility, directly or indirectly, for
financial losses or claims from third persons resulting from the
use of this product and all of its functions, such as the loss of or
alteration of stored data, etc.
The information provided in this manual is subject to change
without notice.

ii

TABLE of CONTENTS
INTRODUCTION .. .
USING THE CARD FOR THE FIRST TIME .. 1
USING THIS MANUAL ... 3
PART NAMES ... 5
SELECTING MODES .. 7

PART 1 BASIC OPERATION
1. RUN MODE ... 10

Selecting RUN the Mode .. 10
Some Helpful Hints ... 10
Simple Calculations .. 11
Compound Calculations and Parentheses 12
Recalling Entries ... 12
Errors .. 16
Serial Calculations : .. 17
Using Variables in Calculations .. 18
Single-Precision, Double-Precision .. 19
Last Answer Feature .. 19
Maximum Calculation Length .. 21
Scientific Calculations .. 22
Priority in Direct Input Calculations ... 28
Printing for Direct Input Calculations .. 28
Calculation Errors ... 29

2. CONCEPTS AND TERMS OF BASIC ... 31
String Constants ... 31
Hexadecimal Numbers .. 32
Variables .. 32
Program and Data Files ... 40
Filenames ... 41
Extension ... 41
Device Name .. 41
File Numbers ... 42
Data Files ... 42
Expressions•... 43
Numeric Operators .. 43
String Expressions ... 43
Relational Expressions ... 44

iii

FOR YOUR RECORDS ••.•
For your assistance in reporting this product in case of loss or
theft, please record below the model number and serial number
which are located on the back side of the unit. Please retain this
information.

Model Number ______ Serial Number _____ _

Date of Purchase _____ Place of Purchase ____ _

INTRODUCTION
Thank you for your purchase of SHARP products.

Your new SHARP OZ-707 Scientific Computer Card I BASIC I (hereafter
referred to as "the Card") was designed to bring you state-of-the-art
technology. It incorporates many advanced features:

• Scientific calculations: You can perform scientific calculations with
ease and efficiency.

• Statistical and regression calculations: You can perform single- and
two-variable statistic calculations or linear regression calculations.
Stored data editing lets you confirm or correct data entry.

• Algebraic Expression Reserve (AER) memory: Formulas you
frequently use can be stored in memory and conveniently recalled
for repeated use.

• High-precision calculations with 20 significant digits:
Double-precision calculation capability makes the Card suitable for
application software requiring high computation accuracy.

• Existing software resources are available: Programs developed for
the PC-E500 may be used in the Card, if modifications are made for
differences in the display width, commands or character codes.
Enter the programs through the keyboard.

• Easy-to-use editing features: AUTO, RENUM, and DELETE
commands simplify program editing.

• A RAM disk: Part of the internal memory can be used as a RAM
disk, which lets you save and load your programs and data just as
you would using a diskette.

• A serial 1/0 interface: Allows direct Card-to-computer communication.

NOTICE
SHARP strongly recommends that separate permanent written
records be kept of all important data. Data may be lost or altered
in virtually any electronic memory product under certain
circumstances. Therefore, SHARP assumes no responsibility for
data lost or otherwise rendered unusable whether as a result of
improper use, repairs, defect, battery replacement, use after the
specified battery life has expired, or any other cause.
SHARP assumes no responsibility, directly or indirectly, for
financial losses or claims from third persons resulting from the
use of this product and all of its functions, such as the loss of or
alteration of stored data, etc.
The information provided in this manual is subject to change
without notice.

ii

TABLE of CONTENTS
INTRODUCTION .. .
USING THE CARD FOR THE FIRST TIME .. 1
USING THIS MANUAL ... 3
PART NAMES ... 5
SELECTING MODES .. 7

PART 1 BASIC OPERATION
1. RUN MODE ... 10

Selecting RUN the Mode .. 10
Some Helpful Hints ... 10
Simple Calculations .. 11
Compound Calculations and Parentheses 12
Recalling Entries ... 12
Errors .. 16
Serial Calculations :.. 17
Using Variables in Calculations .. 18
Single-Prec" 0 bl P .. ISlon, ou e- recision .. 19
Last Answer Feature .. 19
Maximum Calculation Length .. 21
Scientific Calculations .. 22
Priority In Direct Input Calculations ... 28
Printing for Direct Input Calculations .. 28
Calculation Errors ... 29

2. CONCEPTS AND TERMS OF BASIC ... 31
String Constants ... 31
Hexadecimal Numbers .. 32
Variables .. 32
Program and Data Ales ... 40
Filenames ... 41
Extension ... 41
Device Name .. 41
File Numbers ... 42
Data Files ... 42
Expressions ...•.•...•... 43
Numeric Operators .. 43
String Expressions ... 43
Relational Expressions ... 44

iii

Logical Expressions ... 45
Parentheses and Operator Precedence 46

PROGRAMMING .. 47
Programs .. 47
BASIC Statements .. 47
Line Numbers .. 47
Labelled Programs .. 48
BASIC Commands .. 48
Direct Commands ... 49
Modes ... 49
Beginning to Program .. 50
Storing Programs In Memory .. 57
Data Files ... 57

t DEBUGGING .. 62
Debugging Procedures ... 63

PART 2 ALGEBRAIC AND STATISTICAL
OPERATIONS

5. AER MODE ... 68
Selecting and Cancelling the AER Mode 68
Registering Expressions .. 69
Correcting and Deleting Expressions .. 71
Executing an Expression ... 73
Error Messages ... 74

6. STAT MODE ... 75
Selecting and Cancelling the STAT Mode 75
Single-Variable Statistical Calculations 76
Two-Variable Statistical Calculations ... 82

PART 3 BASIC REFERENCE
7. SCIENTIFIC & MATHEMAnCAL CALCULATIONS 88

Calculation Ranges ... 99

8. BASIC COMMAND DiCTIONARy ... 101

iv

PART 4 APPENDICES
A ERROR MESSAGES
B CHARACTER CODE CHA·RT .. · .. · · · .. ·· .. ·· · .. ····· .. ···.... 226
C BA lTERY REPLACEMENT ... 229
o TROUBLESHOOTING .. 231
E SPECIFICA nONS ... 232
F CARE OF THE OZ-707 • .. • · .. • .. • • .. •• · 234

COMMAND INDEX
INDEX

v

... 236

USING THE CARD FOR THE FIRST TIME

Installing the Battery
Install the battery before using the Card for the first time. If the Card is
used without the battery. all stored data will be lost when the Card is
removed from the Organizer.

1. Tum off the Organizer power before inserting the Card. Insert the
Card and then turn on the Organizer. (Refer to the section Installing
the Various IC Cards in the Organizer Operation Manual.)

2. Press the tab on the Card down with a coin or similar object and
pull out the battery holder. (See figure 1.)

3. Wipe the supplied battery with a dry cloth, and insert it in the battery
holder with the + side up. (See figure 2.)

4. Fully insert the battery holder into the Card by sliding the battery
holder back until it clicks in place.

Figure 1

Figure 2

1

Notes:
• If the Card is removed from the Organizer, and the battery holder is

then removed, any data stored in the card will be lost. If data is
stored on the Card before a battery has been inserted, you can
retain that data by removing the battery holder from the Card while
the Card is still in the Organizer.

• As a reminder for the next battery replacement, turn off the
Organizer, remove the Card and write the date on the battery
replacement label on the back of the Card. (Refer to Battery
Replacement in the Appendix C.)

Initializing the Card
When the power is turned on with the Card inserted for the first time,
the following is displayed:

This Ie CARD is
not initialized,
or memory has
been impaired.
Enter "Y" to
INITIALIZED and
CLEAR IC CARD
memory contents.

Press the cr=J key to initialize the Card memory. The Card enters
the RUN mode.

2

lJSING THIS MANUAL
This manual has been designed to introduce you to the capabilities and
features of your Card and to serve as a reference tool. The Card is a
ppwerful tool and has many valuable and time-saving functions that
even the seasoned computer buff will be pleased to discover!

p~rt 1: Basic Operation
Part 1 introduces the BASIC programming language as
implemented on the Card. Even if you have programmed in
BASIC before, please read this part thoroughly, since the
BASIC language has many dialects. This part also contains
time-saving information in the form of programming shortcuts
and debugging techniques.

Ptirt 2: Algebraic and Statistical Operations
Part 2 describes the use of the Card's AER and STAT
modes. These modes allow algebraic expressions to be used
for repetitive calculations, and for single- or two-variable
statistical calculations.

Pl#rt 3: Basic Reference
Part 3 is an alphabetic listing of the numeric functions and
BASIC commands used in programming the Card. Many of
these commands can be used in the direct input modes of the
Card.

Part 4: Appendices
Part 4 contains mainly reference material such as code
tables, error messages and specifications. You will also find
tips on how to take care of your Card.

ThIs manual is not intended to be a self-teaching course in BASIC, the
cornplete description of which is beyond the scope of this manual. If
YOlJ have never programmed in BASIC, you should buy a separate
bo()k or attend a class on the subject before trying to work through this
ma·nual.

3

Key Notation in this Manual

In this manual, keys are described asDlfor the Card and 0 for
the Electronic Organizer.

fxamr,'e: --
BASIC ,n!!]for Card keys

I CARD I. rn for Organizer keys.

sin key

sin-1 key

The I SHIfT I and~ 2nd F II keys are functionally identical.

When numerals, characters, or symbols printed on the keys or just
above each key are referred to in this manual, only the pertinent letters
will appear, with key boxes or the I SHIfT I key omitted, as shown in the
following example:

SHARP
$45

• Where a space must be entered with the ~ key, it is indicated
by the symbol in this manual, for example:

"SHARP EL-865-...-..WN-104"

Keys may appear in their full boxed images in this manual, such as

I Sl~' I whenever needed.

To discriminate the number zero from the capital letter "0," the zero
appears as "0 " on the display. In the descriptions in this manual, the
number zero will also appear as "0" whenever it may be confusing.
Display symbols will be described when necessary.

4

PART NAMES

1. MODE CHECK key

Direction insertion

® Battery holder

Battery replacement label
(on the back)

Holding this key displays the currently selected modes, the number
of free bytes, and the capacity of RAM disk E if reserved.

2. BASIC key
This key toggles the BASIC modes between PRO and RUN.

3. Mode keys
These keys select the STAT (STATistics) and AER (Algebraic
Expression Reserve) modes.

4. Second function key
This key is used to specify the functions at the top part of the
scientific function keys.

5. Scientific function keys
These keys specify the scientific functions.

5

6. PLAYBACK key
This key displays the previous menu in the STAT or AER mode, and
also redisplays an expression entered in the RUN mode.

7. Battery holder
A battery is installed to backup the Card memory when the Card is
removed from the Organizer.

8. Battery replacement label (on the back)
Write the date of battery replacement on this label as a reminder for
the next battery replacement.

6

SELECTING MODES
Before starting to use your Card, you must decide which mode to use.
The Card has the following operational modes:

BASIC mode:

PRO mode:
RUN mode:

STAT mode:

AER mode:

The BASIC mode is divided into the RUN and
PRO (program) modes.
Allows you to write or correct a BASIC program
Allows you to calculate scientific functions or to
execute a BASIC program or BASIC commands.
Allows you to do statistical and regression
calculations.
Allows you to enter or use algebraic expressions.

Pressing the I CARD I key after the power is tumed on automatically
enters the RUN mode.
To select any other Organizer mode, press the corresponding
Organizer mode key. To select the Card again, press the I CARD I key.
When using this Card, refer to the Organizer Operation Manual
whenever necessary.

When the CARD is selected:
Pressing thell STAT II key, selects the STAT mode.
The STAT menu is displayed.

Pressing thell AER Ilkey, selects the AER mode.
The AER menu is displayed.

7

:+: STATISTICAL
At'~AL 'r'S IS:+:

1. SHlGLE-
VAI':IABLE

2. HKI- VAI': I ABLE
3 . DI SPLA'f (SNG)
'3.0UrT .
SELECT t·k,. ?

:+: AER :+:
1. D~ECUTE
2. COF.:I':ECT

:~ DELETE
3. F.:ESEF.:VE
9.0U1T

!:;ELECT t·k,. ?

Pressing the I! BASIC o key toggles the BASIC mode between PRO and
RUN. "RUN MODE" or "PRO MODE" will be displayed followed by the
prompt (».

To check which modes are currently selected, press then MODE CHECK II
key (inoperative in the STAT or AER mode). While this key is held,
the following are displayed:

<D RUN or PRO mode

GRAD

NT
ytes free
liE: 10K"

@ DEG (degree), RAD (radian) or GRAD (gradient) mode
@ SNG (single-precision) or DBl (double-precision) mode
@ NP (non-print) or PRINT mode
@ Number of bytes free
@ The capacity of RAM disk E, if reserved

The selected modes are highlighted on the display.

8

PART 1

BASIC
OPERATION

Part 1 describes to the use of the BASIC
programming language as implemented on the
Card. RUN mode and PRO (program) mode
are described in this section. Part 1 ends with
some suggestions for shortcuts in
programming, and for tracing bugs in your
program.

9

1. RUN MODE

The RUN mode is a very versatile operation mode, which allows
calculations and operations available in the Organizer CALC mode, and
in the AER and STAT modes, calculations using results from the STAT
mode, and has the ability to run BASIC programs written in the PRO
mode.

Selecting RUN Mode
When the power is turned on, the Card is usually in the RUN mode
("RUN MODE" is displayed).
If "PRO MODE" is displayed, press the I! CSIC II key to select the RUN
mode. The prompt (» tells you that the ard is awaiting entry.

I §UN MODE

Some Helpful Hints
If you make an error during entry and get an error message, the
simplest way to clear the error is to press the I ceeE I key and reenter. If
the system "hangs up" (you cannot get it to respond at all), refer to the
Organizer Operation Manual to clear the error. Pressing the I C-CE I key
also clears the display, but does not erase anything stored in the Card
memory.

The prompt (» tells you that the Card is awaiting entry. As you enter
data the prompt disappears and the cursor C} moves to the right,
indicating the next available location in the display.

Press the I ENTER I key to tell the computer that you have finished
entering data and to signal the computer to perform the indicated
operations. You must press the I ENTER I key at the end of each line
of entry or your calculations will not be acted upon by the Card.
The It' I key has no effect.

10

Do not used dollar signs or commas when entering calculations. These
characters have special meanings In the BASIC programming language.

When using thel2nd F Ilkey to implement another key's second function,
press the I! 2nd F ~key and then press the other key. The I SHIFT I key may
also be used.

For symbols which are not available on the keyboard, press the I 5MBL I
key followed by the number beside the desired symbol. Other symbols
are shown by pressing rn or W .

• Recalling a formula after execution will cause a value such as "5E3"
or "5E-3" to be displayed as "5000" or "0.005". A value such as
"5.000" will be displayed as "5". If the value is outside the normal
floating point display ige~ will be displayed in scientific notation.

• Pressing the ! SHIFT I (or 2nd F) and ~ (t) keys will toggle the
beep sound for key entry. tting the beep while in the BASIC mode
is effective for other operation modes.

• The Card has an 8 byte input buffer to hold up to 8 key entries
while a computation is being performed.

• 8 bytes are used for a numeric value in single-precision mode while
13 bytes are used in double-precision mode. It is not always
possible to store up to 254 characters in one line.

Simple Calculations
The Card performs calculations in the RUN mode with 10-digit
precision (unless set to the double-precision mode, which will be
discussed later).
Turn the power on and try these simple examples.

Example:
2+3x4=
I CeCE I 2 rn 3 m 4 I ENTER I

11

14

Example:
5 x (-6) + 7 =
500 B 6 [±] 7 I ENTER I

In the RUN mode, the I ENTER I key must be pressed to obtain the
calculated result instead of the I = I key.

14

The Organizer display consists of 8 lines (16 characters per line). Key
entries and calculated results are displayed from the top line of the
display. If the characters to be displayed exceed 8 lines, the displayed
contents will be moved up by 1 line (the first line will move off the top
of the display).

Compound Calculations and Parentheses
You can combine several operations into one step. For example, you
may enter:

675 + 6750/45000

Compound calculations, however, must be entered very carefully to
avoid ambiguity. When performing compound calculations, the Card
has specific rules of expression evaluation and operator priority (see
page 28). Use parentheses to clarify your expressions:

(675 + 6750)/45000 or 675 + (6750/45000)

Recalling Entries
Even after the Card has displayed the results of your calculation, you
can verify that the entry was made correctly, and edit it if necessary.
To edit, use the left arrow ~ and right arrow ~ keys.
Use the left arrow ~ key to position the cursor after the last
character. Use the right arrow [E] key to position the cursor over the
first character.

12

Remember that the left and right arrows are also used to position the
c~rsor. The. right and left arrows are very helpful in editing entries
without haVing to retype the entire expression.

300 I : 16 I ENTER I r-:-...
8
-
8
-/-

6
------...

50

Change this f'\l"eration to 300/5.
Recall your laJt entry using the [3J key.

~
58

Bec.~use you recalled the expression using ffi , the cursor is
positioned at the end of the display. Use ffi to move the cursor one
space to the left.

~

Notice that after yo.~ move the cursor, it becomes a flashing block.
Whenever you position the cursor over an existing character it will
flash. '

58

Enter a 5 to rep/ace the 6. An important point in replacing characters
~ ~nce. you enter a new character over an existing character, the
onglnalls gone forever! You cannot recall an expression that has been
erased.

51 ENTER I

13

50

68

You can also insert or delete characters in an entry. Change the
previous calculation to 3000/25. Recall your entry using the [E key.

~ 300/6
300/5

\100/5

50

6121

Because you recalled using the ~ key, the flashing cursor is now
over the first character. To make the correction you must insert a zero.
Using the lB key, move the cursor until it is over a zero. When
making an INSert, position the flashing cursor over the character
before which you wish to make the insertion.

~
~---------------.

300/6

300/5

3a0/5

300/6

300/5

3'~}/5

50

60

5121

60

Pressing the [J![J key changes the shape of the flashing cursor (....),
which points to the location where your entry will be inserted. Enter the
zero. Move the cursor over the 5 and enter 2. Once the entry is
corrected, display your new result.

o lB[Ew 2 I ENTER I
50

60

120

14

Pressing the ~ key enters the insert mode and pressing the
~ key again or the I BmR I key exits the insert mode.

To DELete a character, use the I DEL I key. Change the previous
calculation to 3/5. Recall your entry using W .

~----------------CEJ 300/6

300/5
5121

3000/25
60

300121/25
120

The flashing cursor is now poSitioned over the first character in the
display. To correct this entry, eliminate the zeros. Using CEJ, move
the cursor to the first zero. To delete a character, always poSition the
cursor over the character to be deleted.

CEJ 31210/6

300/5 50

3e0fl/25 60

3f:j00/25
120

Now use the DELete key to delete the zeros and the two.
~----------------[]K] I DEL II DEL I [E] I DEL I 30€1/6

300/5

3000/25
3/t;

50

60

120

Pressing the I DEL I key deletes the character under the cursor and
shifts all the following characters one space to the left. Since you have
no other changes to make, complete the Galculation by displaying the
result.

I ENTER I 300/6

300/5 50

3000/25
60

3/5 120

0.6

15

Note:
Pressing the I SPC I key when the cursor is positioned ove., ~ character
replaces the character, leaving a blank space. DELete eliminates the
character and the space it occupied.

You can also use the 00 key to delete errors. Note that pressing the
00 key moves the cursor back one position and deletes the chara?ter
there, while pressing the I DEL I key deletes the character the cursor IS

positioned over.

Errors
Recalling your last entry is essential if you get an error message.
Suppose you typed this into the Card:

leeCE13001: II: I 5 I ENTER I 300//5
S,=,ntaz error

"Syntax error" is the Card's way of saying, "I don't know what you want
me to do here". Press the ~ or [EJ key to move the flashing
cursor to where the error occurred.

~ (or[EJ)

Use the OOJ key to correct this error.

I DEL "ENTER I

60

If, upon recalling your entry after a syntax error, you find that you have
omitted a character, use the INSert sequence to insert it.

16

When using .the Card as a calculator, the majority of errors you
encounter Will be syntax errors. For a complete listing of error
messages, see Appendix A.

Serial Calculations

The ~ard allows .you to use the results of one calculation as part of the
follOWing calculation.

Example:
What is 15% of 300 * 1S0?

I eeCE I 3 0 0 IJ[] 1 5 0 I ENTER I
45000

In serial calculations it is not necessary to retype your previous results
but DO NOT press the I eeCE I key between entries. '

[K] . 1 5 I ENTER I
300*150

4501313*.15
450130

67513

Notice t~at as ~ou type in the second calculation (*.15), the computer
automatically displays the result of your first calculation at the left of
the screen and includes it in the new calculation. In serial calculations
th.e entry must begin with an operator. As always, you end the entry
With the I ENTER I key.

Note:

The rn key cannot be used in percent calculations in RUN mode
The rn key should be used as a character only. .
For example, 4 5 0 0 0 00 15 m I ENTER I ~ Syntax error

17

To change the sign of the previous result, mU_lti..:...p..;..ly-b-y---1-:------,

[K] G 1 I ENTER I 31313*1513

Using Variables in Calculations

45131313*.15

67513*-1

45131313

6751.3

-67513

The Card can store up to 26 simple numeric variables under the
alphabetic characters A to Z. If you are unfamiliar with the concept of
variables, they are more fully explained in Chapter 2. Variables are
designated with an assignment statement:

A=sIENTER!
B = -2 I ENTER I

You can also assign the value of one variable (right) to another
variable (left).

C = A + 3 I ENTER I
D = C I ENTER I

As you press I ENTER! , the Card performs the calculation and displays
the new value of the variable. You can display the current value of any
variable by entering the alphabetiC character it is stored under:

1 1 C I EHlER I I c 8 I
Variables will retain their assigned values even if the Organizer is
turned OFF or undergoes an Auto OFF. Variables are lost only when:

• You assign a new value to the same variable.
• You enter CLEAR I ENTER I (not the I C.cE I key).

18

There are certain limitations on the assignment of variables, and
certain programming procedures that cause them to be changed. See
Chapter 2 for a discussion of assignment. See Chapter 2 for a
discussion of the use of variables in programming.

Single-Precision, Double-Precision
The largest number that the Card can handle in the single-precision
mode is ten significant digits, with a twO-digit exponent.
In the double-precision mode, it is increased to 20 significant digits (the
capital E, indicating the exponent, is replaced by a capital D in
double-precision mode).

Selecting Double-Precision Mode
1. Enter RUN mode and press the I C.cE I key to clear the display.
2. Enter DEFDBl and press the I ENTER I key.

DBl is hi hlighted on the MODE CHECK display (press
MODE CHECK). indicating that the Card is now in the double-precision
mode.

Although the exponent is indicated by a capital letter D in the
double-precision mode, you can still use either the E or D as a
character when entering the exponent in an expression. See page 39
for more details.

Canceling Double-Precision Mode
1. In the RUN mode, press the I CeCE! key to clear the display.
2. Enter DEFSNG and press the I ENTER! key.

SNG is highlighted on the MODE CHECK display, indicating that the
Card is now in the single-precision mode.

The double-precision mode is automatically canceled if:
1. The power is turned OFF.
2. The RUN. NEW or CLEAR command is executed.

Last Answer Feature
In a simple calculation, the result of the previous calculation can only
be used in continuous calculations as the first number.

19

Example:

IC-CEI3 m 4 I ENTER I 3+4
7

3+4
7

35

However, the Card has a feature that lets you recall the result of the
previous calculation and use it in any location in the current calculation.
This is called the last answer feature. It allows the revious answer to
be recalled any number of times by pressing the ANS key. If you
entered the last example, press I C-CE I then ANS and you will see "35"

displayed.

Let's look at an example where a previous result is used twice in the
current calculation. Note that in this example, the last answer changes
and is updated with the current answer each time I ENTER I is pressed.

Example:
Use the result (6.25) of the operation 50 I : I 8 to compute
12 x 5/6.25 + 24 x 3/6.25 =

I CeCE I 5 0 m 8 I ENTER I
6.25

1 2 005 I : II ANS ~ 6.25

L Last answer recalled

20

rn 2 4 [X] 3 I : II AlS II

21.12

I C-CE III ANS I

Pressing I ENTER I causes the previous "last answer" to be replaced with
the result of the latest calculation. The last answer is not, however,
cleared by pressing the I C-CE I or 00 key, but is cleared when the
power is turned off.

The last answer cannot be recalled when the Card is not in the RUN
mode. The last answer is replaced when a program is executed.

Maximum Calculation Length
The length of the calculation that can be entered is limited to 254 key
strokes before the I ENTER I key is pressed. If you exceed this limit and
an error occurs, press the II PLAY BACK II, BJ, or [EJ key to recall the
entry. The cursor flashes at the last permitted character position. Break
the calculation into two or more steps.

Eight b~~s are used for each numeric value in single-precision mode,
so that It IS not always possible to enter 254 keystrokes. (13 bytes per
numeric value in double-precision mode.)

21

Scientific Calculations
The Card has a wide range of numeric functions for use in scientific
calculations. PART 3 contains an alphabetical listing of these functions.
Note that the notation of the functions in BASIC may differ from
conventional mathematical notations.

All scientific functions may be entered in the RUN mode either by
pressing the appropriate function key or entering the BASIC command.

The Card enables specification of angular units in degrees, radians or
gradient using the DEGREE, RADIAN or GRAD commands.

Description Angular unit
Degrees
Radians
Gradients

Command
DEGREE
RADIAN
GRAD

Represents a right angle as 90[°].
Represents a right angle as 1tI2[rad].
Represents a right angle as 100[g].

Angular units may also be specified by pressing ~ 2nd F U I ORB ~. Each
time these keys are pressed, the angular units change from ... DEG ~
RAD~ GRAD ~ ...

For practice, use these instructions to specify angular units when
required in the following calculation examples.

Press the I CeCE I key before performing a calculation.

Example: sin 30° =
Operation:
DEGREE I ENTER I (Specifies "degree" for angular unit.)

r---------------~
SIN 3 0 I ENTER I DEGREE

SIN30 or
II SIN 1130 I ENTER I

0.5

22

Example: tan 1tI4 =
Operation:
RADIAN I ENTER I (Specifies "radian" for angular unit.)

T A ND:lIP II : 14o:JIENTERI r---R-AD-I-A-N-----
TAN(PU4)

Example: cos-1(-Q.5) =
Operation:

1

DEGREE I ENTER I (Specifies "degree" for angular unit.)
r---------------~ A C S EJ O. 5 I ENTER I DEGREE

ACS-0.S

Example: log 5 + In 5 =
Operation:
LOG 5 m L N 5 I ENTER I

Example: e2
+3 =

Operation:
EX PD:lI2 rn 3[IJIENTERI

Example: ";43 + 6" =
Operation:
SQRICD4CEJj3

m 6lCEJ/4lCIJl ENTER I

23

120

LOG5+LN5
2. 308407917

EXP(2+3)
148.4131591

SQR(4"3+6A 4)
36.87817783

Example:
Convert 30 deg. 30 min. in sexagesimal notation to decimal notation.
Operation:
DE G 3 0.30 I EHlER I DEG30.30

30.5

Example:
Convert 30.755 deg. in decimal notation to sexagesimal notation.
Operation:
D M S 3 0 .75 5 I EHlER I

Example:

DMS30.755
30.4518

Conversion from rectangular to polar coordinates: Determine the polar
coordinates (r, 9) for the point P(3, S) in rectangular coordinates:
Operation:
DEGREE I EHlER I (Specifies "degrees" for angular unit.)

PO LCLl3, 8[CIJ1 EHlER I DEGREE

z I ENTER I

POL(3,8)
8.544003745

DEGREE
POL<3,8)

8.544003745 z
69.44395478

• The value of e is stored in variable Z, and the value of r in variable
Y.

24

Example:
Conversion from polar to rectangular coordinates: Determine the
rectangular coordinates (x, y) for the point P(12, 41t15) in polar
coordinates.
Operation:
RADIAN I ENTER I (Specifies "radians" for angular unit.)

R E CDJl1 11,11) 'ij 114 ~R-A-D-IA-N-------'
I : 15 r;;(1 P I ~ REC<12, (4/5*Pl)

u:u Ib4.dI -9. 708203933
I ENTER I

Z I ENTER I RADIAN
REC(12,(4/5*PI»

-9.708203933
z

7.1353423028

• The values of y and x are stored in variables Z and Y, respectively.

Note:
For coordinate conversion, the conversion results are stored in
variables Z and Y. Therefore, the previous contents of Z and Y will be
cleared.

Example:
Convert the hexadecimal number CF8 to its decimal equivalent.
Operation:
& H C F SIENTERI I &HCF8 3320

25

.' ... '; ,"

• "&H" represents a hexadecimal value.
• If you attempt decimal-to-hex conversion on a negative decimal

number, the Card Internally performs "two's complement" calculation
and shows the result in 16's complement.

• The B key may be used to reverse the sign of the numeric data
now in the display. If the sign of a positive hex number is reversed,
the complement of the positive number will be displayed.

• When you wish conversion between decimal and hex numbers, use
the following assignment statements:
From decimal to hex: A$=HEX$ N
From hex to decimal: N=VAl ("&W+A$) or N=&H4F3
The allowable ranges of hex numbers are: 0 ~ x ~ 2540BE3FF
and FDABF41C01 ~ x ~ FFFFFFFFFF.

- Reference -
Expressions composed of relational operators (=, >, <, > =, < =, < »
can take on the values listed in the following table:
x and y represent numeric values.

. -1 if x = y -1 if x i?:;y
= 0 if x~y >=

0 ifx<y

-1 if x>y -1 ifx :iy
> <=

0 if x:iy 0 if x> y

-1 if x<y -1 if x ~y ("<>") < <>
ifx =y means "~" 0 if x i:; y 0

• If, for example, "A = numeric value" or "B = formula" is used in a
logical equation, the computer will not treat it as a logical equation
but as an assignment statement for variables. When using an equal
(=) sign in a !ogical equation, use it in the form of "numeric value =
A" or "formula = B", with the exception of conditional expressions
used in IF statements.

Direct Calculation Feature
In the manual calculations described up to now, the I ENTER I key has
always been used to terminate a formula and obtain the calculation
result of the formula. However, you can directly operate the functions
of the computer with the desired function key (without operating the
I ENTER I key) when the objective numeric data is in the display.

26

Example:
Determine sin 30° and a!.
Operation:
DEGREE I ENTER I
I C-cE I 3 0 [][J]

Operation:
IceCE lal12ndFIII nl II

I SIN 3e

FACT 8
40323

Examp!~: 5 . 5 .
For tan 12' first check the result of 12 ' then determine tan-1 152 .

Operation:
DEGREE I ENTER I
5 I : 112 I ENTER 1112l1li F II ~ YAIr' 11

DEGREE
5/12

4. 166666667E-01
ATN 4. 166666667E
-131

22.61986495

Note that this "direct" calculation mode is not available for functions
requiring the entry of more than one numeric value (binominal
functions) such as power, root, or coordinate conversion.
The direct calculation feature is not effective for formulas:
(e.g.) ItCE I i [K] 4~ 5*4_
~ ~5*4LOG_

If no data is on the display, pressing a function key will display the
corresponding BASIC command.
The direct calculation feature is effective only for numeric values.
Therefore, if hexadecimal numbers A to F are entered for hex to
decimal conversion, the direct calculation feature will remain
inoperative. In such a case, perform an ordinary manual calculation
using the I ENTER I key.

27

Priority in Direct Input Calculations
You can enter formulas in the exact order in which they are written,
including parentheses or functions. The order of priority in calculation
and treatment of intermediate results will be taken care of by the Card.

The internal order of priority in manual calculation is as follows:
1. Recalling variables or PI .
2. Function (sin, cos, etc.)
3. Power (A), root (ROT)
4. Sign (+, -)
5. Multiplication or division (*, /)
6. Addition or subtraction (+, -)
7. Comparison of magnitude (>, > =, <, < =, < >, =)
8. Logical AND, OR, XOR

Note:
• If parentheses are used in a formula, the operation given within the

parentheses has the highest priority.
• Composite functions are operated from right to left (sin cos-

1
0.6). ,

• Chained power (34 or 3 A 4 A 2) is operated from right to left.
• For items 3) and 4) above, the last entry has higher priority.

(e.g.) -2 A 4 -7 -(24)
3 A -2 -73-2

Printing for Direct Input Calculations
The calculation steps and results can be printed if the optional printer
is connected and switched on, and the I SHIFT II ENTER I keys are pressed

(Print mode).
If a printout is not desired, either switch off the printer, or press I SHIFT I
I ENTER I again (Non-Print mode).

28

Calculation Errors
The following types of errors occur in ordinary calculators, pocket
computers, personal computers and also this Card:

Errors due to Least Significant Digit Processing
Usually, the maximum number of digits that can be calculated in a
computer is:ixed. For example, 4/3 results in 1.33333333333· ··. In a
computer wl~h ~ .maxim~~ of 8 digits, the 8 digits are significant digits;
other least significant digits are either truncated or rounded.

Example:
Computer with 10 significant digits

10 significant digits

41 : 131 ENTER 1-7 1.33333333333 .. .

Truncated, rounded

Therefore the calculated result differs from the true value by the
amount truncated or rounded. (This difference is the error.)

~n the Card, a.1 ~-digit calcula~ed result is obtained (or a 24-digit result
In double-precls.'o.n ~ode). T~ls result is rounded and specially
processed to minimize error In the displayed value.

Example in single-precision mode: 4/3 x 3

4 I : I 3 [K] 3 I ENTER I -7 4 Calculated in succession
4 I : I 3 I ENTER 1-7 1.3333333331

[8] 3 I ENTER I -7 3.999999999 Calculated independently

~hen ~a.lculate~ in succession, the result of 4/3 is obtained internally
In 12 digits and IS used for calculation and then rounded.

When calculat~d independently, the displayed value (10 digits) is used
for the calculation.
Example in double-precision mode: 4/3 x 3

41: 13[8]3IENTERI-74#
Calculated
in succession

4 I : I 3 I ENTER I -7 1 .3333333333333333333# } Calculated
[K] 3 I ENTER I -7 3.9999999999999999999# independently

29

When calculated in succession, the result of 4/3 is obtained internally
in 24 digits and is used for calculation and then rounded.

When calculated independently, the displayed value (20 digits) is used
for the calculation.

Errors due to Function Determining Algorithms
The Card uses a variety of algorithms to calculate the values of
functions, such as power and trigonometric functions. When .
calculations use such functions, an additional source of error IS

introduced. This error factor increases with the number of functions
used in the calculation. The actual error for each function varies
according to the values used and is greatest around singularities and
inflection points {e.g., when an angle approaches 90 degrees, the
tangent approaches infinity}.

30

2. CONCEPTS AND
TERMS OF BASIC

In this chapter we will examine some concepts and terms of the BASIC
language.

String Constants
In addition to numbers, there are many ways that the Card uses letters
and special symbols. These letters, numbers, and special symbols are
called characters.

In BASIC, a collection of characters is called a string. In order for the
Card to tell the difference between a string and other parts of a
program, such as commands or variable names, you must enclose the
characters of the string in quotation marks (").

The following are examples of string constants:

"HELLO"
"Goodbye"
"SHARP BASIC CARD"

The following are not valid string constants:

"ORGANIZER
"VALUE OF "AnIS"

No ending quote
Quote cannot be used within a string

31

Hexadecimal Numbers
The decimal system is only one of many different ~ystems to rep~esent
numbers. Another that is quite important when uSing computer.s IS the
hexadecimal system. The hexadecimal system is base~ on 16 Instead
of 10. To write hexadecimal numbers you use the familiar 0 to 9 and
six more "digits": A, B, C, 0, E, and F. These correspond to 10, 11,
12 13 14 and 15. When you want the Card to treat a number as
he~ad~ci~al, put an ampersand (&) character and "H" in front of the

numeral:

&HA =10
&H10 = 16
&H100 = 256
&HFFFF = 65535

Variables
Computers are made up of many tiny memory are.as called bytes. Each
byte can be thought of as a single character. For Instance, the word
"card" requires four bytes of memory because there are four characters
in it. To see how many bytes are available for use, simply enter FREO
and press I ENTER I . The number displayed is the number of bytes
available for writing programs.

This technique works well for words, but is very ineffici~nt when you try
to store numbers. For this reason, numbers are stored In a coded
fashion. Thanks to this coding technique, the Card can store large
numbers in only 8 bytes (or 13 bytes in double-precision mode). The
largest number that can be stored is +9.999999999E + 99 (or
9.99999999999999999990 + 99 in double-precision). The smallest
number is 1.E-99. This gives you quite a range to choose from.
However, if the result of a calculation exceeds this range, the computer
will let you know by displaying an error message on the screen (see
Appendix A). To see it right now, enter:

911 EXP ~ 9 9 00 9 I ENTER I

32

9E99*9
Overflow

To get the Card working properly again, just press the I CeCE 1 key. But
how do you go about storing all these numbers and strings? It's really
very easy. The Card uses names for different pieces of data. Let's
store the number 556 in the Card. You may call this number by any
name you wish, but for this exercise, let's use the letter R. The
statement LET can be used to instruct the Card to assign a value to a
variable name, but only in a program statement. However, the LET
command is not necessary, so we will not use it often. Now, enter: R =
556 and press 1 ENTER I. The Card now has the value 556 associated
with the letter R. These letters that are used to store information are
called variables. To see the content of the variable R, press the I CeCE I
key, the o=J key and the 1 ENTER 1 key. The Card responds by showing
you the value 556 on the right of your display. This is useful when
writing programs and formulas.

Next, let's use the R variable in a simple formula. In this formula, the
variable R stands for the radius of a circle whose area we want to find.
The formula for the area of a circle is: A = 1tR2. Type in the following:

R yz 2 CKJ
II It III ENTER I

RA 2*PI
9711 79. 3866

The result is 971179.3866.
This technique of using variables in equations will become more
understandable as we get into writing programs.

So far, we've only discussed numeric variables. What about storing
alphabetic characters? Well, the idea is the same, but, so that the Card
will know the difference between the two kinds of variables, add a $ to
the variable name. For instance, let's store the word BYTE in the
variable B$. Notice the $ after the B.

This tells the Card that the contents of variable B$ are alphabetic, or
string data. To illustrate this, enter the following:

B$ = "B Y T E" I ENTER II .---~-$-=-" B-Y-r-E-" ---.....

The string BYTE is now stored in the variable B$. To make sure of
this, press the I CeCE 1 key and enter the following:

33

B $1 ENTER I B$
BYTE

The contents of character strings or character variables are displayed
from the left edge of the next line.

Variables handled by the Card are divided into the following:

Variables
Numeric variables:

Fixed numeric variables (A to Z)
Simple numeric variables (AB, C1, etc.)
Numeric array variables

String variables:
Simple string variables (A$, BB$, C2$, etc.)
String array variables

Numeric variables are further divided into single-precision and
double-precision variables. These will be discussed later.

Fixed Numeric Variables
The first type, fixed numeric variables, are always used by the Card for
storing numerical data. They can be thought of as pre-allocated
variables. In other words, no matter how much memory your program
uses, you will always have at least 26 variables to choose from to
store numerical data in. Fixed memory locations are eight bytes long.

Simple Variables
Simple variable names are specified by alphanumeric characters, such
as AB, B$, C8$. Unlike fixed variables, simple variables have no
dedicated storage area in memory. The area for simple variables is
automatically set aside (within the program and data area) when a
simple variable is first used.

Since separate memory areas are defined for simple numeric variables
and simple string variables even if they have the same name, variables
such as AB, AB$ and AB#, for example, may be used at the same time.

34

While alphanumeric characters are usable for simple variable names,
the first character of a variable name must always be a letter. Up to 40
characters may be used to define a variable name.

Notes:
1. Variable names must not begin with a BASIC command (e.g.

PRINTOUT, ONPRINT), but may contain BASIC commands if
desired (e.g. APRINT, BONPRINT).

2. Each simple string variable can hold up to 254 characters or
symbols.

Array Variables
Sometimes, it is useful to deal with numbers as an organized group,
such as a list of scores or a tax table. In BASIC these groups are
called arrays. Arrays can be one-dimensional, like a list,
two-dimensional, like a table, or multi-dimensional up to 120
dimensions.

Use the DIM (short for dimension) statement to define an array. Arrays
must always be declared before they are used (unlike the single-value
variables we have been using). The form for the DIMension statement
is:

DIM array-variable-name (size)

where:

array-variable-name is a variable that conforms to the normal
rules for numeric or array variable names previously discussed.

size is the number of storage locations. Note that when you
specify a number for the size, you get one more location than you
specified.

Examples of legal numeric and string DIMension statements are:

DIM X(5)
DIM AA(24)
DIM QUITE5(0}
DIM X$(S)
DIM AA$(24)
DIM QUITES$(O)

~ X (0), X (1), X (2), X (3), X (4), X (5)

35

The first statement creates an array X with 6 storage locations. The
second statement creates an array AA with 25 locations. The third
statement creates an array with one location and is actually illogical
since (for numbers at least) it is the same as declaring a single-value
numeric variable.

It is important to know that an array-variable X and a variable X are
separate and distinct to the Card. The former denotes a series of
numeric storage locations, and the latter denotes a single and different
location.

Now that you know how to create arrays, you might be wondering how
we refer to each storage location. Since the entire group has only one
name, the way in which we refer to a single location (called an
"element") is to follow the group name with a number in parentheses.
This number is called a "subscript". For example, to store the number 8
in the fifth element of our array X (declared previously) we would write:

X(4) = 8

If the use of 4 is puzzling, remember that the numbering of elements
begins at zero and continues through to the number of elements
declared in the DIM statement.

The real power of arrays lies in the ability to use an expression or a
variable name as a subscript.

An n-dimensional array is declared by the statement:

DIM array-variable-name (size 1, size 2, ... , size n)

where:

size n specifies the number of elements in the nth dimension of
the array. Note that when you specify the number of elements,
you get one more element than indicated by the specification.

The following diagram illustrates the storage locations that result from
the declaration DIM T(2, 3) and the subscripts (now composed of two
numbers) that pertain to each location:

36

Note:

row 0

row 1

row 2

column 0

T (0,0)

T (1, 0)

T (2, 0)

column 1

T (0, 1)

T (1, 1)

T (2, 1)

column 2 column 3

T (0, 2) T (0, 3)

T (1, 2) T (1 , 3)

T (2, 2) T (2, 3)

Two-dimensional arrays can rapidly use up storage space. For
example, an array with 25 rows and 35 columns uses 875 storage
locations!

An n-dimensional array has n indices into the array.
For example, DIM Z$(3,3,3,4) generates a 4-dimensional array with
320 elements.

The following table shows the number of bytes used to define each
variable and the number used by each program statement.

Variable type
Number of bytes used

Variable name Data

Single-precision numeric (Length of variable
7 bytes variable name + 4) bytes

Double-precision numeric (Length of variable
12 bytes variable name + 4) bytes

String (array) variable (Length of variable The number of
name + 8) bytes stored string

(array) data (bytes)

Element Line number Statement & I ENTER I function

Number of
3 bytes 2 bytes 1 byte bytes used

Double-Precision Variables
Existing single-precision variables can be converted to double-precision
variables by appending a sharp mark (#). For example:

A#, AB#, X#(10), Y#(2,3) and X1#(5,6).

37

Double-precision variables have 20 significant digits and a 2 digit
exponent from -99 to 99.

Note:
Single-character variables to which the sharp mark is appended (e.g.
A#) are not fixed numeric variables, but are treated as double-precision
simple numeric variables.

The following types of variables are stored in separate memory areas:

A and
AB and
X(10) and

A#
AB#
X#(10)

Variables can be specified as single-precision (10-significant-digit)
variables by appending an exclamation mark (!), or as
double-precision (20-significant-digit) variables by the sharp mark (#).
However, the Card makes it possible to treat any numeric variable as a
single- or double-precision variable by the DEFSNG (define single) and
DEFDBl (define double) statements. This is especially useful if your
program contains numerous double-precision variables.

Storing Values In Double-Precision Variables
1. Using Declarative Signs (I and #)

AB! (or AB) = 1234567891234567891234 ~ 1.234567891 x 1021

The value is stored using 10 significant digits in the single-precision
variable ABI (or AB).

AB# = 1234567891234567891234 ~ 1.2345678912345678912 x 1021

The value is stored using 20 significant digits in the double-precision
variable AB#.

2. Using Declarative Signs and Declarative Statements (DEFSNG and
DEFDBl)

These are two BASIC commands used as variable definition
statements. See Chapter 3 for a description of programming.

38

Mixing Double- and Single-Precision Values
If a calculation includes double-precision variables, the Card will
automatically select double-precision mode where necessary.

Double-precision mode is automatically selected in the following cases:

Calculations are executed on values containing 11 or more significant
digits:

Ex. 1234567891234 x 5
The letter D is used in formulas to specify an exponent:

Ex. TAN 7.43005
Values are identified using the sharp mark (#):

Ex. 4#{l
Double-precision variables are used:

Ex. AB# + BC
The DEFDBl statement is used:

Ex. In RUN mode, enter DEFDBL. DBl is highlighted in the
MODE CHECK display.

DEFDBl I ENTER I
51: 191ENTERI

DEFDBL
5/ 9
5.55555555555555
55556D-01

If the calculation formula contains a mixture of single- and
double-precision values, each individual calculation within the formula
is executed according to the degree of precision valid at that time.

+ 4#{l

Single-precision Double-precision

Double-precision calculation

If double-precision values are converted to single-precision variables,
the double-precision value is rounded to 10 significant digits.

39

Example:
I C-CE I A B # I = I 5 # m 9

ASI = IAB#IENTERI

If a double-precision value is used in

ABn=5n/9
5.55555555555555
55556D-01

ABn=5n/9
5.55555555555555
55556D-01
AB=ABn

5. 555555556E-01

conjunction with a function of which the argument is single-precision,
functional calculations are performed after the double-precision value is
rounded off to a 10-digit value.

The following functions are performed in single-precision mode only:
DECI, HEX, POL, REC

Program and Data Files
Programs and data files are fundamental in the use of your Card. A
choice of media for storing program and data files is available.

Part of the Card memory can be used as a RAM disk (E:), and is the
most readily available storage device. Up to 64 files can be stored in
RAM disk E. The RAM disk has 768 bytes of system area and files are
stored in blocks of 256 bytes. Other media may be used through the
4-pin option jack or the 15-pin option jack, such as a cassette tape.

40

Filenames
When saved to a storage medium such as RAM disk E in the Card
memory, 4-pin I/O device, cassette tape, or serial 110 device, a file
must be given a name. This name is used to load program files into
the Card memory, or to access data files on the medium. The filename
may be any name up to 8 characters long and include the following
characters:

A - Z, a - z, 0 - 9, #, $, %, &, " (,), {, }, -, 1\, -' @, space

Extension
A file extension is an additional way of identifying the type of file (e.g.,
BASIC program file or text file). The extension consists of three
characters added to the end of the filename and separated from it by a
period. The extension is specified when the file is saved.

BASIC programs are automatically given the extension .BAS when
saved using the SAVE command. When reloaded into memory using
the LOAD command, you do not need to specify the .BAS extension.

When the FILES or LFILES commands are used to list the files on the
RAM disk, BASIC programs will appear with the .BAS extension unless
some other extension has been specified by the user when the file was
saved. The .BAS extension must always be specified when using the
COPY command.

Device Name
Since files can be stored on tape, Card memory, or the 4-pin 110
device, the device must also be specified. The device name must be
followed by a colon (:). The following are the device names used on
the Card.

E: RAM disk E (Card memory)
PACOM: 4-pin 110 device (via 4-pin option jack)
CAS: Cassette tape (via 4-pin option jack)
COM: Serial 1/0 device (via 15-pin option jack)

41

Note:
Device name PACOM refers to the IC card (Scientific Computer Card
I BASIC I or Program Card I BASIC D installed in another Organizer to or
from which a program or data is transferred. The optional CE-200L
Data Transfer Cable is required to connect the two Organizers for data
transfer.

The complete file descriptor thus consists of the device name,
filename, and extension:

d: filename. ext

File Numbers
File numbers are used with certain commands (e.g., OPEN, INPUT#
and PRINT#) to read data from or write data to files.
File numbers can be specified with #1 - #255.
A maximum of two files on any two devices may be opened at the
same time. The following device combinations are possible:

~ E PACOM CAS COM
E 0 0 0 0 0: may be opened at the same time.

PACOM 0 x x 0 x: may not be opened at the same time.

CAS 0 x x 0

COM 0 0 0 x

All files are closed before executing the LOAD or MERGE command.

Data Files
There are two types of data file; sequential data files and random
access data files. The Card supports sequential data files only. Data is
written to a sequential file as a series of ASCII characters stored one
item after another (sequentially) in the order sent. The data is read
back sequentially when later accessed.

42

Expressions
An expression is some combination of variables, constants, and
operators that can be evaluated to a single value. The calculations that
you entered previously were examples of expressions. Expressions are
an intrinsic part of BASIC programs. For example, an expression might
be a formula that computes an answer to some equation, a test to
determine the relationship between two quantities, or a means to
format a set of strings.

Numeric Operators
The Card has five numeric operators.

+ Addition
- Subtraction * Multiplication
/ Division
1\ Power

A numeric expression is constructed in the same way that you entered
compound calculations. Numeric expressions can contain any
meaningful combination of numeric constants, numeric variables, and
the numeric operators:

(A * B) 1\ 2
A(2,3) + A(3,4) + 5.0 - C
(AlB) * (C + D)

String Expressions
String expressions are similar to numeric expressions except that there
is only one string operator - concatenation (+). This is the same
symbol used for addition. When used with a pair of strings, the +
attaches the second string to the end of the first string and makes one
longer string. You should take care in making more complex string
concatenations and other string operations because the work space
available for string calculations is limited to 254 characters.

43

r

Note:
String quantities and numeric quantities cannot be combined in the
same expression unless one of the functions that convert a string value
into a numeric value or vice versa is used:

"15" + 10 is illegal
"15" + "10" is "1510", not "25"

Relational Expressions
A relational expression compares two expressions and determines
whether the stated relationship is true or false. The relational operators
are:

> Greater than
> = Greater than or Equal to
= Equal to
< > Not equal to
< = Less than or Equal to
< Less than

The following are valid relational expressions:

A<B
C(1,2) > = 5
0(3) < > 8

If A was equal to 10, B equal to 12, C(1,2) equal to 6, and 0(3) equal
to 9, all of these relational expressions would be true.

Character strings can also be compared in relational expressions. The
two strings are compared character by character according to their
ASCII value starting at the first character (see Appendix B). If one
string is shorter than the other, a 0 or NULL will be used for any
missing positions. All of the following relational expressions are true:

"ABCDEF" = "ABCDEF"
"ABCDEF" < > "ABCDE"
"ABCDEF" > "ABCDE"

Relational expressions evaluate to true or false. The Card represents
true by a -1; false is represented by a O.

44

Logical Expressions
Logical operations use the Boolean algebra functions AND. OR. XOR
and NOT to build connections between relational expressions. The
logical operations in a single expression are evaluated after arithmetic
and relational operations.

In this way. logical operators can be used to make program decisions
based on multiple conditions using the IF ... THEN ... ELSE statement.

Example:

IF A < = 32 AND B > = 90 THEN 150

This statement causes execution to jump to line number 150 if the
value of the numeric variable A is less than or equal to 32 and at the
same time, the value of numeric variable B is greater than or equal to
90.

IF X < > 13 OR Y = 0 THEN 50

This statement causes execution to jump to line 50 unless variable X
has the value 13, or if variable Y is equal to O.

In a logical operation involving two numbers in the range -32768 to
+32767, the two numbers are converted into 16-bit binary integers (in
two's complement form) and the logical connection is then evaluated
for each corresponding pair of bits in the two numbers.

The results returned by the logical operators for these bit evaluations
are listed here:

AND OR XOR NOT

XY XANDY XY X ORY XY XXORY X NOT X
1 1 1 1 1 1 1 1 0 1 0
1 0 0 1 0 1 1 0 1 0
o 1 0 o 1 1 o 1 1

00 0 00 0 00 0

After each bit pair has returned the corresponding result (a 1 or a 0)
according to the above tables, the resulting 16-bit binary number is
converted back to a decimal value. This number is the result of the
logical operation.

45

1

Example:

41 AND 27 ~ 41 = 101001 AND

equals 27 = 011011

9 ~ 001001

41 OR 27 ~ 41 = 101001 OR
equals 27 = 011011

59 ~ 111011

41 XOR 27 ~ 41 = 101001 XOR
equals 27 = 011011

50 ~ 110010

NOT3~ 3= 0000000000000011 NOT
equals

~ 1111111111111100 -4 (two's complement
form)

NOT X can generally be calculated by the equation NOT X = -(X+ 1).

Parentheses and Operator Precedence
When evaluating complex expressions, the C.ard f~1I0WS a predefined
set of priorities that deter~ine .th~ ~equence In which operators are
evaluated. This can be qUite significant:

5 + 2 * 3 could be

5 + 2 = 7 or 2 * 3 = 6
7 * 3 = 21 6 + 5 = 11

The exact rules of "operator precedence" are given on page 28.

To avoid having to remember all these rules and to make your program
more precise, always use parentheses to determ.i~e the sequence of
evaluation. The above example is clarified by wntlng:

46

3. PROGRAMMING

In the previous chapter, we examined some of the concepts and terms
of the BASIC programming language. In this chapter, you will use
these elements to create programs. Let us remind you, however, that
this is not a manual on how to program in BASIC. What this chapter
will do is familiarize you with the use of BASIC on your Card.

Programs
A program consists of a set of instructions to the Card. It will perform
the exact operations that you specify. You, the programmer, are
responsible for issuing the correct instructions.

BASIC Statements
The Card interprets instructions according to a predetermined format.
This format is called a statement. You must always enter BASIC
statements in the same pattern. Statements must start with a line
number:

10: INPUT A
20: PRINT A*A
30: END

Line Numbers
Each line of a program must have a unique line number - any integer
between 1 and 65279. Line numbers are the reference for the Card.
They tell the Card the order in which to run the program, and can be
used to tell the Card at which line to start. You need not enter lines in
sequential order (although if you are a beginning programmer, it is
probably less confusing for you to do so). The computer always begins
execution with the lowest line number and moves sequentially through
the lines of program in ascending order.

47

You can use the AUTO command to automatically insert line numbers
for you. Each time you press the I ENTER I key, a new line number, with
the correct increment, will be automatically inserted. See the BASIC
COMMAND DICTIONARY for a full description of this useful function.

It's wise to allow increments of several numbers in your line numbering
(10, 20, 30, ... 10, 30, 50, etc.). This enables you to insert additional
lines if necessary.

If you use the same line number, the old line with that number is
deleted when you enter the new line.

Labelled Programs
Often you will want to store several different programs in the memory
at one time. (Remember that each must have unique line numbers).
Normally, to start a program with a RUN or GOTO command, you
need to remember the beginning line number of each program.
However, there is an easier way. You can label each program with
alphanumeric characters and run the program.

Label the first line of each program that you want to reference. The
label consists of a letter and up to 19 alphanumeric characters in
quotes or with :+: in front of it, followed by a colon:

10: :+:A: PRINT "FIRST'
20: END
80: "B": PRINT "SECOND"
90: END

Although both :+:Iabel and "label" forms may be used, :+:Iabel is
recommended, since it executes more quickly and is more visible in the
program listing.

BASIC Commands
All BASIC statements must contain commands. They tell the Card what
action to perform. A command is contained with a program, and as
such is not acted upon immediately.

48

Some statements require or allow an operand:

10: DATA "HELLO"
20: READ B$
30: PRINT B$
40: END

Operands provide information to the Card telling it what data the
command will act upon. Some commands require operands, while with
other commands they are optional. Certain commands do not allow
operands. (See the BASIC COMMAND DICTIONARY for BASIC
commands and their uses.)

Note:
Commands, functions and variables entered in lowercase characters
will be converted to uppercase characters.

Direct Commands
Direct commands are instructions to the Card that are entered outside
of a program. They instruct the Card to perform some immediate action
or set modes that affect how your programs are executed.

Direct commands have immediate effect - as soon as you complete
entering direct commands (by pressing the [fNTER I key), the command
will be executed. Direct commands are not preceded by a line number.

RUN
NEW
RADIAN

Modes
You will remember that you can use the Card as a calculator in the
RUN mode. The RUN mode is also used to execute the programs you
create. The PRO mode is used to enter and edit your programs.

49

.-----

Beginning to Program
After all your practice in using the Card as a calculator, you are
probably quite at home with the keyboard. From now on, when we
show an entry, we will not show every keystroke. Remember to use
the II 2nd F Ilor I SHIFT I key to access characters above the keys and to
end every line by pressing the I ENTER I key.

Now you are ready to program!
To enter program statements into the Card, the Card must first be
placed in the PRO (program) mode using thell BASIC II key.
"PRO MODE" will be displayed followed by the prompt.

Enter the NEW command.

I
PRO MODE I NEW
)

The NEW command clears the memory of all existing programs and
data. The prompt appears after you press the I ENTER I key, indicating
that the Card is awaiting input.

Example 1 - Entering and Running a Program
Make sure the computer is in the PRO mode and enter the following
program:

10PRINT"HELLO" PRO t10DE
NEW
10PRItH"HELLO"-

Notice that the Card automatically inserts the colon between the
number and the command when you press the I ENTER I key.

Check that the statement is in the correct format and then change the
mode to RUN by pressing thell BASIC Ilkey.

I CeCE I RUN I ENTER I

50

RUt-l
HELLO
>

Ii

Since this is the only line of the program, the Card will exit the
program and return to the BASIC prompt" > ft.

Example 2 - Editing a Program
Suppose you wanted to change the message that your program was
displaying. That is, you wanted to edit your program. With a single line
program you could just retype the entry, but as you develop more
complex programs, editing becomes a very Important component of
your programming. Let's edit the program you have just written.

Are you still in the RUN mode? If so, switch back to the PRO mode.

You need to recall your program in order to edit it. Use the up arrow
key GSJ to recall your program. If your program was completely
executed, the [2SJ key will recall the last line of the program. If there
was an error in the program, or if you used the 00 key to stop
execution, the [2SJ key will recall the line in which the error or break
occurred. To make changes in your program, use the [2SJ key to
move up in your program (recall the previous line) and the [YJ key to
move down in your program (display the next line). If held down, the
[2SJ or [YJ key will scroll vertically (up or down) through your
program.

Remember that to move the cursor within the program line you use the
~ (right arrow) and ~ (left arrow) keys.

USing the W key, position the cursor over the first character you
wish to change:

[2SJ
10:PRINT "HELLO"

10 PRINT "~ELLO"

Notice that the cursor is now in the flashing block form, indicating that
it is on top of an existing character. Enter:

GOODBYE'"

51

10 PRINT "GOODBY
En !_

Remember to press the I ENTER I key at the end of the line. Change to
the RUN mode.

RUN I ENTER I

l£1:PRINT "GOODBY
E" !

RUN
(JOCIIIBYE
SYnt.az error in
10

The error message indicates the type of error, and the line number in
which the error occurred.

Press the I CeCE I key to clear the error condition, and return to the PRO
mode. You must be in the PRO mode to make changes in a program.
Using [2SJ (or [YJ), recall the line in which the error occurred.

[2SJ (or [2J) 1£1 ~~JNT II GOODB'(

"

The flashing cursor is positioned over the problem area. You learned,
that when entering string constants in BASIC, all characters must be
contained within quotation marks. Use the DELete key to eliminate the
"I".

1 (1 PR I NT "GOODBY
E"_

Now let's put the ! in the correct location. When editing programs,
DELete and INSert are used in exactly the same way as they are in
editing calculations. Using ~, position the cursor on top of the
character that will be the first character following the insertion.

1£1 P'?INT "GOODEY
E~

Press the INSert key. A "~" will indicate where the new data will be
entered:

52

---==------ - -

Enter the !.

em! 113 PR It-H "(JOODBY
E' -

Remember to press the I ENTER I key so the correction will be entered
into the program.

Notes:
1. If you wish to DELete an entire line from your program, just enter

the line number and the original line will be eliminated. The DELETE
command can be used to delete more than one line at a time.

2. In the PRO mode, if keys are pressed when the cursor is not
displayed, their corresponding characters are usually displayed from
the leftmost column of the display. However. if the [EJ or ~ key
is pressed when the cursor is displayed, successive key entries are
displayed starting from the, cursor position.

Example 3 - Using Variables in Programming
If you are unfamiliar with the use of numeric and string variables in
BASIC. reread the appropriate sections in Chapter 2.
Using variables in programming allows more sophisticated use of the
Card's abilities.
Remember. you assign simple numeric variables using any letter from
A to Z:

To assign string variables you also use a letter, followed by a dollar
sign.

A$ = "TOTAL"

The values assigned to a variable can change during the execution of
a program, taking on the values entered or computed during the
program. One way to assign a variable is to use the INPUT command.
In the following program. the value of A$ will change in response to the
data typed in answer to the inquiry "WORD?".

53

Enter this program:

10: INPUT "WORD?";A$
20: B=LEN(A$)
30: PRINT "THE WORD (";A$;") HAS"
40: PRINT B;" LETTERS"
50: END

The second new element in this program is the use of the END
statement to signal the completion of a program. END tells the Card
that the program is completed. It is always good programming practice
to use an END statement.

As your programs get more complex you may wish to review them
before you begin execution. To look at your program, use the LIST
command. LIST, which can only be used in the PRO mode, displays
programs beginning with the lowest line number.

Try listing this program:
LIS T I ENTER I H3:I NPUT "WORD?"

;A$
20:B=LEN (A$)
30:PRINT "THE WO

RD (";A$;") H
AS"

40:PRINT B;" LET
TERS"

Use the [K] and ~ keys to move through your program until you
have reviewed the entire program. After checking your program,
change to the RUN mode and run it

I eeCE I RUN I ENTER I

HE L P

54

~:UN
l·JORD?HELP _

RUN
~JORD?HELP
THE WORD (HELP)
HAS
4 LETTERS

>

This is the end of your program. Of course you may begin it again by
entering RUN. However, this program would be a bit more entertaining
if it presented more than one opportunity for input. We will now modify
the program so it will keep running without entering RUN after each
answer.

Return to the PRO mode and use the CZSJ or ~ key (or LIST) to
reach line 50, or enter:

LIS T 5 0 I ENTER I I 5e'END

You may enter 50 to delete the entire line or use the [EJ key to
position the cursor over the E in END. Change line 50 so that it reads:

50: GOTO 10

Now RUN the modified program.

The GOTO statement causes the program to loop (keep repeating the
same operation). Since you put no limit on the loop it will keep going
forever (an "infinite" loop). To stop this program press the 00 key.

When you have stopped a program using the 00 key, you can restart
it using the CONT command. CO NT stands for CONTinue. With the
CONT command the program will restart on the line that was being
executed when the 00 key was pressed.

Example 4 - More Complex Programming
The following program computes N factorial (NI). The program begins
with 1 and computes NI up to the limit that you enter. Enter this
program:

100: F = 1: WAIT 118
110: INPUT "LlMIT?";L
120: FOR N = 1 TO L
130: F = F*N
140: PRINT N,F
150: NEXT N
160: END

55

Several new features are contained in this program. The WAIT
command in 100 controls the time that displays are held before the
program continues. The numbers and their factorials are displayed as
they are computed. The time they appear on the display is set by the
WAIT statement to approximately 2 seconds.

Notice that there are two statements in line 100 separated by a colon (:).
You may put as many statements as you wish on one line (separating
each by a colon) up to a maximum of 254 characters including the I ENTER I
key. Multiple-statement lines can make a program hard to read and
modify, so it is good programming practice to use them only where the
statements are very simple or there is some special reason to want the
statements on one line.

In this program we have used the FOR command in line 120 and the
NEXT command in line 150 to create a loop. In Example 3 you created
an "infinite" loop that kept repeating the statements inside the loop until
you pressed the 00 key. With this FOR. .. NEXT loop, the computer
adds 1 to N each time execution reaches the NEXT command. It then
tests to see if N is larger that the limit L. If N is less than or equal to L,
execution returns to the top of the loop and the statements are
executed again. If N is greater than L, execution continues to line 160
and the program stops.

You may use any fixed numeric variable or single-precision simple
numeric variable in a FOR. .. NEXT loop, you do not have to start
counting at 1 and you can increment any amount at each step. See the
BASIC COMMAND DICTIONARY for details.

We have labeled this program with line numbers starting with 100.
Labeling programs with different line numbers allows you to have
several programs in memory at one time. To RUN this program instead
of the one at line 10, change to the RUN mode and enter:

I CeCE I
RUN100

You could also give the program a name using a label and start the
program with RUN *Iabel.

56

. -------

Notes on the PRINT command:
If more than eight lines must be displayed, the first lines will scroll up
off the dislay, and cannot be recalled. Use the PAUSE or WAIT
command in the program to display data more slowly, or use the
printer. (Refer to the PAUSE, WAIT or LPRINT command.)

The WAIT command applies to every PRINT command. Break long
PRINT commands into a number of shorter commands if the display
scrolls too quickly.

Example:
100 PRINT A, B, ... , P

J,
100 PRINT A, B, ... , H: PRINT I, J, ... , P

Since the WAIT command is not supported by many personal
computers, a wait loop such as FOR J=1 TO 500:NEXT J can also be
used to extend the display time.

Storing Programs in Memory
You will remember that settings and functions remain in the Card even
~fter it is turned .off. Programs also remain in memory after the power
IS turned off, or It undergoes an Auto OFF. Even if you use the 00 or
I C-CE I key, the programs will remain.

Programs are lost from memory only when you:

• Enter NEW before beginning programming in the PRO mode.
• Create a new program using the SAME LINE NUMBERS as a

program already in memory.

Data Files
Following are some programming examples which use data file storage.

Creating a Sequential File
Program 1 is a short program that creates a sequential file, DATA
from information you input on the keyboard. '

57

Program 1 - Creating a Sequential File

10: DIM DE$(1)
20: OPEN "E:DATA" FOR OUTPUT AS #20
30: CLS
40: INPUT "NAME: ";NA$
50: IF NA$ = "DONE" THEN 100
60: INPUT "DEPARTMENT: ";DE$(1)
70: INPUT "DATE HIRED: ";HI$
80: PRINT #20,NA$;",";DE$(1);",";HI$
90: GOTO 30

100: CLOSE #20
110: END

Before execution, enter: INIT "E:10K" I ENTER I to allocate storage space
in the RAM disk E.

RUN
NAME: SAMUEL GOLDWYN
DEPARTMENT: AUDIONISUAL AIDS
DATE HIRED: 01/12172
NAME: MARVIN HARRIS
DEPARTMENT: RESEARCH
DATE HIRED: 12103/65
NAME: DEXTER HORTON
DEPARTMENT: ACCOUNTING
DATE HIRED: 04/27/81
NAME: DONE

Reading Data from a Sequential File .
Now look at Program 2. It accesses the file DATA that was created In
Program 1 and displays the name of everyone hired in 1981.

Program 2 - Accessing a Sequential File

10: DIM DE$(1)
20: OPEN "E:DATA" FOR INPUT AS #20
30: INPUT #20,NA$,DE$(1),HI$
40: IF RIGHT$(HI$,2)="81" THEN PRINT NA$
50: GOTO 30

58

RUN
DEXTER HORTON
Input past end in 30

Program 2 reads, sequentially, every item in the file, and prints the
names of employees hired in 1981. When all the data has been read,
line 30 causes an ERROR. To avoid this error, use the EOF function,
which tests for the end-of-file. The revised program looks like this:

10: DIM DE$(1)
20: OPEN "E:DATA" FOR INPUT AS #21
25: IF EOF(21) THEN 60
30: INPUT #21 ,NA$,DE$(1),HI$
40: IF RIGHT$(HI$,2)="81" THEN PRINT NA$
50: GOTO 25
60: CLOSE #21
70: END

As shown by these programs, the following steps are required to create
a sequential file and access the data in it:

1. OPEN the file for OUTPUT.
2. Write data to the file using the PRINT# statement.
3. CLOSE the file and reopen it in INPUT mode to read the data.
4. Use the INPUT# statement to read data from the file into the

program.

Adding Data to a Sequential File
If you have an existing data file and want to add more data to the end
of it, you cannot simply open the file in the OUTPUT mode and start
writing data. As soon as you open a sequential file in the OUTPUT
mode, you destroy its current contents.

Instead, use the APPEND mode. If the file does not already exist, the
OPEN statement will work exactly as it would if the OUTPUT mode
had been specified.

The following procedure can be used to add data to an existing file
called "FOLKS".

59

Program 3 - Adding Data to a Sequential File

110: DIM AD$(O}
120: OPEN "E:FOLKS" FOR APPEND AS #22
130: REM ADD NEW ENTRIES TO FILE
140: CLS
150· INPUT "NAME?";NA$
160~ IF NA$ = "00" THEN 230: REM 00 EXITS INPUT LOOP
170: INPUT "ADDRESS?";AD$(O}
180: INPUT "BIRTHDAY?";BI$
190: PRINT #22,NA$
200: PRINT #22,AD$(0}
210: PRINT #22,BI$
220: GOTO 140
230: CLOSE #22

Input 00 in answer to the question NAME? in line 150 to cause the
program to jump out of the input loop in line 160. The REM statement
can be used to write programming notes to yourself.

This brief introduction to programming should serve to illustrate the
exciting programming possibilities of your new Card.

60

Program Execution
More than one program can be stored in this Card if the memory
capacity is not exceeded. Execute the second or subsequent program
using one of the following:
1. the RUN command: RUN line number 1 ENTER I
2. the GOTO command: GOTO line number 1 ENTER 1

Execution begins from the specified line number. If a label such as
*AB is entered in the program, the program can be executed by
entering RUN*AB 1 ENTER I.

The following lists the differences between the variables and status
when a program is executed using the GOTO and RUN commands.

Execution using RUN Execution using GOTO

• Clears the WAIT setting. • Retains the WAIT setting.
• Clears the USING format. • Retains the USING format.
• Clears array and simple variables. • Retains array and simple

variables.
• Clears double-precision operation • Retains double-precision

mode and variable specifications. operation mode and variable
specifications.

• Initializes the DATA statement for • Does not initialize the DATA
the READ statement. statement for the READ statement.

• Clears the PRINT =LPRINT setting. • Retains the PRINT =LPRINT
setting.

• Closes all the files • Does not close all the files.
• Clears the position set by • Retains the position set by

LOCATE or GCURSOR. LOCATE or GCURSOR.
• Clears the error trap function. • Retains the error trap function.
• Clears ERN and ERL variables. • Retains ERN and ERL variables.

Note:
When the program is executed using the RUN command, the variables
for data are cleared. (Fixed variables are retained.) To retain the data,
execute using the GOTO command.

61

4. DeBUGGING

er entering a new BASIC program, it often does not work th~ first
Ae. Even if you are simply entering a program that you know IS
trect, such as those provided in this manual, it is common to make
deast one typing error. It may also contain at least one logic error as
~II .
\

"owing are some general hints on how to find and correct your
tors. Suppose you run your program and get an error message:

• Go back to the PRO mode and use the C2SJ or I3ZJ key to recall
the line with the error. The cursor will be positioned at the place in
the line where the Card became confused.

If you cannot find an obvious syntax error, the problem ma~ lie wi~h
ahe values that are being used. Check the values of the van abies In

either the RUN or PRO mode by entering the name of the variable
and pressing the I ENTER I key.

Ippose you run the program and do not get an error message, but
a program does not do what you expect.
1
Check through the program line by line using LIST and the C2SJ
'and [YJ keys to see if you have entered the program correctly. It is
surprising how many errors can be corrected by just taking another
look at the program.

Think about each line as you go through the program as if you were
:the Card. Take sample values and try to apply the operation in each
line to see if you get the result that you expected.

Insert one or more extra PRINT statements in your program to
: display key values and key locations. Use these to isolate the parts
of the program that are working correctly and the location of the
error. This approach is also useful for determining which parts of a
program have been executed. You can also use STOP to
temporarily halt execution at critical points so that several variables
can be examined.

62

4. Use TRON (TR~~ ON) and TROFF (TRace OFF), either as direct
comman.ds .o~ Withl~ the program to trace the flow of the program
thr~ugh IndlVldu~1 lines. Stop to examine the contents of critical
van~~les at c~clal points. This is a very slow way to find a problem
but It IS sometimes the only way. '

No matter how care!ul you are, eventually you will create a program
that does not do q~lte what you expect it to. To isolate the problem,
BASIC has a speCial method of executing programs known as the
"Trace" mode.

!RON (TRac~ ON) starts Tra~e mode. The TRON instruction may be
IS~U~d as a direct command (In RUN mode) or it may be embedded
within a 'pro~ram. ~sed as a direct command, TRON informs the Card
that tracing IS required during the execution of all subsequent
programs .. The programs to be traced are then started in a normal
manner, with a GOTO or RUN command.

If TRON is. used as a statement, it will initiate the Trace mode only
when the line containing it is executed. If. for some reason, that line is
never reached, Trace mode will remain inactive.

Debugging Procedures
1. Set the computer to RUN mode.
2. Enter TRON I ENTER I to specify the trace mode.
3. E.nter RUN I ENTER I to execute the program. The line number will be

dlspla~ed .at above right of the display for about 0.5 second after
each line IS executed.

4. Press the 00 ~ey .when the desired line number is displayed. The
break messag.e IS displayed and execution is interrupted. Press the
GSJ ~ey to display the last statement executed. To resume
execution,. press t~e I ~HI': 1l3ZJ keys or enter CONT [ENTER 1 .
However, If execution IS Interrupted during data entry using the
INP~T c~mmand, just press the I ENTER I key as for usual program
continuation.

5. Press the CXJ key to move to the line to be checked. Holding the
~ key Will execute the program step by step. Releasing the key
Will stop program execution.

63

6. Continue the trace procedure and check if the program is executing
properly by confirming program execution order and variable
contents after each line is executed. If the program is not executing
properly, correct the logic.

7. After debugging, enter TROFF I ENTER I to exit the trace mode.

Example:
10 INPUT "A=";A,"B=";B
20 C=A*2
30 D=B*3
40 PRINT "C=";C;" D=";D
50 END

Run the program.
RUN mode
TRON I ENTER I
RUN I ENTER I
8 I ENTER I (Data entry)
9 I ENTER I (Data entry)

>
A=_
B=_

C= 16
>

Execute INPUT command

D= 27 Execute PRINT command
End of execution
(prompt is displayed)

The executed line number will be displayed at the right top for about
0.5 second.

When execution is interrupted with the 00 key, recall the variables
manually and check that the values are as expected. Pressing the
[2] key will execute one statement at a time and entering CONT
I ENTER I will execute the statements continuously.

Note:
The trace mode will remain in effect unless TROFF I ENTER I is entered,
the I SHIFT II CeCE I keys are pressed, or the power is turned off.

To debug by interrupting program execution:
Perform one of the following:
• Press the 00 key during program execution.
• Press the 00 key in the trace mode.
• Enter the STOP command at the location to be stopped.

64

The Break message will be displayed and execution will be interrupted.
Then

1. Check the variable contents manually.
2. Press the [YJ key to execute subsequent statements line by line.

Press the I SHIFT I [YJ keys or enter CONT I ENTER I to return to
previous operation.

• A program interrupted by the 00 key or the STOP command can
be executed line by line by pressing the CSZJ key. Trace messages
will be displayed at each step.

65

PART 2

ALGEBRAIC AND
STATISTICAL
OPERATIONS

The Card allows algebraic expressions to be
stored for repetitive calculations in the AER
mode, and statistical calculations to be
performed on single- or two-variable data in the
STAT mode.

67

5. AER MODE

The Algebraic Expression Reserve (AER) mode is convenient for
repetitive calculations. Algebraic expressions with multiple variables can
be registered using all scientific functions.

Selecting and Cancelling the AER Mode
Selecting the AER Mode
Press the!' AER I!key to display the AER preparation message and then
the AER menu. (The length of time this message is displayed depends
on the number of registered AER expressions.)

*' AEP :+<
1 • E:>(ECUTE
2 . COl':PECT

& DELETE
"7 RE'=ER~JE 9: Giu"IT "
SELECT l'k.. ?

Press the CIJ key to execute expressions, the IT] key to correct
or delete expressions, or the r=LJ key to register expressions.

Note:
If the AER mode is not entered when the!1 AER Ilkey is pressed, there
is not enough free area. Delete unnecessary data and programs from
the memory.

Cancelling the AER Mode
Press the crJ key to exit the AER mode to return the Card to the
BASIC mode.

I ~UH MODE

Note:
The contents of numeric, string or array variables which start with "z"
will not be retained after cancelling the AER mode.

68

Registering Expressions
Select "3. RESERVE" in the AER menu.

*' AEI': '"
~31: TITLE?

1. 01 Indicates the expression number (1 to 20).
2. TITLE? .. Indicates the title of the expression. Up to 13

alphanumeric characters and symbols excluding quotes
(") can be entered for a title.

Press the , ENTER I key only to enter no title.

Note:
Do not use quotes (") in the titles or expressions. The data following
the quotes will be ignored.

Entry format
Expressions are entered in the following format:

F (parameter, parameter, .. .) = expression

• Only single-precision numerical variables can be used and the
variable names must be a silte ciaracter A through Z.

• Function keys such as!1 SIN 11.1 COS I and!li!!!ilJlll ex Ilcan be used.
• A comma (,) is required to separate the variables. (The commas

are entered by pressing the I 5MBL I key followed by the number
beside the symbols.)

• The expression is stored by pressing the 'ENTER I key at the end.
• When the memory is exceeded, "AER memory over" is displayed.
• Up to 95 characters or 95 bytes of an expression can be stored (8

bytes per value, 2 bytes per function and 1 byte per other character
including the , ENTER I key).

After expression entry, the AER menu is displayed.

Example:
Enter the formula for the area of triangles.

B · C · sinA
Area S = 2

69

(Select "3. RESERVE" in the AER menu.)

AREA I ENTER I

F (A, B, C) = B:4<C*SIN AJ2

'ENTER I

* AER *
01: AREA
:?

Entry of the formula for the area of triangles is complete, and the AER

menu is displayed.

Example:
Enter the formula for the Pythagorean theorem.
(Select "3. RESERVE" in the AER menu.)

PYTHAGORAS I ENTER I
F (A,B) = SQR (A*A + B*B)

'ENTER I

* AER * 02: PYTHAGORAS
:F(A,B)=SQR(A*A+
B*B)_

Recalling Expressions
Select "1. EXECUTE" or "2. CORRECT & DELETE" in the. AER menu.
Pressing thel' AER II (title) key displays the currently stored titles and
expressions sequentially. . .
To quit recall, press thell PLAY BACK II key to display the prevIous menu.

70

Example:
Recall the currently stored expressions.
(Select "1. EXECUTE" or "2. CORRECT & DELETE" in the AER menu.)

II AER II (title)

II AER II (title)

:+: AER *
02: PYTHAGORAS
:F(A,B)=SQR(A>I<A+
B*B)

Correcting and Deleting Expressions

Correcting Expressions
(1) To correct the entered expression before pressing the I ENTER I key,

position the cursor and correct with keys such as []K] , oru ,
00·

(2) To correct an expression already stored, select "2. CORRECT &
DELETE" in the AER menu. Recall the expression to be corrected
with the II AER II (title) key. Correct the entry as follows.
G) Title correction

Press the ~ or ~ key. The cursor moves to the position
following the last character of the expression title. Position the
cursor and correct the expression title. After the correction is
complete, press the I ENTER I key. If the title is not to be corrected,
just press the I ENTER I key.

® Expression correction
Next, the expression is displayed with the cursor over the last
character of the expression. Position the cursor and correct the
expression. After the correction is complete, press the
I ENTER I key. If the expression is not to be corrected, just press
the I ENTER I key. The AER menu is displayed.

71

Example:
Correct the No.1 expression title "AREA" to "AREA 1 ".
(Select "2. CORRECT & DELETE" in the AER menu.)

Recall the title "AREA" by pressing the
II AER II (title) key.

Now the correction is complete and the AER menu is displayed.

Deleting expressions
Carry out the following procedure to delete an expression already
stored.
(1) Select "2. CORRECT & DELETE" in the AER menu and recall the

expression to be deleted with thell AER II(title) key.
(2) Press the I DELI key.

"01 :AER data clear OK? (YIN)" will be displayed to confirm the
deletion. "01" is the expression title number of the expression to be
deleted.

(3) Press the CYJ key to delete the expression or press the o=J
key not to delete it.
(For now, press the ~ key. The expression stored in "01" will
be used in future examples.)

Note:
When an expression is deleted, the deleted storage area is filled with
the expression following the deleted expression, so some expression
title numbers may change.

72

Executing an Expression

(1) Select "1. EXECUTE" in the AER menu and press thell AER II (title)
key to recall the title and expression.

(2) When the expression to be executed is recalled, press the I ENTER I
key.

(3) The entry prompt for the parameter(s) specified in F () are
displayed sequentially. Press the I ENTER I key after each numerical
data entry.
• If the I ENTER I key is pressed without numerical data entry, the

most recently entered value will be used.
(4) After parameter entry is completed, the calculated result will be

displayed.
To quit execution, press thell PLAY BACK II key when the calculated
result is being displayed.

Example:
Perform calculations using the stored expression "AREA 1 ". Set the
RUN mode, and set the angular unit to degrees.
Set the AER mode and select "1. EXECUTE" in the AER menu. Recall
the title "AREA 1" which expression is to be executed by pressing II AER II
(title) key.

I ENTER I
Enter the value for angle A.
30 I ENTER I

Enter the values for sides Band C.
1 00 I ENTER I 20 I ENTER I

73

A=30
E·-~· ,- ~

A=30
B=100
C=20

50€:1

The area for the triangle is 500.
Pressing the I ENTER I key will execute the same expression again.

If the II PLAY BACK II key is pressed while the result is being displayed, the
AER menu wil be displayed.

Error Messages

(1) AER format error
CD The expression was entered in an incorrect format (parameter +

expression).
® ")=" is missing after "F(".

Press the I C.CE I key to display the title and expression. Position
the cursor, and correct the expression.

(2) AER memory over
An attempt was made to enter more than 20 expressions.
The AER menu will be displayed.

(3) Syntax error
An invalid expression or variable has been entered.

(4) Type mismatch
The type of the specified data does not match.

(5) Division by zero
An attempt was made to divide by zero.

(6) Overflow
The calculated result exceeds the calculation range.

(7) Illegal function call
An illegal operation was attempted.

(8) Data out of range
The specified value exceeds the allowable range.

(9) Out of memory
Not enough memory free area is available. Press the I ENTER I key to
return to the RUN mode, and delete unnecessary data and/or
programs.

Errors (3) to (8) may occur when entering values during the
"1. EXECUTE" operation.
(1) If an invalid value is entered and an error occurs, press the I C·CE I

key and re-enter the correct value.
(2) If an invalid expression is registered and an error occurs, press the

I C.CE I key to display the title and expression where the error
occurred. Correct the expression.

74

6. STAT MODE

The Card can perform statistical and regression calculations on one or
two variables. With statistical calculations, you can obtain mean
values, standard deviations, and other statistics from sample data.
Regression calculation determines the coefficients of linear regression
formulas or estimated values from sample data.

Selecting and Cancelling the STAT Mode
Selecting the STAT mode
Press the II STAT II key to display the STAT menu as shown.

Press the [IJ key to select single-variable statistical calculations, the
D=:J key to select two-variable statistical calculations or the CIJ
key to specify the display and print format (single- or double-precision).

Note:
If the STAT mode is not entered when the II STAT II key is pressed, or if
"Out of memory" appears, there is not enough free area. Press the
I ENTER I key to return to the RUN mode, and delete unnecessary data
and programs from the memory.

Cancelling the STAT mode
Press the o=J key to exit the STAT mode. The Card returns to the
BASIC mode.

I':UN t10IJE
"

75

Note:
The contents of numeric, string, or array variables which start with "Z·
will not be retained after cancelling the STAT mode.

Display format
To specify the display and print format, press the o::J key in the
STAT menu.

* DISPLAY MODE *

Press the IT] key to specify double-precision format or the CD
key for single-precision format.
If ou do not wish to change the format specification, press the
I PLAY BACK I key. The STAT menu will be displayed, with (SNG) to
indicate single-precision and (DBL) to indicate double-precision.

Note:
All calculations are performed in double-precision. Only the display and
print out change.

Single-Variable Statistical Calculations
Single-variable calculations
The following statistics can be obtained from single-variable statistical
calculations.

n:
x:
Lx:
2.1:
s:

Sample size of x
Sample mean x
Sum of samples x
Sum of squares of samples x
Sample standard deviation with population parameter
taken to be n-1.

~ Ir.x' - nx '
s = 'I

n-l
This equation is used to estimate the standard
deviation of a population from sample data (x)
extracted from that population.

76

a: Population standard deviation with population
parameter taken to be n.

a= -V 'J:.x' - n.x 2

n
This equation lets you assume the entire population as
sample data (x) or determine the standard deviation of
the sample data which is taken to be a population.

Selecting single-variable statistical calculations
After displaying the STAT menu, press the [TI key to select
single-variable statistical calculations. The single-variable submenu will
be displayed.

II STAT II CIJ
FUNCT I CIt·iS (x)

1 . INPUT
2 . DELETE
:3 . At·1 ALYS I~;
4. PPltHEP

::::ELECT t·lo . ?

The following can be selected from the submenu:

[TI ... INPUT:

crJ ... DELETE:

Used for entering data.

Used for deleting the entered data if the
data was incorrect or to start a new
calculation.

CD ... ANALYSIS: Used for obtaining statistics.

CI:J ... PRINTER: Used for printing the obtained statistics.
Available only if the optional printer is
connected to the Organizer.

Press the II PLAY BACK II key to display the STAT menu.

Entering data
Press the IT] key to display the data input prompt. Enter the data.
IT' r-----------~
L-L-J DATA INPUT(x)

77

1 : x=_

~ Data to be entered.

Indicates the number
of data entered.

To enter a single data value,
press: data I ENTER I.

To enter multiple identical data values simultaneously,
press: data, frequency 'ENTER I.

To enter negative values,
press: B data , ENTER I.

Press the I ENTER I key to end data entry and display the single-variable

submenu.

Note:
In statistics, "frequency" is used to define the number of identical data.
For example, if three identical data occur consecutively, frequency 3 is

used.

Obtaining statistics
Press the o:::J key in the single-variable submenu to display the
analysis submenu.

SELECT t~e.. ?

The following statistics can be obtained by pressing keys CIJ to

0=1:
CD········n:
IT] I.x:
IT] I.x2

:

CI:J x:
[IJ s:
[IJ 0:

The sample size of data
Sum of samples
Sum of squares of samples
Sample mean
Sample standard deviation
Popular standard deviation

Press the I, PLAY BACK II key to return to the single-variable submenu.

Note:
If an error occurs, press the I CeCE I key to clear the error. Check the

entered data.

78

Starting a new calculation (clearing the previous data)
Perform one of the followings:
1. Select "9. QUIT" to exit the STAT mode and select the STAT mode

again. The previous data will be cleared.
2. Delet.e data u~ing the delete/clear function. Press the O=:J key in

the slngle-vanable submenu to display the delete/clear submenu.

CLJ

The delete/clear submenu will be displayed.

CLJ

The all clear submenu will be displayed.

DELETE (1:)

1. DATA
2. ALL CLEAR

SELECT t·~e.. ?

ALL CLEAR ' (1:)

1. "r'ES
2.t-lO

SELECT He.. ';,

Press the o=J key to clear the previous data or the CI:J key to
retain the previous data.

Example:
The test scores for 35 randomly selected students are as shown
Determine the mean and standard deviation of these scores. .

No. Score Frequency No. Score Frequency

1 30 1 5 70 8

2 40 1 6 80 9

3 50 4 7 90 5

4 60 5 8 100 2

79

Select "1. SINGLE-VARIABLE" in the STAT m:..:.e __ n __ u. ______ ~

DAT A It..fPUT< x) c=r=J 1:x=_

Select "1 . INPUT" and enter the data.

c=r=J
30 I ENTER I 40 I ENTER 1 50,4 I ENTER 1
60,5 I ENTER 1 70,8 I ENTER 1 80,9 I ENTER 1
90,5 I ENTER 1100,2 I ENTER 1
Data entry is now complete.

Display the single-variable submenu.
I ENTER 1

Select "3. ANALYSIS".
[IJ

Obtain the mean.

[TI

Obtain the population standard deviation.

CIJ

Return to the single-variable submenu.

SELECT No. ';.

i= 7 1.42857143

cr = 16. 23802542

II PLAY BACK I] .

~ 1"5' key to obtain the sample Size, P '1' c:::I:J L..L.J, or ~
• ress ~, , tandard deviation of samples.

sum, sum of squares, o~ s .. ch as mean and standard
After obtaining intermediate statistics, su I r "1 INPUT" in the
deviation, further data can be entered by se ec Ing .
single-variable submenu.

80

SELECT No. ?

DATA CLEAR (;r)
x=

Enter the values of the incorrect data or data to be deleted in the same
manner as for data entry. MUltiple data values can be deleted using
the commas (,).

After deletion, correct data may be entered from the data input prompt.

Printing statistics

The calculated statistics can be printed on the optional CE-50P printer.
Connect the printer to the Organizer and turn the power on. Enter the
data and select "4. PRINTER" in the single-variable submenu to print
the statistics.

FUt-K:T I Ot~s (x)

1. It..fPUT
2. DELETE
3 . At·4AL '.'SI S
4 . PI': INTER

SELECT No. ?

81

Printing example:

n=

LX=
35

2500

1878013
MEAN(x) =

71.42857143
s=

16.47508942

16 .23802542

tl=
35

2500

t1EAN (x) =
187800

71. 428571428571
428571

516.475089420958
279842
u=

16 . 238025415294
653431

(with single-precision specified) (with double-precision specified)

After printing, the display will return to the single-variable submenu.

Two-Variable Statistical Calculations
Operations for two-variable statistical calculations are similar to .
operations for single-variable statistical calculations. Read the section
for the single-variable statistical calculations first.

Two-variable calculations
The following statistics can be determined from two-variable statistical
calculations.

2 dn, Lx, Lx ,an x: Same as for single-variable calculations
Same as sand 0. sx and ox:

y:
Iy:
Ii:
sy:

cry:

I.xy:

Sample mean y
Sum of samples y
Sum of squares of samples y
Sample standard deviation with population parameter
taken to be n-1 .

- ~J:.Y' - ny ,
y= n-l
Population standard deviation of samples (y) with
population parameter taken to be n.

~J:.y ' -ny'
cry = n

Sum of products of samples x and y

82

a: a= y-bx

b:

Coefficient for linear regression y = a+bx

b=~
Sxx

r:

Coefficient for linear regression y = a+bx

r- Sxy
- ...JSxx.Syy

x' :

Correlation coefficient

x' = y-a
b

Estimated value {x estimated from y}

y': y' =a+bx

Estimated value (y estimated from x)

Note:
(.~:;X)2

Sxx =Lr 2--
n

(J:.)2
Syy = J:.y 2 - ~

/J.

Lx·Iy
Sxy= D:y -

n

Selecting two-variable statistical calculations
After displaying the STAT menu, press the CD key to select the
two-variable statistical calculations.

Entering data
Press the LIJ key on the two-variable submenu to display the data
input prompt. Enter the x and y data as shown in the display.
To enter a single pair of data values,

press: data x I ENTER I data y I ENTER I.
To enter multiple identical pairs of data values simultaneously,

press: data x I ENTER I data y, frequency I ENTER ~
To enter a negative value,

press the G key before the value.

Press the I ENTER I key to end data entry and display the two-variable
submenu.

83

Obtaining statistics
Press the [}:::J key on the two-variable submenu to display the
analysis submenu. There are two submenus, pressing the rn or
m key toggles the submenu. (The symbol tor' will appear.)
When the [}:::J key is pressed in the two-variable submenu,

(The first analysis submenu) ANALYSIS C:r, '::I)
l' n 'J'-':x 3; i:x2 4; t
5: =.l: 6: 0';:[
7:!-:a :::: :Z;y2

SELECT t..fo. .?

rn
(The second analysis submenu)

SELECT ~40. .?

Pressing the rn key will display the first analysis submenu.

Example:
The following table lists the dates (April) on which migratory birds fly
through a certain district, versus the average temperatures in March of
the same district. From this table determine the coefficients, a and b,
of the linear regression line, y = a + bx, and correlation coefficient r.
Estimate the date of migration when the mean temperature in March is
9.1°C. Also estimate the mean temperature in March if the date of
migration is April 10.

Year 1 2 3 4 5 6 7 8

Mean temp. (x°C) 6.2 7.0 6.8 8.7 7.9 6.5 6.1 8.2

Date of migration (y day) 13 9 11 5 7 12 15 7

Select "2. TWO-VARIABLE" in the STAT menu.
~----------------~

LIJ FUNCTIONS (x, ':I)

1. INPUT
2. DELETE
3. ANAL '''SIS
4. PRINTER

:3ELECT t·40. ?

84

Select "1. INPUT" and enter the data ..

c:o
6.2 1 ENTER 113 1 ENTER I 7.0 1 ENTER 19 1 ENTER I
6.8 1 ENTER 111 1 ENTER 18.7 1 ENTER 15 1 ENTER 1
7.9 1 ENTER I 7 1 ENTER 1 6.5 1 ENTER 112 1 ENTER I
6.1 1 ENTER I 15 1 ENTER I 8.2 1 ENTER I 7 1 ENTER I

Data entry is now complete.
Display the two-variable submenu.
I ENTER I

'::1=7
6:x=6.5

'::1=12
7:]::=6.1

':1=15
B:::r=8.2

'::1=7
9:]::=_

Select "3. ANALYSIS" and display the second analysis submenu.
[}:::J m
Determine coefficient a.

CD

Determine coefficient b.

CD

Estimate the date of migration.

CD

Enter the mean temperature.
9.1 1 ENTER I

Display the second analysis submenu.
I ENTER I

85

ANALYSIS (x,':I)
1: ';'r~ --:;': 4
3: s~ - 4: a'::I
5:0. 6:b
7:r 8:x' 9:':1'

a= 34.44951017

b=-3.425018839

At..fAL'l:=;IS (]::, ';:I)
]::=-

ANALYSIS (]::,y)
x=g 1
. .;,,; 3. 281 ::::38734
]::=-

(Estimated date: April 3)

Estimate the mean temperature.
CO

Enter the date of migration.
10 I ENTER I

Reference:

ANALYSIS (z,,=,,)
y=-

,=,,~~@L '(S I S (z, y)

z= 7.13850385
y=

(Estimated mean temperature on
March 10: approx. 7.1 ·C)

In Statistical calculations, the following will be stored into
double-precision variables Z#, ZO# to Z4#, and be retained even after
the STAT mode is exited. Therefore, these statistics can be used in
the RUN mode for further calculations.

Variable Z4# Z3# Z2# Z1# ZO# Z#

Statistics
Single variable - - - y Lx n
Two variable Ii Iy L.xy Y Lx n

These values will be cleared when the STAT mode is selected again.

86

PART 3

BASIC REFERENCE

Part 3 contains alphabetical listings of all the
BASIC commands supported by the Card and
can be used as a ready reference.

The first section contains an alphabetical listing
of numeric functions and pseudovariables.

The second section is an alphabetical listing of
all other BASIC commands.

87

7. SCIENTIFIC & MATHE
MATICAL CALCULATIONS

The Card has a wide range of built-in functions for scientific,
mathematical and statistical calculations. They are listed below
alphabetically. All the functions listed below can be used as part of
calculations when using the Card in RUN mode. They may also be
used as BASIC commands within programs.

For trigonometric functions, entries can be made in degrees, radians or
as a gradient value, as appropriate:

DEGREE: Set the Card to degree entry mode by typing DEGREE
(DEG is highlighted on the MODE CHECK display), this is
the default mode.

RADIAN: Set the Card to radian entry mode by typing RADIAN
(RAD is highlighted on the MODE CHECK display).

GRADIENT: Set the Card to gradient entry mode by typing in GRAD
(GRAD is highlighted on the MODE CHECK display).

These three modes (DEG, RAD, and GRAD) can also be set from
within a program. Once one mode is set, all entries for trigonometric
functions must be in the units set (degrees, radians, or gradient values)
until the mode is changed either manually or from within a program.
The mode setting is preserved even when the power is turned off. The
examples given below are all for direct entry of the functions entered in
degrees.

Functions marked DBl can be used in both double-precision and
single-precision modes. Functions marked SNG can be used only in
single-precision mode, where double-precision arguments are first
converted to a single-precision value and then used in calculations.

Many functions can also be implemented by pressing the
co~responding function key. Functions marked (*) have no
corresponding key and must be entered through the keyboard.

88

*ABS Ixl

Function: Absolute value DBl

Remarks: Returns the absolute value of the numeric argument. The
absolute value is the magnitude of the number irrespective
of its sign. ABS-10 is 10.

Example: ASS -10 I ENTER I 10

lACS cos-'x I
Function: Inverse or arc cosine DBl

Remarks: Returns the arc cosine of the numeric argument. The arc
consine is the angle whose cosine is equal to the
argument. The value returned depends on the mode (DEG,
RAD or GRAD).

Example: DEGREE I ENTER I
ACS -0.5 I ENTER I 120

I*AHC cosh-'x I

Function: Inverse hyperbolic cosine DBl

Remarks: Returns the inverse hyperbolic cosine of the numeric
argument.

Example: AHC 10 I ENTER I 2.993222846

I*AHS slnh-'x I
Function: Inverse hyperbolic sine DBl

Remarks: Returns the inverse hyperbolic sine of the numeric
argument.

Example: AHS 27.3 I ENTER I 4.000369154

89

I*AHT
Function: Inverse hyperbolic tangent

Remarks: Returns the inverse hyperbolic tangent of the numeric
argument.

DBl

Example: AHT 0.71 ENTER I 8.673005277E-01

IASN
Function: Inverse or arc sine DBl

Remarks: Returns the arc sine of the numeric argument. The arc sine
is the angle whose sine is equal to the argument. The
value returned depends on the mode (DEG, RAD or
GRAD).

Example: DEGREE 1 ENTER I
ASN 0.51 ENTER 1

IATN
Function: Inverse or arc tangent

Remarks: Returns the arc tangent of the numeric argument. The
value returned depends on the mode (DEG, RAD or
GRAD).

Example: DEGREE I ENTER I
ATN 1 I ENTER 1

30

DBl

45

I COS cosx I
Function: Cosine

Remarks: Returns the cosine of the angle argument. The value
returned depends on the mode (DEG, RAD or GRAD).

Example: DEGREE I ENTER I
COS 120 I ENTER 1

90

DBl

-0.5

I*CUB

Function: Cube DBl

Remarks: Returns the cube of the argument.

Example: CUB 3 I ENTER I 27

ICUR

Function: Cube root DBl

Remarks: Returns the cube root of the argument.

Example: CUR 1251 ENTER 1 5

IOECI
Function: Hexadecimal to decimal conversion SNG

Remarks: Converts a hexadecimal value to its decimal equivalent.

Example: DECI F82 ~ 3970

IOEG ddomm'ss" ~ ddd.ddddo I

Function: Deg/min/sec to decimal conversion DBl

Remarks: Converts an angle argument in DMS (Degrees, Minutes,
Seconds) format to DEG (Decimal Degrees) format. In
DMS format the integer portion of the number represents
degrees, the first and second digits after the decimal point
represent minutes, the third and fourth digits after the
decimal point represent seconds, and any further digits
represent fractional seconds.

Example: DEG 30.5230 [ENTER I (30°52'30") 30.875

91

j

I

IOMS ddd.dddcf ~ ddomm'ss" IHEX
Function: Decimal to deg/minlsec conversion DBL Function: Decimal to hexadecimal conversion SNG

Remarks: Converts an angle argument in DEG format to DMS format
(see DEG).

Remarks: Converts a decimal value to its hexadecimal equivalent.

Example: HEX 7820 1 ENTER 1 1E8C
Example: DMS 124.8055 1 ENTER 1 124.48198 (124°48'19"8)

I*HSN sinh x I
IEXP eX I

Function: Hyperbolic sine DBL
Function: Exponential function DBL

Remarks: Returns the hyperbolic sine of the numeric argument.
Remarks: Returns the value of e (2.718281828 ... the base of natural

logarithms) raised to the value of the numeric argument. Example: HSN 4 1 ENTER 1 27.2899172
The corresponding function key isll ex II.

I*HTN Example: EXP 1.21 ENTER I 3.320116923 tanh x I

IFACT =-;] Function: Hyperbolic tangent DBL

Remarks: Returns the hyperbolic tangent of the numeric argument.
Function: Factorial n DBL

Example: HTN 0.91 ENTER I 7.162978702E-01
Remarks: Returns the factorial of the argument.

I*INT Example: FACT 71 ENTER I 5040

Function: Integer

I*HCS cosh x I
DBL

Remarks: Returns the integer portion of the argument. The integer
Function: Hyperbolic cosine DBL portion of PI is 3.

Remarks: Returns the hyperbolic cosine of the numeric argument. Example: INT -1.91 ENTER I -2

Example: HCS 3 I ENTER I 10.067662

92 93

ILN
Function:

Remarks:

Natural or Naperian logarithm DBl

Returns the logarithm to the base e (2.718281828 ...) of
the numeric argument.

Example: LN 2 I ENTER I 6.931471806E-Q1

IOg10X I
Function: Common logarithm DBl

Remarks: Returns the logarithm to the base 10 of the numeric
argument.

Example: LOG 1000 I ENTER I 3

I*NCR nCr=n!/rl(n-r)! I
Function: Combination DBl

Remarks: Enter the values as NCR(n,r).

Example: NCR (6,3) I ENTER I 20

I*NPR nPr=n!l(n-r)! I
Function: Permutation DBl

Remarks: Enter the values as NPR(n,r) .

Example: NPR (6,3) I ENTER I 120

94

Function: PI
DBl

Remarks: PI is a numeric pseudovariable that has the value of 1t.

Use of PI is identical to use of the[1t Jlkey. The value of
PI has 10-digit accuracy in single-precision (DEFSNG)
mode, and 20-digit accuracy in double-precision (DEFDBL)
mode.

Example: DEFDBL I ENTER]
PI [ENTER]

3.1415926535897932385#

(X,y) ~ (r,O)]

Function: Rectangular to Polar coordinate conversion
SNG

Remarks: Converts numeric arguments of rectangular coordinates to
their polar coordinate equivalents.

The first argument indicates the distance from the y-axis
and the second the distance from the x-axis. The values
converted indicate the distance from the origin and the
angle in the polar coordinates, and are assigned to the
fixed variables Y and Z respectively. The angle depends on
the mode (DEG, RAD, or GRAD).

Example: DEGREE [ENTER I
POL (8,6) [ENTER]
Z [ENTER I

Function: xth power

10 (r = 10)
36.86989765

(9 == 36.9°)

YX]
DBl

Remarks: Returns the xth power of the numeric argument. Enter as
y[yx Ilx or y " x.

Example: 4" 2.5 I ENTEi(]
32

95

IRCP 1/x

Function: Reciprocal DBl

Remarks: Returns the reciprocal of the numeric argument.

Function: RCP 4 ~ 0.25

I REC (r,e) ~ (x,y) I
Function: Polar to rectangular coordinate conversion SNG

Remarks: Converts numeric arguments of polar coordinates to their
rectangular coordinate equivalents.

The first argument indicates the distance from the origin
and the second argument the angle. The angle depends on
the mode (DEG, RAD or GRAD). The converted values
indicate the distances from the y-axis and the x-axis, and
are assigned to the fixed variables Y and Z, respectively.

Example: DEGREE 1 ENTER I

REC (12,30) I ENTER I
Z I ENTER I

I*RND
Function: Random number

10.39230485 (x =: 10.4)
6 (y = 6)

DBl

Remarks: See RND and RANDOMIZE in the BASIC COMMAND
DICTIONARY.

I ROT xrvl
Function: xth root DBl

Remarks: Returns the xth root of the argument y. Enter as y ROT x.

Example: 7776 ROT 5 I ENTER I 6

96

I*SGN

Function: Sign of argument DBl

Remarks: Returns a value based on the sign of the argument.

ISIN

If x > 0, the function returns 1.
If x < 0, the function returns -1.
If x = 0, the function returns O.

Function: Sine

sin x

DBl

Remarks: Returns the sine of the angle argument. The value returned
depends on the mode (DEG, RAD or GRAD).

Example: DEGREE 1 ENTER I

SIN 30 I ENTER I

ISQR
Function: Square root

Remarks: Returns the square root of the argument.

Example: SOR 3 I ENTER I

ISQU
Function: Square

Remarks: Returns the square of the argument.

Example: SOU 41 ENTER I

97

0.5

~I
DBl

1.732050808

DBl

16

\ TAN tan x

Function: Tangent
DBl

Remarks: Returns the tangent of the angle argument. The value
returned depends on the mode (DEG, RAD or GRAD).

Example: DEGREE 1 ENTER I
1

TAN 451 ENTER I

\TEN 10
x

\

Function: Antilogarithm
DBl

Remarks: Returns the value of 10 (the base of the common log)
raised to the value of the numeric argument.

Example: TEN 3 1 ENTER I 1000

98

Calculation Ranges
Numerical Calculations:
For a calculation involving X, the number X must be within one of the
ranges below:

-1 x 10100 < X:5 -1 X 10-99 for negative X

1 x 10-99 :5 X < 1 x 10100 for positive X

x=o

Functions:

Function Range of X

sin x DEG: Ixl<1x101O Single-precision
cos x Ixl <1 x1cro Double-precision
tan x RAD: I x I < (!tI180) X 1010 Single-precision

I x I < (!tI180) X 1020 Double-precision
GRAD: I x I < (10/9) x 1010 Single-precision

I x I < (10/9) X 1010 Double-precision
Also, for tan x only: (n=integer)
DEG: Ixl ~90(2n-1)
RAD: I x I ~!tI2 (2n-1)
GRAD: Ixl ~100(2n-1)

sin-1 x
-1 ~ x ~ 1 cos-1 x

tan-1 x Ixl<1x101OO

sinh x -227.9559242 ~ x ~ 230.2585092 Single-precision
cosh x -227.95592420641052271 ~ x ~ 230.25850929940456840

tanh x

sinh-1 x Ixl<1x1cfO

cosh 1 x 1~x<1x1050

tanh-1 x Ixl < 1

In x 1 x 1 0-99 ~ X < 1 x 10100

log x

eX -1 x 10100 < X ~ 230.2585092 Single-precision

Double-precision

-1 x 10100 < X ~ 230.25850929940456840 Double-precision

10x -1 x101OO <x<100

3...fX Ixl < 1 x 10100

lIx Ixl < 1 x 10100
, x~O

:l- Ixl < 1 x 1050

99

Function Range of x

..fX 0:; x < 1 x 10'00

n! o :; n :; 69 (n=integer)

DMS~DEG Ixl < 1 x 10'00
DEG~DMS

y" when y > 0, -1 x 1 0'00 < x log Y < 100
(y =10"1og Y) when y = 0, x > 0 l' = ',toge' 0'

1
=odd 'm""" (,. 0) when y < 0, x

and-1 x1 0,00<xlog Iyl <100

"/Y when y > 0, -1 x 10'00 < ~ log Y < 100, x * 0

.! ... , when y = 0, x> 0 ("/Y = 10') l' 0' f m",' b, '"H''' 'm .. ".
when y < 0, 1

and -1 x 10'00 < - log Iyl < 100
x

DECI~HEX I x I s 9999999999, x = integer

HEX~DECI o $ x $ 2540BE3FF (x in hexadecimal)
FDABF41C01 :; x:; FFFFFFFFFF

x, y~r , a (y,2 + 'I) < 1 x 10'00 {r-~
y/x < 1 x 10'00 a = tan-'(y/x)

r, a~x. y r < 1 x 10'00 x = r cosa

I r sine I < 1 x 10'00 Y = r sina

I r cose I < 1 x 10'00

nPr o $ r $ n < 1 x 10'00 n, r integers

nCr 0$ r $ n < 1 x 10'00 n. r integers
when n-r < r, n-r $ 69
when n-r ~ r, r $ 69

• The following functions are single-precision functions only. Before using them, double
precision values are converted to single-precision values: DECI, HEX, POL, REC

100

8. BASIC COMMAND
DICTIONARY

The following pages contain an alphabetic listing of the BASIC
commands that you can use on the Card.

For simplicity, the following conventions have been adopted in
compiling this dictionary:

expression Indicates a numeric value, numerical variable or a
formula including numeric values and numerical
variables.

variable Indicates a numerical variable or string variable
including array variables.

"string" Indicates a character string enclosed in quotation
marks.

string variable Indicates a string variable or string array variable.

d:

Indicates *Iabel.
(Although both *Iabel and "label" forms may be used
with this Card, *Iabel is recommended. *AB and
"AB" are different labels.)

Indicates a device name.
The following are device names used on the Card:

E: RAM disk E (Card memory)
PACOM: 4-pin device
CAS: Cassette tape

Note:
COM: Serial I/O device (communication)

Device name PACOM refers to the IC Card (OZ-707
or OZ-770) installed in another Organizer to or from
which a program or data is transferred. The optional
CE-200L Data Transfer Cable is required to connect
the two Organizers for data transfer.

101

I

[1

()

" "

P
D

Abbreviation

The parameter in square brackets is optional. The
brackets themselves are not part of the command

entry.

Used to enclose parameter values in certain
commands. They should be entered as part of the

command.

Used to enclose string parameter values in certain

commands.

A or B can be selected.

Program execution is possibl~.
Direct input operation is posSible.

Most of the commands can be ab~rev~ated: .
The shortest abbreviation allowed IS given In thiS

manual.
Example:

Abbreviation: P. (for PRINT) .
The following abbreviations are also vahd:

PR. PRI. PRIN.

102

ARUN
FORMAT: ARUN [{line number}]

*Iabel

Abbreviation: AR.
See Also: AUTOGOTO, RUN

PURPOSE:
Starts a program automatically when the power is turned on and the
RUN mode is specified.

REMARKS:
Include ARUN as the first program statement (in the first line of the
program) to start the program as soon as the power is turned on. This
has the same effect as if a RUN command had been entered from the
keyboard.

If the power is turned off in the CARD mode, the Card will be in the
RUN mode when the power is turned on again, and the program will
be executed automatically.

*Iabel must be the first statement of a line within the program, and
must consist of alphanumeric characters or symbols.

Turning the power on after it has been turned off by the Auto OFF
function will not execute the program automatically.

ARUN is similar to AUTOGOTO except that all variables and arrays
other than fixed variables are cleared before program execution.

EXAMPLE:
5: ARUN

10: CLS:WAIT 100
20: PRINT "WELCOME TO THE WORLD OF"
30: PRINT "THE CARD"
40: PRINT "YOU HAVE";FREO;" BYTES FREE"
50: END

The program runs automatically when the power is turned on.

103

p

ASC
FORMA T: {"string" }

ASC string variable

Abbreviation: A.
See Also: CHR$

p
o

PURPOSE: . . . d t'
Returns the character code for the first character In the speclfle s ring.

~::::~!: string as the contents of a string variable in the form X$ or
as an actual string enclosed in quo~es, ."XXXX". Only the chara~~e~ for
code of the first character in the string IS returned. See Append

character code tables.

EXAMPLE:
10: INPUT "ENTER A CHARACTER ";A$
20: N = ASC A$ IS .. N
30: PRINT "THE CHARACTER CODE ;
40: GOTO 10

[10} The user presses a key to enter a character.
[20] ASC finds the code number for the character.
[30} The answer is displayed. . IniiI k
[40} Repeats until the user halts the program by presslrlg the ~ ey.

104

AUTO o

FORMAT: AUTO [[starting line number][,increment]] I ENTER I

Abbreviation:
See Also:

PURPOSE:
Provides automatic insertion of program line numbers in the PRO mode.

REMARKS:
Valid only as direct input in the PRO mode.
Starting line number and incremental value may be specified.
If not specified, the first line number is automatically set to 10 and the
increment to 10. However, if the AUTO command has been previously
set to other values, those values are used.
An error is generated if the starting line number exceeds 65279.

When the mode is changed from PRO to RUN and then back to PRO
mode, entering AUTO I ENTER I assumes the previously set increment
and resumes line numbering from the most recently generated line
number.
Pressing the I C-CE I key while a line number is displayed will have the
same effect.

Turning the power off and then on, or entering an operation mode
other than PRO or RUN will exit the AUTO mode.

105

AUTOGOTO
FORMA T: AUTOGOTO {line number}

*Iabet

Abbreviation: AU.
See Also: ARUN, GOTO

PURPOSE:
Starts a program automatically when the power is turned on and the
RUN mode is specified.

REMARKS:

p

Include AUTOGOTO in the first line of a program (the first statement)
to start the program when the power is turned on and is in the RUN
mode. This functions as if a GOTO command had been entered from
the keyboard. AUTOGOTO is similar to ARUN but does not clear all
variables and arrays before starting the program. If the power is turned
off in the CARD mode, the Card will be in the RUN mode when the
power is turned on again, and the program will be executed
automatically.

Turning the power on after it has been turned off by the Auto OFF
function will not execute the program automatically.

*Iabel must be the first statement of a line within the program, and
must consist of alphanumeric characters or symbols.

106

BASIC
FORMAT: BASIC I ENTER I

Abbreviation: BA.
See Also: TEXT

PURPOSE:
Clears the text mode.

REMARKS:
Valid only as direct input in the PRO mode.

Executing this command clears the Text mode and returns the mode to
BASIC. As the mode returns to BASIC, the prompt symbol changes
from "<" to ">". Changing from the Text mode to the BASIC mode
usually converts the text held in the Card memory to a program
(internal code).

All lo,",:ercase lett:r~ other than those in character strings enclosed in
quotation marks () or following a REM (,) statement are
automatically converted to uppercase letters.
Abbreviations such as "P." and "I." are not converted to their respective
commands. (To do so, move the cursor to the line and press the
I ENTER I key.) Because of the characteristics of the BASIC function
c~mmands and formats included in the text but not found in the Card
Will not be converted.

~uring program. conversion, ":!oK" is displayed at the bottom right of the
display. ApprOXimately 600 bytes are required for work area to convert
a program.
If a converted line is too long, an error will occur.
If a password has been set, executing the BASIC command results in
an error.

107

o

BEEP
FORMAT: BEEP number [,[tone][,duration]]

Abbreviation: B.
See Also:

PURPOSE:
Generates beeps of the specified tone and duration through the
Organizer's internal speaker.

REMARKS:
Number specifies the number of times the beep will sound. Specify a
positive value or expression up to 65535.

P
D

Tone specifies the frequency of the beep in the range of 255 to 1. As
the value of the tone parameter is increased, the frequency is reduced.

Duration specifies the duration of the beep in the range of 1 to
1048575. The beep duration setting varies with the tone parameter. A
given duration value will give a relatively longer beep at lower
frequencies.

If the duration is omitted, a default value of 19200 is set.
If the tone is omitted, a default value of 12 is set.
If the duration and tone are omitted, the frequency of the beep is set to
approximately 4 KHz.

Press the 00 key to stop a beep.

EXAMPLE:
10: FOR I = 1 TO 3
20: FOR J = 5 TO 25 STEP 5
30: BEEP I,J,150
40: NEXT J
50: NEXT I
60: END

[10] The outer loop changes the number of beeps from 1 to 3.
[201 The inner loop changes the tone.
[30] The BEEP statement is executed 15 times.

108

,
I

BREAK ON/OFF
FORMA T: 1. BREAK ON

2. BREAK OFF

Abbreviation:
See Also:

PURPOSE:
Enables/disables program execution break using the 00 key.

REMARKS:
Format 1 selects the Break On mode, in which pressing the 00 key
breaks program execution.
Format 2 selects the Break Off mode, in which the 00 key is unable
to break program execution.

The Break On mode is set after power on, execution of the RUN,
ARUN, END, or STOP command, or an error.

109

P
D

CHAIN
FORMAT: 1. CHAIN

2. CHAIN lid: filename"[, {~~~~mber}]
d: E, PACOM,CAS, COM

Abbreviation: CHA.
See Also: LOAD, MERGE

PURPOSE:
Loads and starts, from within one program, another program that has
been stored on the specified device.

REMARKS:

p

To use CHAIN, the specified program must be present on the specified
device. The currently running program is cleared from memory at the
point where a CHAIN command is encountered and the specified
program is loaded and started. Entering the CHAIN statement at the
end of each program will continue to load programs automatically. An
error will occur if the program becomes too large for the program area
as a result of programs loaded by the CHAIN command. .

Format 1 is for use only with tape and loads the first stored program
from tape and starts it from the lowest line number in the program. The
effect is the same as having entered LOAD "CAS:" and RUN in the
RUN mode.

Format 2 searches the specified device for the program indicated by
"filename", loads it, and starts it at the specified line number or * Iabel,
or the lowest line number if omitted.

Note:
A file is automatically opened when executing the CHAIN command. If
the device name is specified as PACOM, CAS, or COM, files for that
device must be closed.

EXAMPLE:
CHAIN "E:PR01", 1 00

Searches the RAM disk for a program named PR01 , loads it and begins execution with
line number 100.

110

CHR$
FORMA T: CHR$ expression

Abbreviation: CH.
See Also: ASC

PURPOSE:

Returns the character that corresponds to the numeric character code
of the parameter.

REMARKS:

Shee Appendix B for a chart of character codes and their relationship to
c aracters, e.g., CHR$ 65 is "A".

A hexadecimal number can be specified with "&H" in front of the
character code (eg. A$ = CHR$ &H5A)

A value greater than 255 generates an error.

111

-
P
D

CLEAR
FORMAT: CLEAR [variable 1, variable 2, ... , variable n]

Abbreviation: Cl.
See Also: DIM, ERASE

PURPOSE:
Erases variables that have been used in the program and resets all
preallocated variables to zero or null.

REMARKS:
CLEAR recovers memory space used to store simple numeric
variables, and array variables secured using the DIM statement. Also
use CLEAR at the beginning of a program to clear space occupied by
variables from previously run programs if several programs are in
memory.

Do not use the CLEAR command within a FOR. .. NEXT loop.

Use the ERASE command to clear specific array variables.

EXAMPLE:
10: A = 5: DIM C(5)
20: CLEAR

[20] Frees up the spaces assigned to C() and resets A to zero.

112

p
o CLOSE

FORMAT: CLOSE [# file number, # file number, ...]

Abbreviation: CLOS.
See Also: OPEN

PURPOSE:
Closes a file or files on the currently accessed device.

REMARKS:
This command closes files with the specified file numbers. If fl{) file
number is specified, all files are closed. The file numbers are then
released for use with other files.

All files are closed in the following cases:

• An END or RUN command is executed.
• The power is turned off.
• The Card is changed to the STAT or AER mode.
• A program is written or read (by the LOAD or MERGE command).

EXAMPLE:
CLOSE #2, #5, #21

Closes files #2, #5, and #21 .

113

p
o

CLS
FORMAT: CLS

Abbreviation:
See Also: LOCATE

PURPOSE:
Clears the display.

REMARKS:
Clears the display and resets the display start position to (0,0).

CONT
FORMAT: CaNT I ENTER I

Abbreviation: C.
See Also: STOP

PURPOSE:
Continues a program that has been temporarily halted.

REMARKS:
Valid only as direct input in the RUN mode.

p
o

o

Enter CaNT to continue running a program that has been stopped with
the STOP command. Enter CaNT at the prompt to continue a program
that has been halted using the 00 key. CaNT can also be used to
continue a program interrupted by PRINT or GPRINT. (See WAIT
command.)

114

COpy
FORMAT: COPY "d1 :filename 1" TO "[d2:]filename 2" [,A] I ENTER I

d1: E, PACOM, CAS, COM
d2: E, PACOM, CAS, COM

Abbreviation: COP.
See Also:

PURPOSE:
Copies the contents of a file from one storage device to another
storage device.

REMARKS:
Copies the contents of the file with filename 1 within device d1 to
another file with filename 2 within device d2. The following shows a
cross reference for device names usable for devices d1 and d2:

d2

E PACOM CAS COM

E 0 0 0 0

d1 PACOM 0 x x 0
CAS 0 x x 0

COM 0 0 0 x

0: Usable x: Not usable

An error occurs if the same name is given for devices d1 and d2 and
for filenames 1 and 2.

If ",A" is specified, the system regards filename 1 as an ASCII file and
code "1 AH" as an EOF (end of file) code.

If PACOM, CAS, or COM is given for d2, the destination file becom~s
an ASCII tile. If PACOM, CAS, or COM is given for d1, the source file
must be an ASCII file. If d2 is omitted, the same device as d1 is
assumed.

115

o

An error occurs if filename 1 is not given. If filename 2 already exists,
it will be overwritten.

The extension can be omitted if it is blank.

Notes:
1. An error occurs if device d2 or the file with filename 2 is

write-protected (see SET command).
2. The wildcard cannot be used for device name PACOM, CAS, or

COM.

EXAMPLE:
Transfer file "TEST" as file "SAMPLE" using device name "PACOM". Before
execution, prepare the RAM disk E on the receiver.

Sender
COPY "E:TEST" TO "PACOM: SAMPLE"' ENTm I

Receiver
COpy "PACOM: SAMPLE" TO "E: SAMPLE"IENTml

File "TEST", which is stored in the sender's RAM disk E, is transferred to the receiver's
RAM disk E in the Organizer's IC card, under the file named "SAMPLE".

116

DATA
FORMAT: DATA list of values

Abbreviation: DA.
See Also: READ, RESTORE

PURPOSE:
Provides values for use by READ.

REMARKS:
When assigning initial values to an array, it is convenient to list the
values in a DATA statement and use a READ statement in a
FOR. .. NEXT loop to load the values into the array. When the first
READ is executed, the first value in the first DATA statement is
returned. Succeeding READs use succeeding values in the sequential
order in which they appear in the program, regardless of how many
values are listed in each DATA statement or how many DATA
statements are used.

A DATA statement may contain any numeric or string values,
separated by commas. Enclose string values in quotes. Spaces at the
beginning or end of a string should be included in the quotes.

p

DATA statements have no effect if encountered in the course of regular
execution of the program, so they can be inserted wherever
appropriate. Many programmers include them after the READ that uses
them. If desired, the values in a DATA statement can be read a
second time using the RESTORE statement.

117

DATE$
FORMAT: DATE$

Abbreviation:
See Also: TIME$

PURPOSE:
Recalls the date currently set in the Organizer.

REMARKS:
The DATE$ command recalls the date currently set in the Organizer in
the form of 10 character string data. The date is displayed in the order
of mo~th, date, and year irrespective of the format specified by the
Organizer. Month and date are given by two digits each while the year
is given ?y 4 digit~. Hyphens are used to separate the digits.
For detaIls on setting the date, see the description under "Setting the
standard clock" in the Organizer manual.

EXAMPLE:
10: PRINT DATE$
20: A$ = DATE$
30: PRINT A$

118

p
o DEFDBL

ORMA T: 1. DEFDBL character range
2. DEFDBL

Abbreviation: DEF.
See Also: DEFSNG

PURPOSE:
I efines variable(s) with single-character names as having double
preCision accuracy or specifies "double-precision" mode calculations.

REMARKS:
In format 1, the variables in the "character range" are designated as
double precision. "character range" can be specified as follows:

• DEFDBL C-F .
where variables, C, D, E and F are designated as double-precision,
or

• DEFDBL E,F,Z,H-J
where variables E, F, Z, H, I and J are designated as double
precision.

Variable names followed by the single-precision type declaration
character (!) are given type priority over variable names declared by
the DEFDBL statement. For example, variables E and F in the
statement

DEFDBL E,F

p
o

will be treated as double-precision variables, but E! and F! will be
treated as single-precision variables. Variables not declared as double
or single-precision will be treated as single-precision variables.

In format 2, all subsequent calculations are carried out to double
precision. The DBL mark is shown on the screen in this mode. The
double-precision mode is canceled by the following:

119

• The DEFSNG statement is executed.
• The power is turned off.
• The RUN or NEW command is executed.
• A program is loaded (except by the CHAIN command).

When using the DIM statement to establish the number of elements
allowed in a numeric array, the DEFDBl statement must be used first
if those elements are to be treated as double-precision variables:

DEFDBl A
DIM A(3,2)

In the example below, the elements will be treated as single-precision
variables:

DIM A(3,2)
DEFDBl A

120

DEFSNG
FORMAT: 1. DEFSNG character range

2. DEFSNG

Abbreviation: DEFS.
See Also: DEFDBl

PURPOSE:
Defines variable(s) with single-character names as having single
precision accuracy or cancels double-precision mode specified by
DEFDBL.

REMARKS:
In format 1, the variables in the "character range" are designated as
single-precision. "Character range" can be specified as follows:

• OEFSNG C-F

p
o

where variables C, 0, E and F are designated as single-precision, or
• OEFSNG E,F,Z,H-.J

where variables E, F, Z, H, I and J are designated as
single-precision.

Variable names followed by double-precision type declaration
characters (#) are given type priority over variable names declared by
the DEFSNG statement. For example, variables E and F in the
statement

DEFSNG E,F

will be treated as single-precision variables, but variables E# and F# as
double-precision variables. Variables not declared as double- or
single-precision are treated as single-precision variables.

In format 2, all subsequent calculations are carried out with single
precision. The DBl mark on the screen is canceled in this mode.

121

DEGREE
FORMAT: DEGREE

Abbreviation: DE.
See Also: GRAD, RADIAN

PURPOSE:
Changes the form of angular values to decimal degrees.

REMARKS:
There are three forms for representing angular values - decimal
degrees, radians and gradient. These forms are used in specifying the
arguments to the SIN, COS, and TAN functions and in returning the
results from the ASN, ACS, and ATN functions.

The. DEGREE function changes the form of all angular values to
decimal degree form until GRAD or RADIAN is used. The DMS and
DEG functions ca~ be used to convert angles from decimal degree
form to degree, mInute, second form and vice versa.

122

p
o DELETE o

FORMA T: 1 . DELETE line number I ENTER I
2. DELETE line number {~} I ENTER I

3. DELETE line number t} line number I ENTER I

4. DELETE t} line number I ENTER I

Abbreviation: DEL.
See Also: NEW, PASS

PURPOSE:
Deletes specified program lines in memory.

REMARKS:
Valid only as direct input in the PRO mode.

Format 1 deletes only the specified program line. Format 2 deletes
program lines from the line number specified up to the highest program line
in memory. Format 3 deletes all program lines between the first specified
line number (lower value) and the second specified line number (higher
value). Format 4 deletes program lines from the lowest line number in
memory up to the specified line number.

Using DELETE in the RUN mode generates an error. If a password has
been used, the command is not executed and the prompt is displayed.
Only the digits 0-9 can be in the line numbers. Specifying a line that does
not exist generates an error. Specifying a start line number that is greater
than the end line number also generates an error.
If the first and second line numbers are omitted, an error will occur.

To delete the whole program, use the NEW command.

EXAMPLE:
DELETE 150·
DELETE 200,*·
DELETE 50-150'"
DELETE ,35*···

• Deletes line 150 only.
.. Deletes from line 200 to the highest line number.

••• Deletes all lines between and including line 50
and line 150.

•••• Deletes from the lowest line number up to line 35.

123

DIM
FORMAT: DIM variable name 1 (size 1 [, size 2, size 3, ... J)

[, variable name 2 (size 1 [, size 2, size 3, ... J)]

Abbreviation: D.
See Also: ERASE, CLEAR, RUN

PURPOSE:
Reserves space for numeric and string array variables.

REMARKS:
DIM must be used to reserve space for an array variable. The size of
an array is the number of elements in that array.

p
o

A variable name consists of a letter and up to 39 alphanumeric
characters. For string variables, "$" is attached to the end of the
variable name. Numeric variables may be either single-precision or
double-precision variables. Even though two variables may have the
same name (one single-, one double-precision), they will be recognized
as two different variables.

Size 1, size 2 are called the "subscripts·, and specify the number of
elements in the nth dimension of the array. An array with one subscript
is called a one-dimensional array, with two subscripts, it is called a
two-dimensional array and an array with n subscripts is called an
n-dimensional array.

Example:
DIM B(3):

one-dimensional array B() reserves 4 array elements B(O), B(l),
B(2) and B(3)

DIM XA$(2,3):
two-dimensional string array XA$() reserves 12 array elements
XA$(O,O), XA$(0,1), ... , XA$(2,2), XA$(2,3)

Integers <H>SS34 can be used as subscripts, but an error may occur if
a variable with the specified size cannot be reserved because of limits
in the memory size and conditions of use.

124

If the subscripts include a decimal point, only the integer part will be
recognized (and the fractional part will be ignored).

Example:
X(2.3) recognized as X(2)
Y(0.2S) recognized as Y(O)

The subscript may be declared by a numeric variable or expression:
10: INPUT A,B
20: DIM X(A), Y#(B-1,A*B)

More than one array can be declared using one DIM statement.

Example:
DIM V(S), K$(4,3), XB$(S)

If an array has been defined, it cannot be defined again. For example,
both DIM X(S) and DIM X(3,4) cannot be defined since the variable
names are the same. However, DIM X!(S) and DIM X#(3,4) can be
defined since one is a single-precision variable and the other is a
double-precision variable.

When a program is executed using the RUN or ARUN command,
allocated array variables are cleared, but they are not cleared using the
GOTO statement. Thus, when a program is to be executed again using
the GOTO statement, an error will occur if a DIM statement attempts to
reallocate space for an existing array variable. Either GOTO a line
following the DIM statement, or add an ERASE statement and redefine
the array.

Example:
SO: ERASE X: DIM X(3,4)

Numerical array and string array variables are recognized as different
arrays; thus, the arrays Z() and Z$() can be defined Simultaneously.

The DIM statement cannot be used within a FOR. .. NEXT loop.

12S

DSKF
FORMAT: 1. DSKF "E:"

2. DSKF (3)

Abbreviation: DS.
See Also:

PURPOSE:
Returns the amount of free space on a RAM disk E.

REMARKS:
DSKF returns the size of the free disk area in bytes.

The RAM disk is used in blocks of 256 bytes.

To store a program formatted in intermediate code, an additional 20
bytes are required for control area. Thus, a 500 byte program will
require 768 bytes on RAM disk E.

EXAMPLE:
DSKF(3)

Returns the free space on the RAM disk E.

126

p
o END

FORMAT: END

Abbreviation: E.
See Also:

PURPOSE:
Signals the end of a program.

REMARKS:
The program will be terminated when the END statement is executed.
Statements after the END statement in the same line cannot be
executed. All opened files are closed.

127

p

EOF
FORMAT: EOF (file number)

Abbreviation: EO.
See Also:

PURPOSE:
Determines if the end of a sequential file has been reached.

REMARKS:
The EOF function checks if all data in a sequential file (with the
specified file number) has been read.

p
o

If all data has been read, EOF returns -1 (true) as its function value. If
not, EOF returns 0 (false). For the device name COM, EOF returns -1
(true) if the 20-character buffer is empty and 0 (false) if not.

An error occurs if a file with the specified number has not been opened
for input.

EXAMPLE:
10: OPEN "E:A" FOR OUTPUT AS #2
20: PRINT #2, 123,456,789
30: CLOSE
40: OPEN "E:A" FOR INPUT AS #2
50: INPUT #2,A,B
60: X = EOF (2)
70: INPUT #2,C
80: Y = EOF (2)
90: CLOSE:END

[60] Not all data has been read in this line. X = o.
[SO] All data has been read. Y = -1 .

128

ERASE
FORMAT: ERASE array 1 [, array 2, ... array n]

Abbreviation: ER.
See Also: CLEAR, DIM

PURPOSE:
Erases specified arrays.

REMARKS:
Array elements cannot be erased individually; the whole array is
cleared and its memory area is freed. To re-define an array size, first
ERASE it and then re-specify it in a DIM statement.

Double-precision array variables can be specified. The contents of
double-precision variables specified using the DEFDBL command are
erased, but the DEFDBL mode is not.

Do not use the ERASE command within a FOR ... NEXT loop.

EXAMPLE:
10: DIM AA(10)

200: ERASE AA

129

p
o

ERL
FORMAT: ERL

Abbreviation:
See Also: ERN, ON ERROR GOTO

PURPOSE:
Returns the line number at which an error occurred during program
execution.

REMARKS:
The ERL function is used with the ERN function and the ON ERROR
GOTO statement in error processing routines to control program flow
when an error occurs. A line number is only set in ERL if the error
occurred during program execution.

ERL will be cleared when
• a RUN statement is executed.
• the power is turned off.
• a program is loaded.

130

p
o ERN

FORMAT: ERN

Abbreviation:
See Also: ERL, ON ERROR GOTO

PURPOSE:
Returns the error code number of the execution error.

REMARKS:
The ERN function is used with the ERL function and the ON ERROR
GOTO statement in error processing routines to control program flow
when an error occurs.

See Appendix A for a list of error messages.

ERN will be cleared when
• a RUN statement is executed.
• the power is turned off.
• a program is loaded.

EXAMPLE:
10: ON ERROR GOTO 100:WAIT
20: FOR N = 1 TO 20
30: READ A
40: PRINT A
50: NEXT N
60: END

100: IF ERL = 30 AND ERN = 53 THEN PRINT "YOU HAVE NO DATA"

131

P
D

EVAL
FORMAT: EVAL {"c~aracte~ string"}

string vanable

Abbreviation: EV.
See Also:

PURPOSE:
Calculates the string as an expression.

REMARKS:
EVAL command calculates the character string enclosed in the double
quotes by regarding it as an expression. It can also calculate the
character string assigned to a string variable or string array variable.

EXAMPLE:
10: PRINT EVAL "15+5*2"
20: A$="20*10":C=EVAL A$
30: PRINT C
40: A=10:B=20
50: PRINT EVAL "SIN A+COS 8"

132

P
D FILES

FORMAT: FILES ["[E:][filenamel1I ENTER I

Abbreviation: FI.
See Also: LFILES, SET

PURPOSE:
Displays names and attributes of specified file(s) on RAM disk.

REMARKS:
FI LES displays the filename, the filename extension (.BAS or other
extension), and UP" (write-protection) attribute (see SET command).

D

If no device name is specified, the last device name used will be
assumed. If no filename is specified, all files on the specified device
will be displayed. If neither device nor filename is specified, all files on
the last device used will be displayed. To display a series of filenames,
use an ambiguous filename. (See below.) To display a single filename,
specify only that filename and its extension.

The number of bytes used is also displayed. (See the SAVE and SET
commands.)

A maximum of three filenames will be displayed at one time, and an ¢

mark will appear to the left of the filenames. Scroll through the files by
pressing the rn and [!] keys to move the ¢ mark up or down,
respectively.
Press I SHIFT I rn to move to the bottom of the previous page, and
I SHIFT I [!] to move to the top of the next page. Pressing C[J
I ENTER I or [IJ LTI when the ¢ mark is next to a desired filename
allows the file to be loaded into memory. Pressing CD I ENTER I or
CD c::LJ kills (deletes) the file where the ¢ mark is located. Once
a file has been deleted, it cannot be recovered, so use this option with
care. To avoid loading or killing a file, press any key other than CY:J
or I ENTER I when the OK? prompt appears.

133

Specify an ambiguous filename to list directory information on groups
of files with common name forms. There are two wildcard characters
available for this purpose. The asterisk"*,, stands for any number of
characters (including none) in the filename. The question mark "?"
stands for a single character in a filename. The following are examples
of the use of wildcard characters:

File specification
TEST?
T??T
S?MPLE
A?????
R*

Files listed
TEST, TESTS, TEST1, TESTA
TEST, TEXT, TORT, TXYT
SIMPLE, SAMPLE, S2MPLE
ABCDEF, APPEND, A12345
RATES,R1, RETURNS, RAND2,R

If the I CeCE I or 00 key is pressed, or if the last filename is being
displayed and the I ENTER I key is pressed, the entry prompt "'>" is
displayed, and the Card waits for the next command.

FILES has no effect if the specified files do not exist on the specified
device.

EXAMPLE:
FILES"E:DATA"

Displays information about the file DATA on RAM disk E.

FILES"E:???1"

Lists all files on RAM disk E that have 4-letter names ending in 1.

134

FOR ... NEXT
FORMAT: FOR

~

{
fixed numeric variable } _
single-precision simple numeric variable -

expression 1 TO expression 2 [STEP expression 3]

[{
fiXed numeric variable }]

NEXT single-precision simple numeric variable

Abbreviation: F. N. STE.
See Also:

PURPOSE:
In combination with NEXT, repeats a series of operations a specified
number of times.

REMARKS:
FOR and NEXT are used in pairs to enclose a group of statements
that are to be repeated. If the variable following NEXT is omitted, the
variable following FOR is assumed. The first time this group of
statements is executed the loop variable (the variable named
immediately following FOR) is assigned its initial value (expression 1).

When execution reaches the NEXT statement, the loop variable is
increased by the STEP value (expression 3) and then this value is
tested against the final value (expression 2). If the value of the loop
variable is less than or equal to the final value, the enclosed group of
statements is executed again, starting with the statement following
FOR. If expression 3 for step size is omitted, the increment becomes
1. If the value of the loop variable is greater than the final value,
execution continues with the statement that immediately follows NEXT.
Because the comparison is made at the end, the statements within a
FOR. .. NEXT pair are always executed at least once.

When the increment is zero, FOR. .. NEXT will continue in an infinite
loop.

135

p

The loop variable may be used within the group of statements, for
example as an index to an array, but care should be taken in changing
the value of the loop variable.

Write programs so that the program flow does not jump out of a
FOR. .. NEXT loop before the counter reaches the final value. To exit a
loop before it has been repeated the specified number of times, set the
loop variable higher than the final value.

The group of statements enclosed by a FOR. .. NEXT pair can include
another pair of FOR. .. NEXT statements that use a different loop
variable as long as the enclosed pair is completely enclosed; i.e., if a
FOR statement is included in the group, the matching NEXT must also
be included. FOR. .. NEXT pairs may be "nested" up to six levels deep.
Illegally jumping out of an inner loop will generate an error, a nesting
error. See Appendix E.

An error results if a double-precision variable is specified as the
numeric variable. Double-precision initial values, final values, and
increments are treated as single-precision values.

Do not use the CLEAR, DIM, or ERASE command within a
FOR. .. NEXT loop.

136

FRE
FORMAT: 1. FRE 0

2. FRE 1

Abbreviation: FR.
See Also:

PURPOSE:

p
o

Returns the free space available in the program and data area in bytes.

REMARKS:
FRE returns the byte count of the free space (not occupied by
program, array variables, or simple variables) in the program and data
area of memory.

To speed up execution, a certain fixed number o~ bytes are rese:,ed
for each string variable even though a shorter string may be assigned
to the variable. Thus, the size of the free space is not affected by the
lengths of strings assigned to string variables. It is, however, possible
to eliminate idle space in each variable to increase free space.

Format 1 returns the free space by eliminating idle space in each string
variable so its execution may take a little more time.
Format 2 returns the free space without eliminating idle space in string
variables. It is useful for determining the approximate amount of free
space.

The value of free space returned by format 1 may not match that
returned by format 2.

137

GCURSOR
FORMAT: GCURSOR (expression 1, expression 2)

Abbreviation: GC.
See Also: LOCATE, GPRINT

PURPOSE:
Specifies the starting point of dot graphics display.

REMARKS:
GCURSOR specifies the display starting point for the dot pattern to be
displayed by the GPRINT command.

The screen consists of 96 columns and 64 rows of dots, which can be
addressed by column numbers 0 to 95 and row numbers 0 to 63. Any
dot on the screen can therefore be addressed as a starting point by
specifying the column number with expression 1 and the row number

p

with expression 2. o 95
o

~L-________________ ~

The values of expressions 1 and 2 may range from -32768 to 32767.
It should be noted, however, that if the value of expression 1 is outside
the range of 0 to 95 or that of expression 2 is outside the range of 0 to
63, the display starting point will become a virtual point which is
outside the screen boundaries.

Location (0,7) is automatically assumed as the display starting point if
the RUN command is executed or I SHIFT II CeCE I are pressed.
If a program is started with GOTO, only the row number specified by
this command is maintained, with the column number automatically
reset to zero.

138

EXAMPLE:
5: CLS:WAIT

10: GCURSOR (40,30)
20: GPRINT "1824A2F1A22418"

This program prints the following dot pattern near the center of the screen (the displlY
starting point indicated by the shaded box is not displayed):

Display starting point (40.30)

139

GOSUB ... RETURN
FORMAT: GOSUB {line number}

*Iabel

RE+URN {line number}
*Iabel

Abbreviation: GOS. RE.
See Also: GOTO, ON ... GOSUB

PURPOSE:
Diverts program execution to a BASIC subroutine.

REMARKS:
When you wish to execute the same group of statements several times
in the course of a program, it is convenient to use the BASIC capability
for subroutines using GOSUB and RETURN.

The group of statements is included in the program at some location
where they are not reached in the normal sequence of execution. A
common location is following the END statement that marks the end of
the main program.

At each location in the main body of the program where a subroutine is
to be executed, include a GOSUB statement with a line number or
*Iabel that indicates the starting line number of the subroutine. The last
line of each subroutine must be a RETURN.
When GOSUB is executed, the Card transfers control to the indicated
line number or *Iabel and processes the statements until a RETURN is
reached. Control is then transferred back to the statement following the
GOSUB. If a line number or *Iabel follows RETURN, control will return
to the line number or *Iabel.

Subroutines may be "nested" up to 36 levels deep. (See Appendix E.)

Since there is an ON .. . GOSUB structure for choosing different
subroutines at given locations in the program, the expression in a
GOSUB statement usually consists of just the desired line number or
*Iabel.

140

GOTO
FORMAT: GOTO {line number}

lI<Iabel

Abbreviation: G.
See Also: GOSUB, ON ... GOTO, RUN

PURPOSE:
Transfers program control to a specified line number or *Iabel.

REMARKS:
GOTO transfers control from one location in a BASIC program to
another location. Unlike GOSUB, GOTO does not "remember" the
location from which the transfer occurred.

Usually, a program is executed sequentially from the s",lalles~ line
number. However, execution can be transferred to the line With the
given line number or *Iabel. Program execution can be .start~d fro~
the specified line by specifying a GOTO statement as direct Input In
the RUN mode. The transfer destination is specified by entering the
line number or *Iabel after the GOTO command.

Example:
GOTO 40
GOTO*AB

Jumps to line 40
Jumps to the line with label *AB

If the specified line number or *Iabel does not exist, an error occurs.
If two or more identical *Iabels are included in a program, program
execution transfers to the line with the lower line number.

EXAMPLE:
10: INPUT A$
20: IF A$ = "yo GOTO 50
30: PRINT "NO"
40: GOTO 60
50: PRINT "YES"
60: END

p
o

This program prints "YES" if a "Y" is entered and prints "NO" if anything else is entered.

141

GPRINT
FORMAT: 1. GPRINT "string"

2. GPRINT expression [; expression; expression; ...]
3. GPRINT

Abbreviation: GP.
See Also: GCURSOR, PRINT

PURPOSE:
Displays the specified dot pattern.

REMARKS:

p
o

The GPRINT command displays the specified dot pattern. Each column
of bit image data is represented by 8 vertical dots.

In format 1, the 8-dot pattern is divided into an upper group of 4 dots and a
lower group of 4 dots. Each group of dots is then represented by a
hexadecimal number. The string is enclosed by " ".

Dot Dot Hex. Digit Dot Hex. Digit Dot Hex. Digit Pattem
Hex. Digit

Pattem Pattern Pattern .. - r-----.

0 ~ 4 ~ 8 ~ C ~
- r--

1 ~ 5 ~ 9 ~ D ~
... - ---- j-- -.--

2 ~ 6 ~ A ~ E ~
r------ -- -

3 ~ 7 i B ; F I
-- ---- ~- ---

00 00" Each pair of hexadecimal numbers
GPRINT "00 00 represents one vertical dot pattem

t (of 8 dots). The first number
L---'-_ --"----'-______ represents the upper 4 dots. the

142

second number represents the
lower 4 dots.

Example:

1"""1 "TI -.,--,-, ,,-r", "T, -- Represents the upper
GPRINT ·OS1448BF48140S" 4-dot pattem

I I I I I I I Represents the lower
4-dotpattem

I Uppe' 4 dot'

l Lower 4 dots

I

Using format 2, GPRINT 8;20;72;191 ;72;20;8 produces the same dot
pattern.
Specify a semicolon (;) at the end of the string to automatically move
the cursor to the next position.

In format 2, the vertical 8-dot pattern is specified using a hexadecimal
or decimal value. A "weighf is assigned to each dot in the vertical
8-dot pattern, as shown below.

-80 - 128
---40 - 64
_20

Weight of each dot --- 32
--10 -16 Weight of each dot
_ 8

(hexadecimal) - 8
(decimal)

4 --- 4 - 2 --- 2 -- 1 -- 1

Specify the dot pattern with a numeric value equal to the sum of the
"weights" of the dots to be displayed. The value may be any number
between 0 and 255.

In format 3, the previously specified and displayed pattern is displayed
without modification.

The dot pattern specified in the GPRINT command will be displayed
beginning with the 8 dots on and above the display starting point
specified by the GCURSOR command.

Note:

If the GPRINT command is terminated with U ; ", a subsequent GPRINT
command takes effect from the next cursor position (the" ; "
concatenates the commands). If the GPRINT command is terminated
with" : " or by pressing I ENTER I, the horizontal position returns to O.

143

EXAMPLE:
10: AA$ = "081448BF481408"
20: GCURSOR (30,30)
30: GPRINT AA$;AA$;AA$

r

~ --

- .-
8 dots '

GRAD
FORMAT: GRAD

Abbreviation: GR.
See Also: DEGREE, RADIAN

PURPOSE:

The 8 dots above and Including the
display starting point (30.30) specified
by the GCURSOR command are used
to display the first value given in
GPRINT.

Changes the form of angular values to gradient form.

REMARKS:
There are three forms for representing angular values: decimal
degrees, radians, and gradient. These forms are used in specifying the
arguments to the SIN, COS, and TAN functions and in returning the
results form the ASN, ACS, and ATN functions.

p
o

The GRAD function changes the form for all angular values to gradient
form until DEGREE or RADIAN is used. Gradient form represents
angular measurement in terms of percent gradient, i.e., a 450 angle is
a 50 percent gradient.

144

HEX$
FORMAT: HEX$ expression

Abbreviation: H.
See A/so:

PURPOSE:
Converts a decimal number into its hexadecimal character string
equivalent.

REMARKS:
The value of the expression must be in the range of -9999999999 to
9999999999. The resulting hexadecimal character string will be up to
1 0 digits long.

EXAMPLE:
C$ = HEX$12 + HEX$15

C$ is assigned the character string "CF".

145

p
o

IF ... THEN ... ELSE
FORMA T: lline nUmberj l'ine numberj

IF condition THEN :Klabel [ELSE :Klabel]
statement statement

Abbreviation: IF T. EL.
See Also: AND, OR, NOT, XOR

PURPOSE:
Conditionally executes a statement at the time the program is run.

REMARKS:
When the condition of the IF statement is true, the statement following
THEN is executed; if it is false, the statement following ELSE is
executed. When the ELSE statement is omitted and the condition is
false, the statement following THEN is skipped.

If THEN or ELSE is followed by a GOTO statement, either THEN or
GOTO may be omitted (ELSE statement must be included).

Example 1:

IF A<5 THEN C=A:KB:GOTO 50
If A is smaller than 5, then assign the product, A:KB, to C and go to
line 50.

Example 2:
IF B=C+1 GOTO 60 ELSE 100
or
IF B=C+ 1 THEN 60 ELSE 100

If B equals C+ 1, then go to line 60; otherwise go to line 100.

146

p The condition (e.g. A<5) of the IF statement can be any relational
expression as listed below:

Relational expression Description
00 = xx Equal to
00 > xx Greater than

00 >= x x No less than
00 < xx Less than

00 <= xx No greater than
OO<> xx Not equal to

Note: 0 0 and x x represent expressions (5*4, A, 8, etc.).

More than one relational expression can be linked with the logical
operators '':+:'' or "+".
For example:

IF (A>5):K(B>1) THEN
If A is greater than 5 and B is greater than 1, the statement following
THEN is executed. Logical operator "AND" may be used in place of ":K".

IF (A>5)+(8> 1) THEN
If A is greater than 5 or B is greater than 1, the statement following
THEN is executed. Logical operator "OR" may be used in place of "+".

Using Character Strings in Relational Expressions
The magnitudes of character strings can be compared when used in a
relational expression of an IF ... THEN ... ELSE statement. The
magnitudes of character codes are compared. For example, characters
A, B, and C have codes 65,66, and 67, respectively. So A is smaller
than B, and B is smaller than C.

EXAMPLE:
10: INPUT"CONTINUE?";A$
20: IF A$="YES" THEN 1 0
30: IF A$="NO" GOTO 60
40: PRINT "YES OR NO, PLEASE"
50: GOTO 10
60:

Note:
Whenever a variable name is to be followed by a statement, be sure to
insert a space between them, for example:
100 IF A=EL., THEN 200

t..... A space is needed.
Pay special attention to this when you use the IF, FOR, ON ... GOTO, or
ON ... GOSUB command.

147

INIT
FORMAT: 1.INIT "E:?K" !ENTER!

2. INIT HE:" ! ENTER!

Abbreviation: INI.
See Also:

PURPOSE:
Initializes the RAM disk E.

REMARKS:
Format 1 specifies the data file area on RAM disk E, which allocates a
section of the memory in the Card to store programs and data as if
they were stored in external storage.

Specify the size (?) of the data file area in kilobytes. The allowable
size for RAM disk E is 2 to the size of the free area.

When this command is executed, the system asks if you are sure you
want to delete the existing contents of the RAM disk. If yes, press
CD . If no, press CKJ . When [TI is pressed, the contents of
the RAM disk file area are not affected.

When the size of the current disk area is changed, its contents will be
cleared.

If H0 K" is specified in format 1, the command clears the file area and
cancels area definition.

In format 2, the current RAM disk area is initialized.

148

D INKEY$
FORMAT: INKEY$

Abbreviation: INK.
See Also:

PURPOSE:
Gives the specified variable the value of the key pressed while the
INKEY$ function is executed.

REMARKS:
INKEY$ is used to respond to the pressing of individual keys without
waiting for the ! ENTER I key to end the entry.

See the following table for a list of applicable keys and the characters
that are returned.

The INKEY$ command reads the I SHIFT I or I CAPS I key if it is pressed.
Thus, it is unable to read the function or symbol key that is pressed
following either of these keys.

EXAMPLE:
5: CLS: WAIT 60

10: IF INKEY$< > •• THEN 10
15: A$=INKEY$
20: B=ASC A$
30: IF B=O THEN 10
40: IF B ...

Lines 40 and beyond contain tests for the key and the actions to be taken (for example:
60: PRINT B).

149

p

INKEY$ Character Code Table

"-

UJ < >

Cl

Cl D UJ
-' :2 (.) a: a:

<I: 0 0
(.)

==
:I:

al

"- ffic..>
-'

<I: "- al
0 ~c :2

en

>-"" en
m :S~ z ~ ~

Cl..al <I:

UJ"" '-' § a: "- en z D- C!) Dc..> U5 "0 Z Z ex> OW UJ c:: U5 0 ~ x -' 0
::l:G <I: <I: '" (.) w -' al

r-

<D

LO D- O a: en I- ::l > 3 x >- N

..... <C co U Cl UJ "- C!l X - -,

C') 0 ~ N M U') <D r- ex> m

(.)

'" D- ~ X en

en en
D-

~ ~ <C
(.)

t;: en , 0 r co
en

~ 0 ~ (\j (')

"'"
II) <D r- eo 0> <I:

• The 00 key functions as a Break key.
• Codes &H80-&H93 are transparent guide key codes.

150

i 0
-' :2 UJ
I- UJ

~ :2

:2
(.) I

ci: ::2

>- ~ ~ ~

:..:: -' ::2 z

1/

+ I

.A T •
w a:
'-' UJ

• I-
'-' z w

m () a w

(.)

-'
<I:
(.)

+
:2

C!)
UJ
Cl

i
-'
UJ
Cl

0

~.

•

u.

INPUT
FORMAT: 1. INPUT variable [,variable]

2. INPUT "prompt string", variable [[,"prompt string1,
variable]

3. INPUT "prompt string": variable [[,"prompt string1:
variable]

Abbreviation: I.
See Also: INPUT#, INKEY$, READ, LOCATE

PURPOSE:
Allows entry of one or more values from the keyboard.

REMARKS:
When you want to enter different values each time a program is run,
use INPUT to enter these values from the keyboard.

Format 1 displays symbol "7" to prompt data entry. If data is entered
and the I ENTER I key is pressed at this prompt, the system assigns the
data to the variable and resumes program execution.
If more than one variable is specified, the data prompt is repeated the
corresponding number of times.

During data prompt, format 2 displays the character string enclosed by
double quotes (" ") as entry guidance. The guidance disappears when
data is entered.

Format 3 also displays entry guidance during data prompt, but the
entered data appears following the entry guidance, which does not
disappear.

p

Formats 1, 2, and 3 may be concurrently used in one INPUT statement:
INPUT "A=";A,B,·C=?",C

The type of the variables given in the INPUT statement must match the
type of input data. Assign string data to string variables, and numerical
data to numerical variables. If "ABC" is entered in response to a
numerical entry prompt, the values assigned to variable ABC is
assigned. This allows you to enter such values as SIN30.

151

If the start position is specified using the LOCATE statement before
excecuting the INPUT statement, the prompt string or ? will be
displayed at the specified location.

EXAMPLE:
10: INPUT A
20: INPUT "A=";A
30: INPUT "A=",A
40: INPUT "X=?";X,"Y=?";Y

[10] Puts a question mark at the left margin.
[20] Displays "~" and waits for data to be entered.
[30] Displays "A=". When data is entered, "A=" disappears and the data is displayed

starting at the left margin.
[40] Displays "X=?" and waits for the first entry. After I ENTER I is pressed, "Y=?" is

displayed at the left margin.

152

INPUT$
p
o

FORMAT: 1. INPUT$ (character count)
2. INPUT$ (character count, # file number)

Abbreviation: 1.$
See Also: INPUT#, OPEN, PRINT#

PURPOSE:
Allows input of a character string with the specified number of
characters from the keyboard or a file.

REMARKS:
Up to 255 characters can be specified as character count.

Format 1 is used to enter a character string with the given number of
characters from the keyboard. Execution automatically proceeds to the
next statement after a string has been entered.

The I. ' I or I ENTER I key is also counted as one character.
A symbol (e.g. I 5MBL I W W 1; four keystrokes) is counted as one
character.
When entering a string from the keyboard, the OPEN command need
not be executed.

Format 2 reads a character string with the given number of characters
from the file with the given file number. An error occurs if the specified
file has not been opened.
The INPUT$ command is valid only for a file which has been opened
in the INPUT mode.

Numerals are treated as characters when read.

Since the INPUT$ command reads the specified number of characters,
the data stored in the file must have the proper format readable by the
INPUT$ command.

EXAMPLE:
100: A$=INPUT$ (5, #5)
110: AB$=INPUT${20, #5)

This program reads 5 characters into variable A$ and then 20 characters into variable
AB$ via buffer No.5.

153

Values returned by INPUT$ (from keyboard):
Byte 1

~ 0 1 2 3 4 5 6 7 8 9 A B C 0 E

0 SpacE 0
r. p , ,..

E ~ A 00 * IlU P '"
a a

"
I~ 11

1 , 1 ,~ Q a q U ;}? 1 E p iI f3 11

2 " 2 B R b fE 5 t ~ r INS r e 6

3 # 3
,..

S a 0 1i ~ 00 L. c ~ 0. 1(.... 1"'1

4 $ 4 D T d t
.. T If m E a 0 n

5 % 5 E U e u a. 0 N 0 " ~ <)

6 0 6 F V f
D

Q !2: 6 t m IX v .3. iJ.

7
,

7 G 'AI Q It ~ r1 g 9
,.-

I,~ U M '-

8 BS (8 H X h A
.

E rn (P X e v 6 ~ J

9 .J) 9 I Y .. n - 0
..

~ 8 1 Y e a

A ~~ · J '" U '" A

Q · L. J z e A 0 x

B + · K [k ("i ct !.- 5 - g 0 , 2

C < L \ 1 • A £ !.- ri' -
" C·CE ~ , • 1 4 CD ..

0 ~ - M] \ " 0 - ¢ ENTER = m 1 f • -7)

E • > N "" -.,- ~
..,

1:.
. . n IV M ~" ~ E

F ~ / ? · 0 - 0 DEL r. f ,u, ". ,\
// 1· - <> n

* &HOO indicates the beginning of a 2-byte code,

154

F
:;;

±

~

~

r
J
+

--
•

·

·
If 1

n

2

•

The key operations listed in the following table cause INPUT$ to return
the following codes in the 2nd byte following &HOO:

Byte 2

cz. 0 1 2 3 4 5 6 7 8 9 A B

OFF CARD
SHIFT MODE PlAY SHIFT SHIFT

0 1\ CHECK BACK DRG PLAY
BACK

WORLD
SHIFT ANS SHIFT SHIFT

1 V BASIC BASIC nl

2
SHIFT LOCAL STAT (

SHIFT SHIFT

AlARM STAT -tOEC

3
SlCIFT AER)

SHIFT SHIFT
RlllCTION AER --+HEX

4
SHIFT SHIFT

OPTION CALENONI

5
SlCIFT SIN SHIFT

SCIfEOlILE ASN

6
SHIFT cos SHIFT

TEL 1\ ACS

SHIFT SHIFT SHIFT
7 4+->8 MEMO V TAN ATN

LINE

8
SHIFT SHIFT SHIFT EXP SHIFT
ANN MARK:« CALC K

9
AlARM SHIFT SHIFT IN SHIFT
EVENT SECRET CARD e'

A
SHIFT LOG SHIFT

WORLD 10'

B CALEN SHIFT yX SHIFT
DAR LOCAL x.ry

C
SHIFT SCHE r SHIFT
CAlC DULE 3r
DATA

D R·CM TEL ;i SHIFT
~xy

E M- MEMO Vx SHIFT
--tAl

F M+ CALC -+OEG
SHIFT
-+O.MS

Note:
ALARM EVENT (&H29) is the code returned when the schedule alarm sounds
while waiting for a key to be pressed when the INPUT$ command is being
executed.

155

INPUT#
FORMAT: INPUT# file number, variable, variable, ... , variable

Abbreviation: 1.#
See Also: OPEN, PRINT#

PURPOSE:
Reads items from sequential files on the RAM disk E.

REMARKS:

p
o

The file number is the number given to the file when opened for input
with the OPEN statement. The file number must be a number specified
in an OPEN statement. If the device name is specified as COM in the
OPEN statement, it is not necessary to open for input with the OPEN
statement.

Specify variables as follows:
• Fixed variables (A, X, etc.)
• Simple variables (CD, EF$, A#, 8$, etc.)
• Array elements (8(10), C$(5,5), etc.)

An error occurs if the file contains less data than the number of
specified variables. If the file contains more data, the rest of the data is
ignored.

The data and variables must be of the same type (e.g., numeric values
must be assigned to numeric variables, single-precision values to
single-precision variables, double-precision values to double-precision
variables, etc.)

Use a comma (,) , space (&H20), CR (&HOD), LF (&HOA), or CR + LF
as a delimiter when data are read into numeric variables. Spaces
preceding data are ignored.

Use a comma (,), CR, LF, or CR + LF as a delimiter to read data into
character variables. Spaces preceding data are ignored. If a double
quotation mark appears at the beginning of data, data is read up to the
next double quotation mark. A comma in a character string enclosed by
double quotation marks is assumed not to be a delimiter.

156

EXAMPLE:
10: A$ = "AS" + CHR$ 34 + "CDEn + CHR$ 34
20: S$ = CHR$ 34 + "CD,EF" + CHR$ 34
30: PRINT A$
40: PRINT B$
50: OPEN nE:ABC.DAT" FOR OUTPUT AS #2
60: PRINT #2,A$;",";B$
70: CLOSE
80: OPEN "E:ABC.DAT" FOR INPUT AS #2
90: INPUT #2, C$, D$

100: PRINT C$
110: PRINT D$
120: CLOSE:END

Execution
RUN I EMlER I AS"CDE"

"CD,EF"
AB"CDE"
CD,EF

157

KEY (n) ON/OFF
FORMAT: 1. KEY (key number) ON

2. KEY (key number) OFF

Abbreviation: KE. (n) ON/OFF
See Also: ON KEY GOSUB

PURPOSE:
Enables/disables interrupt requested from a transparent guide key.

REMARKS:

P
D

Format 1 enables an interrupt from the transparent guide key with the
given key number. The execution of interrupt service is started with the
line specified by the ON KEY GOSUB command. The functions printed
on the key panel are ignored.
A number from 1 through 20 is allowed as the key number. The key on
the upper left corner of the key panel has key number 1, that on the
upper right corner has ky nurber 4, and that on the lower right corner
has key number 20. The 2ndF key (key number 5) cannot be used for
key interrupt on the OZ-707. To use all transparent guide keys for key
interrupt, see the OZ-794A manual.
Format 2 disables the interrupt from the key with the given key
number. The key returns to its original function, printed on the key
panel.

This command is for one key only. Use a separate command for each
key.

EXAMPLE:
See the example for the ON KEY GOSUB command.

158

KEY 0
FORMA T: KEY 0 {"c~aracte~ string"}

, stnng vanable

Abbreviation: KE.
See Also:

PURPOSE:
Sets the given character string into the key buffer.

REMARKS:

p
o

KEY 0 command first clears the key buffer, then sets the given
character string into it. Up to 32 bytes of string data can be stored in
the key buffer. Characters that cannot be entered directly from the keys
can be given with the CHR$ command.

EXAMPLE:
10: KEY 0, "ABC"
20: INPUT A$
30: KEY 0, "SHARP" + CHR$ &HOD + "12345" + CHR$ &HOD
40: INPUT B$
50: INPUT C

(The string on line 30 has a length of 12 bytes. CHR$ &HOD corresponds to the
I ENTER I key.)

159

KILL
FORMAT: KILL "E:filename" I ENTER I

Abbreviation: K.
See Also: SAVE, SET

PURPOSE:
Oeletes a file on the RAM disk E.

REMARKS:
Specify the device name and filename. The extension may be omitted
if it is blank.

When filenames are displayed using the FILES command, files can be
deleted by specifying the file with the rn or rn key and pressing
the IT] and I ENTER I keys.

An error occurs if the specified file does not exist, or is open.
An error occurs if the file attribute is UP".
Change the attribute to "~" using the SET command to delete a file.

EXAMPLE:
KILL "E:PR01 .BAS"

Deletes the file PR01 .BAS on RAM disk E.

160

D LEFT$
FORMAT: LEFT$ ("string",expression)

Abbreviation: LEF.
See Also: MIO$, RIGHT$

PURPOSE:

p
o

Returns the specified number of characters from the left end of a given
string.

REMARKS:
LEFT$ returns the number of characters specified by the expression
from the left end of the given string.
For example, if A$="ABCO", LEFT$(A$,3) returns the leftmost 3
characters, "ABC".

161

LEN
FORMA T: LEN "string"

Abbreviation:
See Also:

PURPOSE:
Returns the number of characters in a string.

REMARKS:
The number of characters in the string includes any blanks or
non-printable characters such as control codes or carriage returns.

EXAMPLE:
10: INPUT "ENTER A WORD";A$
20: N=LEN A$
30: PRINT "THE WORD LENGTH IS";N
40: END

RUN
ENTER A WORD CHERRY
THE WORD LENGTH IS 6

[10] Prompts for a word. In this example, the user enters "CHERRY".
[20] Finds the length of the word.
[30] Prints out the answer.

162

P
D LET

FORMA T: 1 . LET numeric variable = expression
2. LET string variable = string

Abbreviation: LE.
See Also:

PURPOSE:
Used to assign a value to a variable.

REMARKS:
LET assigns the value of the expression to the designated variable.
The type of the expression must match that of the variable; i.e. only
numeric expressions can be assigned to numeric variables and only
string expressions can be assigned to string variables.

The LET command may be omitted in all LET statements.

163

p
o

LFILES
FORMAT: LFILES l"lE:] [filename]'11 ENTER I

Abbreviation: LF.
See Also: FILES

PURPOSE:

o

Prints out the names and attributes of the specified file(s) stored on the
RAM disk E.

REMARKS:
If no device name is specified, the last device name used will be
assumed. If no filename is specified, all files on the specified device
will be printed. If neither device nor filename is specified, all files on
the last device used will be printed.

Specify a particular filename to print out the name and attributes of that
file only. Do not include a filename if you want to print out the names
and attributes of all files on disk.

A filename must always be followed by a file extension. Printout
appears as "filename.ext attribute." (See the SAVE and SET
commands.)

Wildcards (:t:: and ?) can be used to specify filenames.

164

LINE
FORMAT: LINE [(expression 1, expression 2)] - (expression 3,

expression 4) ['(~IJ [,expression 5] ['{:F}J
Abbreviation: LIN.
See Also: GCURSOR, PSET

PURPOSE:
Used to draw a line between two specified points.

REMARKS:
LINE is used to draw a line from the coordinates specified by
(expression 1, expression 2) to the coordinates specified by
(expression 3, expression 4).

Example:
L1NE(O,O) - (95,63)
This statement draws a diagonal line from the upper left corner to
lower right corner of the screen.

p
o

The values of expressions 1 through 4 should be within the range of
-32768 to 32767. To specify points within the screen, use the following
range of values:

Expressions 1 and 3: ° to 95
Expressions 2 and 4: 0 to 63

No error occurs if coordinates outside the screen are specified,
provided that the values of the expressions are within the range of
-32768 to 32767. In this case only the portion of the line within the
range of the screen will appear.

(Expression 1, expression 2) may be omitted. If omitted, a line is drawn
from the origin (0, 0) or from the point specified by (expression 3,
expression 4) used in a previous LINE statement.

165

Example:
5: CLS

10: LINE (10,0) - (95,32)
20: WAIT:LlNE - (40,63)

Note:
Since the screen is made up of a matrix of dots, a diagonal line may
appear as a staircase, and curves may not appear as complete curves.

Options 8, R, and X are used to set, reset, or reverse the specified
line on the screen.
S: Draws a line while activating the corresponding dots on the screen

(set).
R: Draws a line while deactivating the corresponding dots on the

screen (reset). This option is useful to draw a line in reverse video
or to erase an existing line.

X: Draws a line, activating the corresponding dots if they are inactive,
or deactivating the corresponding dots if they are already active
(reverse).

The default parameter is S.

Expression 5 is used to specify the type of line by a value from 0 to
65535. For example, if the value of expression 5 is 5503 (&H157F), the
following line is drawn:

1IIIIIIII ttltQ
16 dots The same dot pattern appears repeatedly to draw

a dotted line.

Binary representation of 5503 (&H157F) is:
0111111100010101

If you compare this bit pattern with the dot pattern above, you will
notice that the dots corresponding to "one" bits are activated while
those corresponding to "zero" bits are not. Thus, the type of line is
determined by the binary 16-bit pattern of the value of expression 5. If
the value is zero, no line appears; and if it is 65535 (&HFFFF), a solid
line is drawn. A solid line is also drawn if expression 5 is omitted.

166

If option R is specified, the dots corresponding to "one" bits are
deactivated on the screen; if option X is specified, the status of the
dots corresponding to "one" bits are reversed.

Options Band BF are used to draw a rectangle whose opposite
corners are specified by (expression 1, expression 2) and (expression
3, expression 4).
Option B is used to draw a line rectangle.
Option BF is used to draw a solid rectangle.

EXAMPLE:
10: CLS : WAIT 0
20: AA$ = "081448BF481408"
30: GCURSOR (30,35)
40: GPRINT AA$;AA$;AA$
50: Llt-IE(2,O)-(90,63),&HF18F,B
60: LlNE(6,2)-(86,61),X,BF
70: GOTO 60

167

LIST
FORMA T: 1. LIST I ENTER I

2. LIST line number I ENTER I
3. LIST *Iabel I ENTER I

Abbreviation: L.
See Also: LLlST, PASS

PURPOSE:
Displays a program.

REMARKS:
Valid only as direct input in the PRO mode.

In format 1, the program is displayed from its first line until the display
is full.
In format 2, the program is displayed from the specified line number

until the display is full. Use the [YJ key to advance to the next line in
the list. If the line for the specified number does not exist, the program
will be displayed from the line with the next largest number that does
exist.

In format 3, the program is displayed from the line with the specified
label until the display is full.

If a password has been set, the LIST command is ignored.
An error will occur if a lKlabel is specified which does not exist in the
program or a line number is specified which is past the last line
number in program.

168

o LLIST
FORMA T: 1. LLIST I ENTER I

2 LLIST {line number} I ENTER I
. lKlabel

3. LLIST [line number 1],[line number 2] I ENTER I

Abbreviation: LL.
See Also: LIST, PASS, OPEN

PURPOSE:
Prints out a program on the optional printer.

REMARKS:
Valid only as direct input in the PRO or RUN mode.

When the serial I/O interface has been opened using the OPEN
command, the LLIST command outputs the program to the serial I/O
interface terminal.
To return the program print command to the printer (CE-50P), execute
the CLOSE command.

Format 1 prints or sends all of the programs in memory.

o

Format 2 prints or sends only the program line for which the number or
label is specified.
Format 3 prints or sends the statements from line number 1 through
line number 2. There must be at least two lines between the numbers.

Either line number 1 or line number 2 may be omitted. If line number 1
is omitted, the program listing is printed from its first line through line
number 2. If line number 2 is omitted, the program listing is printed
from line number 1 through the end of the program.

If the line with the line number given in format 2 does not exist or the
lines with line numbers 1 and 2 given in format 3 do not exist, the
nearest larger numbers are assumed.

If a password has been set, the LUST command is ignored.

169

LOAD
FORMAT: LOAD ["d:filename" [,R]] 1 ENTER I

d: E,PACOM,CAS,COM

Abbreviation: LOA.
See Also: SAVE, CHAIN, MERGE, LOAD?

PURPOSE:
Loads a BASIC program.

REMARKS:
LOAD loads a program with the specified filename. An error occurs if
the program area is exceeded as a result of loading of a program. In
such a case, clear unnecessary variables from the data area.
If program filenames have been displayed with the FILES command,
the desired program can be simply loaded by first choosing it with the rn or W key, then entering CD 1 ENTER I.

If all options are omitted, the program is loaded through the serial 1/0
port.
The file extension may be omitted only it it is ".BAS".

o

When the device name (d:) is PACOM, CAS, or COM, only ASCII code
data is valid.

If a load error occurs, a program written in intermediate format will not
be loaded at all, but a program written in ASCII format is loaded to the
line just before the line where the error occurred.

Specify ",R" to run the program as soon as it is loaded.

While a program is being loaded, all tiles are closed, and all values or
variables specified for the USING, ON ERROR GOTO, WAIT,
LOCATE, ERL, and ERN commands are cleared.

170

Up to 256 bytes of program code can be loaded at a time. An error
occurs if no delimiter is encountered before loaded data exceeds 256
bytes.
When a serial 1/0 device is used for loading, delimiters and the
end-of-file code may be set with the OPEN command. (If no end-of-file
code was received, use the 00 key to stop loading.)

When a delimiter is received, the computer translates the loaded data
into an intermediate format. An error occurs if a single line exceeds
256 bytes or the first character of a line is not a numeral (line number).

LOAD?
FORMAT: LOAD? ["d:filename"] I ENTER I

d: E, PACOM, CAS, COM

Abbreviation: LOA.?
See Also: LOAD

PURPOSE:
Compares a program saved on a device with one stored in memory.

REMARKS:
LOAD? compares the program with the given filename with the one in
memory. An error occurs if a mismatch was found during comparison.

If all options are omitted, LOAD? compares the program read from the
serial 110 port with the one in memory.
The file extension may be omitted only if it is ".BAS".
When the device name (d:) is PACOM, CAS, or COM, only ASCII
format data is valid.

Up to 256 bytes of program code can be loaded at a time. An error
occurs if no delimiter is encountered before loaded data exceeds 256
bytes.
When a serial 1/0 device is used for loading, delimiters and the
end-ot-file code may be set with the OPEN command. (If no end-of-Iife
code was received, use the 00 key to stop loading.)

171

o

LOC
FORMAT: LOC file number

Abbreviation:
See Also: OPEN

PURPOSE:
Returns the current pointer position (logical) in a file.

REMARKS:

P
D

The LOC command returns the number of records read or written since
the file with the specified number was opened. One record is 256 bytes
long. If the device name is COM, LOC returns the number of data
bytes stored in the 20-character (40-byte) buffer.
An error occurs if a file with the specified number has not been opened.

EXAMPLE:
10: OPEN "E:FILE01 " FOR INPUT AS #2
20: IF EOF(2) THEN 50
30: INPUT #2,N
40: GOTO 20
50: M=LOC(2)
60: PRINT "THE FILE HAS";M;"RECORDS·
70: CLOSE #2
80: END

172

LOCATE
FORMAT: 1. LOCATE [expression 1] [,expression 2]

2. LOCATE

Abbreviation: LO.
See Also: CLS, INPUT, PRINT, PAUSE, GCURSOR, WIDTH

PURPOSE:
Specifies the display start position in character units.

REMARKS:

p
o

Specifies the display start position in units of a character position for
the contents displayed by the PRINT command, PAUSE command, etc.

When WIDTH,S has bee.n specified, the display position is specified
as follows using format 1: Horizontal position (specified by expression 1)

01234 ··················· 1415
o

7~ ______________ ~

Vertical poSition (specified by expression 2)

When WIDTH,4 has been specified, the display position is specified
as follows using format 1:

o 11
o

2

3~ ______________ ~

If expression 1 is omitted, the horizontal position 0 is assumed.
If expression 2 is omitted, the current cursor vertical position is
assumed.

173

Example:

10: CLS "ABCDE" 20' LOCATE 2,1: PRINT
30~ LOCATE ,2: PRINT "123"

Format 2 clears the display start position.

ABCDE
123
)-

d lIows text to be written to any part of
Using the LOCATE com~an ~ . xt exce t where characters are
the display wit~out affectlnh

g ~~~I~~~emand tt clear the whole display.
directly overwntten. Use t e

d th limits of the display, the display
If the number of characters hexce~ers ~ven if the display start position
is scrolled to show all the c arac ,
was specified with the LOCATE command.

174

f

d

LOF
FORMAT: LOF file number

Abbreviation:
See Also: OPEN

PURPOSE:

Returns the size of the specified file.

REMARKS:

The LOF command returns the size of a file with the specified file
number. The actual size of t~e file is displayed in bytes.
If the device name is COM, this command returns the byte count
remaining in the 20-character (40-byte) buffer.

An error will occur if the specified file is not open.

RAM disk E is used in units of 256 bytes; the total size of all files will
not be equal to the total used RAM disk area (number of bytes).

EXAMPLE:
10: OPEN "E:FILE01" FOR INPUT AS #2
20: N=LOF(2)
30: PRINT "FILE01 FILE SIZE IN BYTES IS ";N
40: CLOSE #2
50: END

(10] Opens the file FILE01 for input.
[20-30] Finds the size of the file and prints out the value.
[40] Closes the file.

175

p
o

LPRINT
FORMAT: 1 LPRINT {expreSSion} [{expreSSion}] [,]

. string , stnng

2 LPRINT {expreSSion} [. {expreSSion}] [;1
. string , string

3. LPRINT USING "format";

{
eXpreSSion} [{'} {expreSSion}] [{:}]
string ; stnng ,

4. LPRINT

Abbreviation: LP.
See Also: PRINT, USING, OPEN, WIDTH

PURPOSE:
Outputs given data to the printer.

REMARKS:
When the serial 110 interface is opened with the OPEN command, the
LPRINT command outputs the program to the serial 110 interface
terminal. To return the printing command to the CE-50P Printer,
execute the CLOSE command.

p
o

When a comma (,) or semicolon (;) is placed at the end of the
statement, the next LPRINT command in the program will print its data
directly after the data printed by the first LPRINT.

The CE-50P prints in the same format as the display specified with the
PRINT command. If a numerical value fits on one line of the paper, it
will be printed from the right margin. If it does not fit on on~ lin~, it will
be printed from the left margin and continued on t~e follOWing. IIne(s).
Character strings will be printed from the left margin and continued on
the following line(s).

For output to the serial 1/0 terminal, both numerical values and strings
are printed from the left margin.

176

d

Format 2 prints out data in succession from the left margin.
When a semicolon (;) is placed at the end of the statement, the next
LPRINT command in the program will print its data in succession to the
data printed by the first LPRINT.

Format 3 prints out data in the exact format specified in the statement.
Either a comma (,) or semicolon (;) may be used as a separator.
For the format for USING, see the USING command.

Format 4 prints only delimiter codes. If the preceding LPRINT
statement is terminated with a semicolon (;) and unprinted data is left
in the buffer, format 4 prints that data.

MDF
FORMAT: 1. MDF (expression)

2. MDF (expression, threshold number)

Abbreviation: MD.
See Also: USING

PURPOSE:
Rounds up the value of an expression.

REMARKS:
The MDF function rounds the value of an expression to the number of
decimal places specified by the USING command.

MDF is effective only when the number of decimal places is specified
for a value by the USING command.

Format 1 uses the standard default threshold number of 4. This means
that if the first digit of the truncated part is more than 4, one is carried
to the non-truncated part. This threshold number can be specified
using format 2.

177

p
o

MERGE 0

FORMAT: MERGE "[d:} filename" I ENTER I
d: E,PACOM,CAS,COM

Abbreviation: MER.
See Also: LOAD, CHAIN

PURPOSE: . .
Loads a program file from the specified device and merges it with a
program in memory.

REMARKS: ., d
MERGE retains the program in memory and then loads the specifle

program. VE
The program file to be merged must have ASCII format (see the SA

command).
Note:
When a program in intermediate format is loaded, an abnormal
condition may occur.

If the line numbers overlap, the lines of the specified file replace the
lines of the program in memory. . '
If the device name is omitted, the device name used In the last file
command is assumed. For example, if the last file command is
FILES"E:", RAM disk E is assumed as the device name.

An error occurs if the program overflows the program area as a result
of a MERGE command. Clear unnecessary variables, then try MERGE

again.

178

EXAMPLE:

Program in memory
10: INPUT A, B

Program to be merged (ASCII format)
10: INPUT A, B, C

15: PRINT A, B 20: S .. (A + B + C)/2
20: C .. SOR (A * A + B * B)
25: PRINT C

30: AREA .. SOR (S * (S - A) * (S - B)
* (S - C))

30: END 40: PRINT AREA
50: END

Program after merge
1 0: INPUT A, B, C
15: PRINJ A, B
20: 5 = (A + B + C)/2
25: PRINT C
30: AREA = SOR (5 * (S - A) * (5 - B) * (S - C))
40: PRINT AREA
50: END

The contents of lines 1 0, 20, and 30 are replaced with those of the same lines
of the loaded program.

MID$
FORMAT: MID$(string,N,M)

Abbreviation: M.
See Also: LEFT$, RIGHT$

PURPOSE:
Returns a string of M characters from inside a string starting from the
Nth character in the string.

REMARKS:

p
o

If N is greater than the number of characters in the string, a null string
is returned. If N is less than 1, an error occurs. M must be in the range
of 0 to 254 and N in the range of 1 to 254. Fractions will be truncated.

179

NAME
FORMAT: NAME "E:old filename" AS "new filename" I Etm:R I

Abbreviation: NA.
See Also:

PURPOSE:
Renames files on the RAM disk E.

REMARKS:
The NAME command renames the disk file "old filename" as "new
filename" on the RAM disk.

An error occurs if "old filename" does not exist, or a file with "new
filename" already exists. An error occurs if "old filename" is protected
with the UP" (write-protection) function. An error occurs if "old filename"
is open.

The extension can be omitted if it is blank.

EXAMPLE:
NAME "E:OLDNAM" AS "E:NEWNAM"

Names file OLDNAM on the RAM disk E as NEWNAM.

NEW
FORMAT: NEW I ENTER I

Abbreviation:
See Also: CLEAR, PASS

PURPOSE:
Clears existing programs and data.

REMARKS:
The NEW command clears all programs and data that are currently in
memory. (Programs with passwords cannot be cleared.)

180

o

o

j

ON ERROR GOTO
FORMAT: 1 ON ERROR GOTO {line number}

. *Iabel

2. ON ERROR GOTO 0

Abbreviation: O. ERR. G.
See Also: ERN, ERL, RESUME

PURPOSE:
Sets up an error trapping routine.

REMARKS:
When the error trap function is enabled, control is transferred to the
error routine if an error is detected. An error message is not displayed.

Within an error routine, control can be branched depending on the
value of ERN and ERL. The routine is terminated by the RESUME
command.

Format 2 clears declaration of error trapping. Declaration of error
trapping is also cleared in any of the following cases:
(1) RUN command is executed.
(2) The power is turned off.
(3) A program is loaded.

The program stops executing if an error occurs within an error routine.

181

p

ON ... GOSUB p

FORMAT: ON expression GOSUB

{
line number 1} {line number 2}
*Iabel 1 ' *Iabel 2 , ...

Abbreviation: O. GOS.
See Also: GOSUB, GOTO, ON ... GOTO

PURPOSE:
Executes one of a set of subroutines, depending on the value of a
control expression.

REMARKS:
When ON ... GOSUB is executed, the expression between ON and
GOSUB is evaluated and reduced to an integer. If the value of the
integer is 1, control is transferred to line number 1 or *label 1 in the
list, as in a normal GOSUB. If the expression is 2, control is
transferred to line number 2 or *Iabel 2 in the list, and so forth.

Note:
Be sure to place a space just before the GOSUB command. Otherwise
it may be regarded as a variable.

If the expression is zero, negative, or larger than the number of line
numbers provided in the list, no subroutine is executed and execution
proceeds with the next statement or line of the program.

An error occurs if the value of the expression is -32769 or less or
32768 or more.

Use commas (,) to separate line numbers or *Iabels in the list.

182

EXAMPLE:
10: INPUT A
20: ON A GOSUB 100,200,300
30: END

100: PRINT "FIRST"
110: RETURN
200: PRINT "SECOND"
210: RETURN
300: PRINT "THIRD"
310: RETURN

An entry of 1 displays "FIRST'; 2 displays ·SECOND"; 3 dIsplays "THIRD". Any other
entry does not produce any display.

183

ON ... GOTO p

FORMAT: ON s· n GOTO {line number 1} {line number 2}
expres 10 *Iabel 1 ' *Iabel 2 , ...

Abbreviation: O. G.
See Also: GOSUB, GOTO, ON ... GOSUB

PURPOSE:
Transfers control to one of a set of locations, depending on the value
of a control expression.

REMARKS:
When ON ... GOTO is executed the expression between ON and GOTO
is evaluated and reduced to an integer. If the value of the integer is 1,
control is transferred to line number 1 or :l<Iabel 1 in the list. If the
expression is 2, control is transferred to line number 2 or *Iabel 2 in
the list, and so forth.

Note:
Be sure to place a space just before the GOTO command. Otherwise it
may be regarded as a variable.

If the expression is zero, negative, or larger than the number of line
numbers provided in the list, execution proceeds with the next
statement or line of the program.

An error occurs if the value of the expression is -32769 or less or
32768 or more.

Use commas (,) to separate line numbers or *Iabels in the list.

184

EXAMPLE:
10: INPUT A
20: ON A GOTO 100,200,300
30: GOTO 900

100: PRINT "FIRST"
110: GOTO 900
200: PRINT "SECOND"
210: GOTO 900
300: PRINT "THIRD"
310: GOTO 900
900: END

An entry of 1 displays "FIRSr; 2 displays "SECOND"; 3 displays "THIRD". Any other
entry does not produce any display.

185

ON KEY GOSUB
FORMAT: ON KEY GOSUB {line number 1} {line number 2}

*Iabel 1 ' *label2 , ... ,

4bbrev;ation: O. KE. GOS.

{
line number 20}
*label20

See Also: KEY (n) ON/OFF, ON ... GOSUB, GOSUB ... RETURN

PURPOSE:
)efines the interrupt service line for a transparent guide key.

qEMARK5:
)N KEY GOSUB command passes execution to the line with the line
lumber given by this command when a transparent guide key with the
.ey number given in the KEY (key number) ON command is pressed.

.ine number 1 gives the first line of the interrupt service routine to
vhich execution is passed when transparent guide key 1 is pressed;
ine number 2 gives the line to which execution is passed when
ransparent guide key 2 is pressed, and so on.

Jse commas to separate line numbers. No line numbers need be
;pecified for keys which are not ON, but the comma separator is
lecessary. If guide key n is the highest guide key used, n-1 commas
lre required. Line numbers may also be specified with *Iabels. An
!rror occurs if a specified line was not found.

lince interrupt service is executed in a subroutine, the last line of
Ivery routine must be a RETURN statement.

:XAMPLE:
10: CLS: A=O:WAIT
20: KEY (2)ON :KEY (4)ON
30: KEY (10)ON :KEY (16)ON
40: ON KEY GOSUB ,80"90"""100,,,, .. 110
50: A=A+1
60: WAIT :LOCATE 2,0:PRINT A
70: GOTO 50
80: WAIT 10:LOCATE O,2:PRINT "key 2":RETURN
90: WAIT 10:LOCATE 0,2:PRINT "key 4":RETURN
00: WAIT 10:LOCATE 0,2:PRINT "key10":RETURN
10: WAIT 10:LOCATE 0,2:PRINT "key16":RETURN

186

p

r'

OPEN
FORMAT: 1. OPEN "d:filename" FOR mode AS # file number

d: E, PACOM, CAS

P
D

2. OPEN "baud rate, parity, word length, stop bit, type of
code, delimiter, end-of-file code, XON, shift code"
AS # file number

3. OPEN

Abbreviation: OP.
See Also: CLOSE, OPEN$

PURPOSE:
Opens a file or the serial 1/0 interface for data transfer.

REMARKS:
Format 1 opens the file specified by "d:filename" for use with the
specified file number. Subsequent input/output to the file is
accomplished by referring to the file number.
Formats 2 and 3 allow data to be transferred through the serial 1/0
interface (COM).

The file number must be from 1 to 255.

A maximum of two files on any devices may be opened at the same
time. Only the following device combinations are possible:

E PACOM

E 0 0

PACOM 0 x

CAS 0 x

COM*' 0 0

Note:

CAS COM*

0 0

x 0

x 0

0 x

0 : may be opened at the same time.

x : may not be opened at the same time.

• To open files on the device COM and
another device at the same time. open
the file on the device COM first.

When executing the SAVE, LOAD, CHAIN, or MERGE statement, the
Card opens one file automatically.

In format 1, "mode" specifies the method of access to the file, as
follows:
INPUT
OUTPUT
APPEND

Specifies sequential input from an existing file.
Specifies sequential output to a device or file.
Specifies addition to a sequential file.

187

If OUTPUT is specified using an existing filename, that file is erased
before the new one is created.

An error occurs when using the APPEND or INPUT mode if the
specified file does not exist.
An error occurs when using the APPEND or OUTPUT mode if the
specified file has the UP" attribute set {write-protection: see SET
command}.
An error occurs if an attempt is made to open a file which has already
been opened, or to allocate a file number which has already been
allocated.

Example:
For RAM disk E
OPEN "E:PR01" FOR OUTPUT AS #21
Creates a new file on the RAM disk E named PR01 with file number 21.

In format 2, the following parameters can be selected:
Baud Rate: 300, 600, 1200, 2400, 4800, 9600

Specifies the modulation rate {transfer rate}.
(1 baud = 1 bit/sec)

Parity: N, E, 0
Specifies the type of parity.
N: No parity bit is transmitted nor received.
E: Specifies even parity.
0: Specifies odd parity.

Word Length: 7, 8
Specifies how many bits to be transmitted or received per character.

Number of Stop Bits: 1, 2
Type of Code: A

Always specify A, since only ASCII codes can be sent or received.
Delimiter: C, F, L

Specifies the type of delimiter to indicate the end of data, end of a
program line, etc.
C: Specifies the CR (carriage return) code.
F: Specifies the LF (line feed) code.
L: Specifies the CR code + LF code.

End-of-file Code: &HOO--&HFF
Specifies the end-of-file code used to indicate the end of the
program, etc.
(May be required when using the SAVE or LOAD commands.)

188

XON: N,X
Specifies communication control using XON and XOFF.
N: Specifies no control using XON and XOFF.
X: Specifies control using XON and XOFF.

Shift code: S, N
When the word length is specified as 7 characters, the SO, SI
switching enables transfer of characters whose codes are 128 or
greater.
S: Specifies to switch SO and SI
N: Specifies not to switch SO and SI

Example:
OPEN "COM:1200,N,8,1,A,C,&H1A,N,S" AS #22

1200 Baud rate (1200 baud)
N Parity (none)
8 Word length (8 bits)
1 Number of stop bits (1 bit)
A Type of code (ASCII)
C Delimiter (CR code)
&H1A End-of-file code (&H1A)
N XON (none)
S Shift code (Yes)

The device name "COM:" can be omitted.

The conditions in the example above are set after the batteries have
been replaced or after the RESET button is pressed.

Any condition specified in the OPEN command can be omitted. If
omitted, the current condition remains unchanged.

OPEN "",2"
Only the number of stop bits is changed.

In format 3, all conditions set previously are retained. This format
enables data to be transferred through the I/O interface. File number 1
is always used.

Note:
To open files on the device COM and another device at the same time,
open the file on the device COM first. If the file on another device is
opened first, the files may not be opened properly.

189

OPEN$
FORMAT: OPEN$ I ENTER I

Abbreviation: OP.$
See Also: OPEN

PURPOSE:
Obtains the currently set 110 conditions.

REMARKS:
The currently set 110 conditions are obtained as a character string.

EXAMPLE:
OPEN$I ENTER I
1200,N,B,1,A,C,&H1A,N,S

190

p
o PASS

FORMA T: PASS "character string" I ENTER I

Abbreviation: P A.
See Also: SAVE, LOAD, DELETE, LIST, NEW, RENUM

PURPOSE:
Sets and cancels passwords.

REMARKS:
Passwords are used to protect programs from listing or editing by
unauthorized users. A password consists of a character string that is
no more than 8 characters long. The 8 characters must be
alphanumeric characters or symbols. The character string cannot be a
null string.

Once a PASS command has been given, the programs in memory are
protected. A program protected by a password cannot be examined or
modified in memory. It cannot be saved to tape or disk, or listed with
LIST or LLiST. Nor is it possible to add or delete program lines. The
only way to remove this protection is to execute another PASS
command with the same password.

If a password is set in the program to be loaded, that password is also
set within the Card. If not, no password is set within the Card.
If PASS is executed when no program is in the Card, an error occurs
and no password is set.
A password-protected program is protected against the NEW or
DELETE command as well.

Press I ENTER I immediately after the password.
Writing characters or symbols after the password results in an error
and the password cannot be canceled.

Example:
PASS "ABCDEFG":A = 123 I ENTER I ~ An error occurs.

EXAMPLE:
PASS"SECRET·IEN~RI

Establishes the password ·SECRET" for the program in memory.

191

o

PAUSE
FORMAT: 1. PAUSE {expreSSion} [{expreSSion}] []

stnng , stnng ,

2. PAUSE {expreSSion} [. {expreSSion}] [.J
stnng , stnng ,

3. PAUSE USING "format";

4. PAUSE

Abbreviation: PAU.
See Also: PRINT

PURPOSE:

{ eXpreSSion} [{'} {expreSSion}] [{,}]
string ; stnng ;

Briefly shows information on the display.

REMARKS:
PAUSE is used to display prompt information, results of calculations,
etc. The operation of PAUSE execution of the program continues
following a preset interval of about .85 seconds.

This command is provided to ensure compatibility with other PC
models. It is recommended that you replace it with the PRINT
command wherever possible.

For the format with the USING command, see the USING command.

192

p
o POINT

FORMAT: POINT (expression 1, expression 2)

Abbreviation: POI.
See Also: GCURSOR, PSET, PRESET

PURPOSE:
Returns the status of a specified dot.

REMARKS:

p
o

POINT returns 1 if the dot specified by coordinates (expression 1,
expression 2) is set, and returns zero if it is cleared. If the specified dot
is outside the display boundaries, the command returns -1 .

The values of expressions 1 and 2 may be within the range of -32768
to 32767. A dot within the display boundaries is addressed only if the
value of expression 1 is 0 to 95 and that of expression 2 is 0 to 63.

EXAMPLE:
10: CLS : WAIT 3:A = 45
20: LINE (20,10) - (20,41)
30: LINE (80,10) - (80,41)
40: PSET (A,26)
50: B = POINT (A + 1,2S)

SO: IF B THEN 150
70: PSET (A + 1,26)
80: PRESET (A, 26)
90: A = A + 1

100: GOTO 50
150: B = POINT (A - 1,26)

1S0: IF B THEN 50
170: PSET (A - 1 ,26)
180: PRESET (A,26)
190: A = A - 1

200: GOTO 150

Draws two vertical lines.

Sets a dot between the two lines.
Tests whether the dot on the right
side of the active dot is active or not.
If it is set, go to line 150.
If it is cleared, set it.
Inactivates the dot which was first set.
Increments the coordinate to address
the next dot position.
Returns to line 50.
Tests whether the dot on the left side
of the active dot is active or not.
If it is set, go to line 50.
If it is cleared, set it.
Clears the dot which was first set.
Decrements the coordinate to address
the preceding dot position.
Go to line 150.

Executing this program causes a dot to move back and forth between the two vertical
lines.

193

PRESET
FORMAT: PRESET (expression 1, expression 2)

Abbreviation: PRE.
See Also: PSET, GCURSOR, POINT

PURPOSE:
Clears (resets) a dot at the specified coordinates on the display.

REMARKS:
PRESET clears the dot at the specified (expression 1, expression 2).

P
D

The values of expressions 1 and 2 may be within the range of -32768
to 32767. A dot within the display boundaries is addressed only if the
value of expression 1 is 0 to 95 and that of expression 2 is 0 to 63.

EXAMPLE:
10: CLS
20: LINE (6,0) - (90,63), BF
30: FOR 1=-1 TO 1 STEP 2
40: FOR X = -25 TO 25 STEP 0.5
50: Y = I :I(SQR ABS (25 :I(25 -X :I(X)
60: PRESET (X + 48, Y + 31)
70: NEXT X : NEXT I
80: WAIT: GPRINT

Executing this program draws a circle within a solid rectangule.

194

PRINT
FORMAT: 1 PRINT {expression} [{expression}] [J

. stnng , stnng ,

2 PRINT {expression} [. {expression}] [.J
. stnng , stnng ,

3. PRINT USING "format";

{ eXpreSSion} [{'} {expression}] [{'}]
stnng ; stnng ;

4. PRINT

Abbreviation: P.
See Also: LPRINT, PAUSE, USING, WAIT, LOCATE

PURPOSE:
Displays information.

REMARKS:
PRINT displays prompt information, results of calculations, etc.

P
D

If the start position is specified by the LOCATE statement, the data will
be displayed from the specified location.
If a comma (,) or semicolon (;) is at the end of the statement, the
contents will be displayed continuously.

Format 1 displays as follows:
If the expression is numeric, the value is shown from the right margin
of the display. If it is a string, it is shown from the left margin of the
display.

10: PRINT 1234
20: PRINT "ABCD"

RUN
ABeD
:>

1234

If a numerical value fits on one line of the display, it will be displayed
from the right margin. If it does not fit on one line, it will be displayed
from the left margin and continued on the following line(s}. Character
strings will be displayed from the left margin and continued on the
following line(s}.

195

10: A = 1234: B# = 5#/9: C$ = "ABCDEFGHIJKLMNOPQR":WAIT 200
20: CLS: PRINT "A=",A
30: CLS: PRINT A,C$,B#

RUN I ENTER I
A=

1234

1234
ABCDEFGHIJKLMNOP
QR

5.5555555555555
555556D-01
>

Format 2 displays the data continuously from the left margin of the
display.

Format 3 displays the data by following the specified format.
Refer to the USING command for USING format. Commas (,) and
semicolons (;) will be treated as usual. A USING statement can be
used only once in one PRINT statement.
Example: PRINT USING "&&&&&&&&";"ANSWER=";:PRINT USING

"####.##";5/9
Format 4 displays the previously displayed value as is. (Usually, it is
used together with the WAIT command to retain the current display.)

10: CLS
20: FOR A=O TO 127
30: PRINT CHR$ (A+32);
40: NEXT A
50: WAIT: PRINT

The characters displayed between lines 20 and 40 will remain on the display at line 50.
(An infinite interval is set.)

196

PRINT ~ LPRINT setting
The Card can switch all PRINT commands to function as LPRINT
commands. Connect the printer before executing the following
statement:

Setting: PRINT =LPRINT
Resetting: PRINT =PRINT

Resetting can also be performed by:
• executing the RUN command,
• pressing the I SHIFT II CeCE I keys, or
• turning the power off and then on.

Since the RUN command resets the setting, run the program using the
GOTO command.

197

PRINT#

FORMAT: PRINT# file number {expreSSion} [{'} {expreSSion}] [{'}]
, stnng ; string ;

Abbreviation: P.#
See Also: OPEN, INPUT#

PURPOSE:
Writes values of specified variables into a specified file.

REMARKS:
PRINT# is valid only for a file opened for OUTPUT or APPEND with
the OPEN command. The file number is the number given to the file
when opened.
The mode does not need to be specified when the device name is
COM.

When an array variable (one or two dimensions) has been specified in
the form of "array name(*)", the entire array is written to the file . Its
elements are written in the order of, for example, C$(O,O), C$(O,l),
C$(0,2) C$(1,0) C$(5,5).
It is recommended that the FOR ... NEXT statement be used for writing
array variable data.

When the respective elements of the array are specified, they must be
specified in the form of "B(7)", "C$(5,6)", etc.

When a character or string element is used, it must not be specified
using a comma (,) or semicolon (;):

PRINT#2, "ABC"
PRINT#2,A$

If PRINT#2,"ABC",A$ is executed, no data delimiter is written and
"ABC" and A$ cannot be distinguished.

A numeric value is recorded in such a form that the sign (space when
it is positive), numeric character string, and space appear in that order.
The recording format is shown below:
(1) When a comma or semicolon does not tollow the data, CR(&HOD)

and LF(&HOA) are provided.

198

P
D

Example:

PRINT # 2, - 1.2

PRINT #2, "ABC"

I - I 1 I I 2 I I CR I LF I

I A I B I C ICR I LF I

(2) When a comma follows the data, 20 bytes are occupied. A numeric
value is right justified and a character string is left justified.

Example: PRINT #2, - 1.2,3

I I I I -I 1 I . I 2 I I I 3 I I CRI LFI
~ 20 bytes .1
PRINT #2, "ABC", "DEF"

I A I B I C I I DIE I F I CRI LFI

~ 20 bytes .j
When the character string exceeds 20 bytes, the excess part is written
to the next 20-byte area. The maximum size is 254 bytes.
(3) When a semicolon follows the data, it is stored without spaces.
Example:

PRINT #2, - 1.2;3

I - 11 I . I 2 I I I 3 I ICR I LF I
PRINT #2, "ABC";"DEF"

[I A I B I C I 0 I E l F I CR I LF I

In this case, character strings "ABC" and "DEF" will not be read as separate
strings during an INPUT# command.

When character strings are recorded with commas or semicolons, they
must be read with the INPUT$ command by specifying the exact
format in which they were recorded.

EXAMPLE:
Transmitting data using device name "PACOM"
Sender Receiver
1 0: DIM C (2,3) 10: DIM C (2,3)
20: OPEN "PACOM: DATA" 20: OPEN ·PACOM: DATA"

FOR OUTPUT AS #2 FOR INPUT AS #3
30: FOR 1=0 TO 2 30: FOR 1=0 TO 2
40: FOR J=O TO 3 40: FOR J=O TO 3
50: C(I,J)=I*10+J 50: INPUT#3, C(I ,J)
60: PRINT #2, C(I,J) 60: NEXT J: NEXT 1
70: NEXT J: NEXT 1 70: CLOSE
80: CLOSE 80: END
90: END

After entering RUN I ENTER Ion the receiver, enter RUN I ENTER Ion the sender.

199

PSET
FORMAT: 1. PSET (expression 1, expression 2)

2. PSET (expression 1, expression 2) ,X

Abbreviation: PS.
See Also: PRESET, GCURSOR, POINT

PURPOSE:
Sets or clears a dot at the specified coordinates on the display.

REMARKS:
Format 1 sets the dot at the coordinates (expression 1, expression 2).
Format 2 clears the specified dot if it is set, and sets it if it is cleared.
The values of expressions 1 and 2 may be within the range of -32768
to 32767. A dot on the display is addressed only if the value of
expression 1 is 0 to 95 and that of expression 2 is 0 to 63.

EXAMPLE:
10: CLS :DEGREE
20: FOR A=O TO 600 STEP 3
30: 8= -1 * SIN A
40: Y=INT (8 *32)+32
50: X=INT (Al4)
60: PSET (X, Y)
70: NEXT A
80: WAIT:GPRINT

200

P
D RADIAN

FORMAT: RADIAN

Abbreviation: RAD.
See Also: DEGREE, GRAD

PURPOSE:
Changes the form of angular values to radians.

REMARKS:
There are three forms for representing angular values - degrees,
radians, and gradient. These forms are used in specifying the
arguments to the SIN, COS and TAN functions and in returning the
results from the ASN, ACS, and ATN functions.

The RADIAN function changes the form of all angular values to radian
form until DEGREE or GRAD is used. Radian form represents angles
in terms of the length of the arc with respect to the radius, i.e., 3600 is
27t radians, since the circumference of a circle is 27t times the radius.

201

P
D

RANDOMIZE
FORMAT: RANDOMIZE

Abbreviation: RA.
See Also: RND

PURPOSE:
Resets the seed for random number generation.

REMARKS:
When random numbers are generated using the RND function, the
Card begins with a predetermined "seed" or starting number.
RANDOMIZE resets this seed to a new randomly determined value.

The starting seed will be the same each time the power is turned on,
so the sequence of random numbers generated with RND is the same
each time. unless the seed is changed. This is very convenient during
the development of a program because it means that the behavior of
the program should be the same each time it is run, even though it
includes a RND function. When you want the numbers to be truly
random. the RANDOMIZE statement can be used to make the seed
itself random.

202

P
D READ

FORMAT: READ variable. variable, variable

Abbreviation: REA.
See Also: DATA. RESTORE

PURPOSE:
Reads values from a DATA statement and assigns them to variables.

REMARKS:
When assigning initial values to an array, it is convenient to list the
values in a DATA statement and use a READ statement in a
FOR ... NEXT loop to load the values into the array. When the first
READ is executed, the first value in the first DATA statement is
returned. Succeeding READs use succeeding values in the order in
which they appear in the program. regardless of how many values are
listed in each DATA statement or how many DATA statements are
used.

If desired. the values in a DATA statement can be read a second time
using the RESTORE statement.

Note:
The type of data must match the type of variables (numerical or string)
to which it is to be assigned.

203

p

REM(')
FORMAT: 1. REM remark

2. ' remark

Abbreviation:
See Also:

PURPOSE:
Includes comments in a program.

REMARKS:
It is often useful to include explanatory comments in a program. These
can provide titles, names of authors, dates of last modification, usage
notes, reminders about algorithms, etc. These comments are included
using the REM (or apostrophe (')) statement.

p

The REM (') statement has no effect on program execution and can be
included anywhere in the program. Everything following REM (') in that
line is treated as a comment.

204

RENUM o

FORMAT: RENUM [new line number] [, [old line number] [,increment]]
I ENTER I

Abbreviation: REN.
See Also: DELETE, LIST

PURPOSE:
Renumbers the lines of a program.

REMARKS:
Valid only as direct input in the PRO mode.

The line numbers are changed from old line numbers to new line
numbers with the specified increment. If the new line number is not
specified, the lines are renumbered starting with line 10. If the
increment is not specified, the lines are renumbered with an increment
of 10. RENUM updates referenced line numbers in GOTO,
ON ... GOTO, GOSUB, ON ... GOSUB, RESTORE, and (IF) ... THEN
statements.

An error occurs if line numbers are given as a variable (GOTO A) or
numerical expression (GOTO 2 [KJ 50) . If an error occurs,
renumbering is not carried out. If a line number is given by a variable
or expression, temporarily make it a remark (REM), and correct it after
executing the RENUM command. It is recommended that you replace
such commands with ON ... GOTO commands, etc.

If a line number exceeds 65279, an error is generated. If a specified
old line number does not exist, an error is generated. Changing the
execution order generates an error. If a password has been used, an
error occurs.

If the display shows ''*'', pressing the 00 key will interrupt
renumbering. A display of '':tc+::" indicates that renumbering cannot be
interrupted. Error generation or use of the 00 key leaves the program
unchanged.

205

EXAMPLE:
10: INPUT "CONTINUE";A$
20: IF A$ = ·YES· THEN 10
30: IF A$ = "NO" THEN 60 "
40: PRINT "ENTER YES OR NO PLEASE!
50: GOTO 10
60: END

RENUM 100, 10, 5 I EJrnR I

100: INPUT "CONTINUE";A$
105: IF A$ = "YES" THEN 100
110· IF A$ = "NO" THEN 125
115~ PRINT "ENTER YES OR NO PLEASE!"
120: GOTO 100
125: END

206

7

RESTORE
FORMAT: 1 RESTORE {line number}

. *Iabel

2. RESTORE

Abbreviation: RES.
See Also: DATA, READ

PURPOSE:
Rereads values in a DATA statement or changes the order in which
these values are read.

REMARKS:
In the regular use of READ, reading begins with the first value in a
DATA statement and proceeds sequentially through the remaining
values. Format 1 resets the pointer to the first value of the DATA
statement whose line number is equal to the specified line number or
*Iabel. Format 2 resets the pointer to the first value of the first DATA
statement, so that it can be read again.

EXAMPLE:
10: DIM 8(10)
20: WAIT 32
30: FOR I = 1 TO 10
40: RESTORE
50: READ 8(1)
60: PRINT 8(1)*1;
70: NEXT I
80: DATA 20
90: END

[101 Sets up an array.
[S01 Assigns the value 20 to each of the elements of B().

207

p

RESUME
FORMAT: 1. RESUME

2. RESUME NEXT

3 RESUME {line number}
. *Iabel

Abbreviation: RESU.
See Also: ON ERROR GOTO

PURPOSE:
Resumes program execution at the end of an error handling routine.

REMARKS:
RESUME resumes program execution after completing an error
handling routine to which control was passed by the ON ERROR
GOTO command. This command validifies the ON ERROR GOTO
command again. If control is returned to the main program by any
other command (GOTO, etc.), execution will be aborted if an error
subsequently occurs.

The error handling routine lets you take the necessary action to
prevent recurrence of the same error.

Control is returned depending on the format:

p

(1) Format 1 returns control to the statement which caused the error. If
an error occurs again in the same statement, the error handling
routine is executed again.

(2) Format 2 returns control to the statement following the error
statement.

(3) Format 3 returns control to the specified line.

208

EXAMPLE:
10: ON ERROR GOTO 100
20: INPUT A, B
30: PRINT AlB

100: RESUME 20

!f zetro iSti~ssign~ to variable B or an overflow occurs from AlB, control returns to the
mpu rou ne on line 20 and prompts for COrrect data entry.

RIGHT$
FORMAT: RIGHT$(string,N)

Abbreviation: RI.
See Also: LEFT$, MID$

PURPOSE:
Returns N characters from the right end of a string.

REMARKS:
Fractions will be truncated If N' I th . . . • IS ess an 1, a null string IS returned
If ~ IS. greater than the number of characters in the string the whole .
string IS returned. '

209

p
o

RND
FORMAT: RND numeric expression

Abbreviation: RN.
See Also: RANDOMIZE

PURPOSE:
Generates a random number.

REMARKS:

p
o

If the value of the expression is less than 1 but greater than or equal
to zero the random number is less than 1 and greater than zero. If the
expres~ion is an integer greater than or equal to 1, the result is a
random number greater than or equal to 1 and less than or equal to
the expression. If the expression is greater than or equal to 1 and not
an integer, the result is a random number greater than or equal to 1
and less than or equal to the smallest integer that is larger than the
expression. (In this case, the generation of !he rand~m number
changes depending on the value of the decimal portion of the .
argument.) If the expression is negative, the previously set numeric
expression is used to generate the random number.

Argumer:!.!
.5

2
2.5

-- --------- -- Result ------------

L,?wer ~oun~ Upp~~o~nd
0< < 1
1 2

3

The same sequence of random numbers is normally generated
because the same "seed" is used each time the power is turned on. To
randomize the seed, see the RANDOMIZE command.

210

RUN
FORMAT: 1. RUN I ENTER I

2 RUN {line number} I ENTER I
. *Iabel

Abbreviation: R.
See Also: GOTO, ARUN

PURPOSE:
Executes a program in memory.

REMARKS:

Format 1 executes a program beginning with the lowest numbered
statement in memory.

Format 2 executes a program beginning with the specified line number.

An error occurs if the specified line number or *label was not found.

If two or more identical labels exist in a program, the one with a
smaller line number is executed.

211

o

SAVE
FORMAT: SAVE ["d:filename" [,A]]

d: E,PACOM,CAS,COM

Abbreviation: SA.
See Also: LOAD, DSKF, MERGE, FILES

PURPOSE:
Saves the basic program to the specified device.

REMARKS:
The SAVE statement names a BASIC program in memory and then
writes it to the specified file.

p
o

A filename is the name given to a program or a set of data. The
desired file can be readily retrieved by the Card if it is given a filename.
A filename may consist of up to eight alphanumeric characters or
symbols.

If all options are omitted, COM is assumed for the device name.

If the A option is specified, the file is saved in ASCII format, otherwise
it is saved in intermediate code format. When the device name is
PACOM, CAS, or COM, the file is saved in ASCII format even if the A
option is not specified.

If no extension is specified, .BAS is assumed. The extension can
consist of up to three characters.

An existing file will be erased if the same filename is specified, but an
error occurs if the existing file has the UP" (write-protect) attribute set
(see SET command).
An error occurs if the program in memory is made secret.

EXAMPLE:
SAVE "E:PR01", A

Saves the program as an ASCII file with the name "PR01" on RAM disk E.

212

SET
FORMAT

{
UP" }

SET "E:filename", "~"

Abbreviation: SE.
See Also: SAVE

PURPOSE:
Assigns or removes file protection.

REMARKS:

o

The contents of a file cannot be inadvertently deleted or rewritten if UP"
is specified. To clear the protection, specify a space ("~ "). Once
protection has been removed, the file can be deleted or written to freely.

Wildcards (* or ?) can be used for filename specification, but the
extension must not be omitted. For example, the .BAS extension must
be specified.

An error occurs if the SET command is used with a file that is open.

EXAMPLE:
SET "E:PAYRUN.BAS","P"

Protects the program "PAYRUN.BAS· on the RAM disk E from being written to, erased,
or renamed.

213

STOP
FORMAT: STOP

Abbreviation: S.
See Also: CONT

PURPOSE:
Halts execution of a program for diagnostic purposes.

REMARKS:
When STOP is encountered in program execution, execution halts and
a message such as "Break in 200" is displayed where 200 is the
number of the line containing the STOP. STOP is used during the
development of a program to check the flow of the program or to
examine the state of variables. Execution may be restarted with the
CONT command or I SHIFT I [SZJ keys. Pressing the [YJ key executes
the program statement-by-statement.

214

p STR$
FORMAT: STR$ expression

Abbreviation: STR.
See Also: VAL

PURPOSE:
Converts numeric data into string data.

REMARKS:

p
o

The STR$ function changes numeric data to a string. The string will be
composed of the same digits as the original number. The STR$
function has the opposite effect of the VAL function.

If the numeric data is negative, the string will be preceded by a minus
(-) sign.

When a numerical value is converted into a character string using the
STR$ command, the first character is the sign (space for +) e.g.
B$=·~ 12.3456".

215

TEXT
FORMAT: TEXT I ENTER I

Abbreviation: TE.
See Also: BASIC

PURPOSE:
Sets the Text mode.

REMARKS:
Valid only as direct input in the PRO mode.

The text function is used when entering a program written for a
higher-level personal computer. The program entered using the Card
can be sent to the host through the serial I/O interface.

Executing the TEXT command sets the Text mode. In the Text mode,
a number corresponding to the line num~r, and then information
corresponding to program commands or data is entered. Press the
I ENTER I key to write the entries to the program/data area.
The written contents are not converted to commands (internal codes),
as they are in the BASIC mode. The text is stored as it is (as
characters and/or numbers) in character codes. The text is arranged in
the order of the numbers corresponding to the line number at the
beginning of each line. (Line number editing function.)

The text writ1en in the Text mode is stored as it is. Therefore,
command abbreviations in BASIC (such as I. for INPUT) are displayed
and stored as such.

If a program is stored in the internal code of the Card with the text
mode set, it is converted to character code.

During program conversion, "**" is displayed at the right end of the
display unit.
The prompt symbol is "<" in the Text mode. (It is usually">".)
If a password has been set, an error occurs when the TEXT command
is executed.

216

o TIME$
FORMAT: TIME$

Abbreviation: TI.
See Also: DATE$

PURPOSE:
Recalls the time currently set in the Organizer.

REMARKS:
TIME$ command recalls the time currently set in the Organizer, in the
form of 5 character string data. The time is displayed in the order of
hour and minute on a 24-hour basis. A colon (:) is used to separate
the hour digits from the minute digits.
For details on setting the time, see the Organizer manual.

EXAMPLE:
10: PRINT TIME$
20: A$ = TIME$
30: PRINT A$

TROFF
FORMAT: TROFF

Abbreviation: TROF.
See Also: TRON

PURPOSE:
Cancels trace (TRON) mode.

REMARKS:
Execution of TROFF restores normal execution of the program.

217

p
o

p
o

TRON
FORMAT: TRON

Abbreviation: TR.
See Also: TROFF

PURPOSE:
Starts the trace mode.

p
o

REMARKS:
The trace mode provides assistance in debugging programs. When the
trace mode is on, the line number of each statement is displayed after
each statement is executed. To stop trace execution, press the 00
key or execute the STOP command. After trace execution is stopped,
the Card waits for the [YJ key to be pressed before moving on to the
next statement. The trace mode continues until TROFF is executed. or
the I SHIFT I [CeCE I keys are pressed.

218

t

USING
FORMAT: 1. USING format string

2. USING

Abbreviation: U.
See Also: LPRINT. PAUSE, PRINT

PURPOSE:
Controls the format of displayed or printed output.

REMARKS:

p
o

USING can be used by itself or as a clause within a PRINT, LPRINT.
or PAUSE statement. When the USING command is used in a PRINT.
LPRINT, or PAUSE statement, it is valid only for the values or strings
output by that statement. If it is used independently (on an independent
line). it is valid for all the subsequent PRINT or LPRINT commands.
USING establishes a specified format for output that is used for all
output that follows until changed by another USING.

#: Right justified numeric field character.
Length of integer field: 2 to 21 (including sign)
If a value is shorter than the specified numeric field. the extra
portion of the field is filled with spaces.
If a numeric field with a length of 22 or more digits is specified. it is
regarded to be 21 digits long.
Length of decimal field: 0 to 20 (0 to 19 for exponential numbers)
If a value is shorter than the specified field, zeros appear in the
extra portion of the field. If the former is longer than the latter, the
extra digits are truncated.
Decimal point (delimiter for integer and decimal parts)
Used as a 3-digit separator in numeric fields.
To separate every 3 digits of integer field with commas (,). place a
comma in or at the end of the integer field.

219

A· Used to indicate that numbers should be displayed in scientific
notation.
With this notation. the length of the mantissa field is always 2 (1
digit and the sign). without regard to the specified length of the
integer field. If the given length of the decimal field is 19 or more
digits. the length of the decimal field of the mantissa is also 19
digits.

&: Left justified alphanumeric field
If a string is shorter than the specified field. spaces appear in the
extra portion of the field. If the former is longer than the latter. the
extra characters are dropped.

(1) USING"###"
Prints the sign and 2 integer digits.

(2) USING"###."
Prints the sign. 2 integer digits. and a decimal point.

(3) USING"###.##"
Prints the sign. 2 integer digits. a decimal point. and 2 decimal
places.

(4) USING"###.###."
Prints the sign. 4 integer digits. a 3-digit separator (.) and a
decimal point.
For numerical data. 3-digit separator (,) is counted as a digit. So if
you want to print a number .. -1.234.567 you have to use ten field
characters (#). such as USING"#######.###.".

(5) USING"##.##A"
Prints numerical data in exponential form with up to 2 decimal
places.
Spaces for 1 integer digit and the sign are automatically reserved
for the mantissa. and for 2 integer digits. the capital E or D. and
the sign for the exponent.
Note: A and comma (.) may not be used concurrently.

(6) USING"&&&&&&"
Prints a string of 6 characters.

(7) USING"###&&&&"
Prints a string adjacent to a numeric value.

(8) USING
Format 2 clears formatting.

Formatting is also cleared by executing the RUN command, pressing
I SHIFT II C.CE I. or turning the power off and then on.

220 ..

EXAMPLE:
10: B=-10:C::10.7703
20: PRINT USING "&&&###" ; "8::" ; 8 ; "~C::" ;: PRINT USING "###.###"; C

Note:
The USING command is not valid for manual calculations. It must
always be used in the PRINT or LPRINT statement.

Supplement:
A program which simultaneously outputs numerical and string
characters written for other computers should be modified as follows:

PRINT USING "####.##" ; H ; "(m)" ..
PRINT USING "####.##" ; H ;: PRINT "(m)"

221

VAL
FORMA T: VAL string

Abbreviation: V.
See Also: STR$

PURPOSE:
Converts a string of numeric characters into a decimal value.

REMARKS:
The VAL function converts a character string, which may include the
hex number designator (&H), numbers (0-9), a sign (+, -), and
exponential symbols (E or D), into a numeric value.

If the string is in decimal notation, it must be composed of the
characters 0 to 9, with an optional decimal point and sign. In this form,
VAL is the opposite of the STR$ function.

p
o

If illegal characters are included, conversion is performed up to the first
occurrence of an illegal character.

Control codes (&HOO to &H1 F) cannot be used.

EXAMPLE:
A=VAL"-120" Assigns -120 to variable A.
B=VAL"3.2*4=" Assigns 3.2 to variable B.
C=VAL "&H64" Assigns 100 to variable C.

222

WAIT
FORMAT: 1. WAIT expression

2. WAIT

Abbreviation: W.
See Also: PRINT, GPRINT

PURPOSE:
Controls the length of time that displayed information is shown before
program execution continues.

REMARKS:

p
o

Format 1 specifies the time in which execution of the PRINT command
halts. The program temporarily halts for the specified time interval, then
automatically restarts.

The value of the expression may be set to any value from 0 to 65535.
A value of 1 as the expression corresponds to an interval of approx.
1/59 sec. The power-on default for the value of the expression is zero.
The WAIT command is valid for all the PRINT or GPRINT commands
used in the program. To set an infinite interval, use format 2.

Note:

The WAIT command is not available on personal computers in general.
On PCs, the FOR. .. NEXT statement is used for wait time control as
follows:
50: FOR J=1 TO 500:NEXT J

223

WIDTH

FORMAT: WIDTH {::}

Abbreviation: WI.
See Also: LOCATE

PURPOSE:
Switches between 4-line and 8-line display modes.

REMARKS:
WIDTH,4 selects 12 column by 4 line mode; WIDTH,8 selects 16
column by 8 line mode. Once the display mode is selected with this
command, it remains valid until the next WIDTH command. The
displayable character size depends on the selected display mode.

Execution of the WIDTH command returns the cursor to the home
position.

If the WIDTH command is executed as direct input, the display is
cleared. However, if it is executed in a program, the display is not
cleared. Combining the WIDTH command with the LOCATE command
allows for mixed display of large and small sized characters.

p
o

The 8-line mode is selected just after the power is turned off and on or
the STAT or AER mode is entered.

Pressing I SHIFT 114<I~ UNES I will also switch between 4-line and 8-line
display modes.

EXAMPLE:
10: CLS :WAIT 100
20: WIDTH ,4:PRINT ·SHARP"
30: WIDTH ,8:LOCATE 8,1
40: PRINT "BASIC":LOCATE 9,2:PRINT "CARD"
50: WIDTH ,4:LOCATE 1,2
60: PRINT "Organizer"
70: WIDTH ,8:LOCATE 0,7
80: END

224
225

PART 4

APPENDICES

Error Messages
Character Code Chart
Battery Replacement

Troubleshooting
Specifications

Care of the OZ-707

A
B
C
D
E
F

APPENDIX A

ERROR MESSAGES
When an error occurs, one of the error messages listed below will be
displayed. For errors which occur during program execution, the error
message is followed by the line number in which the error occurred.
The error number and the line number are stored into the variables
ERN and ERL, respectively. Errors which occur during direct input
operation do not change the values of the variables ERN and ERL.

Error message
Error Meaning
No.

Syntax error 10 Invalid expressions or statements have
been used.

Direct command error 11 An attempt was made to execute a
command which is illegal in direct input
operation. An attempt was made to
execute a command which is illegal in
program execution.

Mode error 12 The mode for PRO or RUN was selected
incorrectly. The mode selection in the
OPEN statement was incorrect.

Can't continue 13 The CO NT statement was executed
illegally.

Program not exist 14 An attempt was made to designate a
password to a program which does not
exist.

Overflow 20 The calculated result exceeds the
calculation range.

Division by Zero 21 An attempt was made to divide by zero.

Illegal function call 22 An illegal operation was attempted.

Duplicate Definition 30 An attempt was made to declare an
array variable name which is already
declared.

Array specified without 31 The array variable name was specified
DIM without the DIM statement.

Subscript out of range 32 Array was addressed illegally (array
subscript exceeds the size of the array
specified in the DIM statement)

226

Error message
Error

Meaning
No.

Data out of range 33 The specified value exceeds the
allowable range.

Undefined line 40 The specified line number or label does
not exist.

Illegal line number 41 The line number was specified illegally.

Bad line number 44 The ending line number was specified
with a number less than the starting line
number in a statement such as LLIST or
DELETE.

GOSUB or FOR 50 The levels of nesting in the GOSUB or
nesting exceeded FOR statement exceeds the allowable

range.

RETURN without 51 An attempt was made to execute the
GOSUB RETURN statement without calling the

subroutine.

NEXT without FOR 52 The FOR statement is missing for the
NEXT statement.

Out of data 53 The OAT A statement is missing for the
READ statement.

Buffer space exceeded 54 The size of the BASIC interpreter
exceeds the available work area.

String too long 55 The length of the entered string exceeds
254 bytes.

Line buffer overflow 56 The line exceeds 254 bytes.

RESUME without error 57 An attempt was made to execute the
RESUME statement during non-error
processing.

Out of memory 60 The size of program or variable exceeds
the memory capacity.

Can't print in specified 70 Characters cannot be printed nor
format displayed in the format specified in the

USING statement.

USING format error 71 The format specified in the USING
statement is illegal.

va error 72 I/O device error.

Too many files open 73 The number of files to be opened
exceeds the limit.

227

Error message
Error
No.

NAME error 74

Bad drive name 75

File write protected 76

Disk full 77

Tape read error 80

Verify error 82

Printer error 84

File not open 85

File already open 86

Input past end 87

Type mismatch 90

Password mismatch 92

Invisible program 93

File not found 94

Bad file name 95

Meaning

The file name specified in the NAME
statement is illegal.

The specified drive name is illegal.

The file is write protected.

No further memory storage available on
the disk, or the number of files exceeds
the limit.

An error occurred while reading data
from the cassette tape recorder.

Error in data verification.

Printer error (The printer was turned off
while printing, etc.)

The file has not been opened.

The file has already been opened.

An attempt was made to read data past
the end of file.

The type of the specified data does not
match.

An invalid password was entered.

An attempt was made to write to a
protected program.

The specified file does not exist.

The specified file name is illegal.

228

d

APPENDIX B

CHARACTER CODE CHART
The character code chart shows the characters and their character
codes used by the CHR$ and ASC commands. Each character code
consists of 2 hex characters (or 8 binary bits). The most significant hex
c~a~~cter (4 bits) is shown along ' the top of the chart and the least
Significant hex character (4 bits) is shown down the left side of the
chart. If no character is shown, it is an illegal character on the Card.

For example, the character "A" is hex 41 or decimal 65 or binary
01000001. The character liP" is decimal 80 or hex 50 or binary
01010000.

The character codes are represented as follows:

Examples:
Code for *
Hexadecimal &H2A
Decimal 42 (32 + 10)

Code for P
Hexadecimal &H50
Decimal 80

229

t\ 0 1 2 3 4 5

~ /. 11
r.

P 0 SpacI I~

1 h V, , 1 .~ I~

2 ~ v: II 2 B R
,~ V. # 3 roc S 3 L.

4 I~ V($ 4 D T

5 ~ Vs % 5 E U

6 ~ V- I) 6 F V c<

7 ~ ~
,

7 G W

8 ~ /a (8 H X

9 ~ I/o) 9 r y

~ Vt ~~ r"7 A · J L .. ·

J(Vt K [B + · ,

C y V , < L \

0 l/(... - = M]

E I/- t>) N '" .
F V. I I' ? 0 · -

f"171 *1 For 4-line display
IL2J *2 For a-line display

Blank refers to a null.

Note:

Most Significant 4 Bits

6 7 8 9 A 8 C 0 E
,

C E a ~ A m P .'-\ M a

U 1 E p fi f3 a q ~ M

b r e If 6 0 t ~ r
a 0

...
§ 00 c s U Itl. J(

d t a 0 n I If ~ E

e u do 0 N 0 v ~ 0

f
.

'" g 6 r m iJ. v a. u

U Q A ~ r1 ,.-g ',"1 9 "

h
.

E rn (D A

6 !J x e v
J

0 C
..

~ 8 I Y e a

U A '" Q J z e 0 x

k { "i q; ~ i5 - 3 r5

I I 1 £ 1- 'I'
-

" IX)
I 4 ..
\ " 0 - ¢ m) 1 f , -7

A R .'I I:. .
E n '" \~, +-

10 .f ,',
1· n 0 ~ ',I 0 ,u, i' -

Character codes &HOO to &H1 F can be used only with the LPRINT
command.

230

F
iii

±

~

=;;

r
J
..;..

--
·
·

·
,r
•

n

2

•

APPENDIX C

BATTERY REPLACEMENT
Battery Life
After a new battery has been installed in the Card, it should maintain
the data stored in the Card for a period of approximately 2 years, at
room temperatures (approx. 20°C [68°F)).

Be sure to replace the battery every 2 years.

Batteries Used:
Type:
Model:
Quantity:

lithium
CR2016
1 Battery

Changing the Battery
Refer to Installing the Battery for details on changing the battery.

The life of the battery can be shortened by environmental factors, for
example in locations where temperatures are unusually high or low. In
such cases, you may have to change the battery before two years
have passed.

Notes:
• Change the battery with the Card inserted into the Organizer. If the

battery is changed without the Card inserted, all data stored in the
Card will be lost.

• Before replacing the battery, important information should be backed
up by writing it down on paper or storing it on cassette tape.

• As a reminder for the next battery replacement, write the date of
battery replacement on the label on the back of the Card.

Battery Precautions
• Keep the battery out of the reach of children.
• When the battery becomes weak, remove it from the Card

immediately. If a depleted battery is left in the Card for any length
of time, it may leak and cause corrosion inside the Card.

• Do not dispose of the battery in a fire, as it may explode.

231

APPENDIX D

TROUBLESHOOTING
This appendix provides you with some hints on what to do when your
Card does not do what you expect it to. You should try each of the
following suggestions. one at a time. until you have corrected the
problem. (Refer to the Organizer Operation Manual.)

1. If the display is too light or too dark,
• adjust the contrast control.

2. If the power does not come on (nothing is displayed),
• the batteries may be exhausted. Replace the Organizer operating

batteries.
• the Card lock switch might not be set to the LOCK position.

Check that the lock is set to the LOCK position.
3. If the power does not turn off,

• the Card is running a program using a command which takes a
long time, such as BEEP or SAVE "CAS:". Press the 00 key to
interrupt program execution and then the []ff] key.
If the power is still not turned off, perform the following operation
4.

4. If the Card does not operate properly,
• a peripheral device may have been connected or disconnected

while the power was on, or there may have been an error during
program execution, or the Organizer may have been subjected to
strong electrical noise or shocks during use.
Perform one of the following operations.

(1) Reset (retaining the memory contents)
Press the RESET switch with a ball-point pen or any other
appropriate device and then the [Qff] 00 keys. If the
Organizer still operates improperly after clearing the error
condition with this operation, there may be an error in programs
or data entered. Follow (2) below, pressing the CD key to
clear the Card memory contents.

(2) All Reset (clearing the Card memory contents)
Press the RESET switch while holding the 00 key.
Release the RESET switch before releasing the 00 key.

232

When the RESET switch is released, the display shown at right will
appear.

(1) Press the CD key.
The display shown at right will appear.

t1AIN DATA
ALL CLEAR
OK (,(/~D ?

Sl:CARD DATA
ALL CLEAR
OK (Y/N)?

Caution: Do not press the [IJ key. Pressing the CD
key will clear all data In the Organizer.

(2) Press the IT] key.
• To clear the Card memory. press the IT] key.

(3) Reset the clock.
• The clock data will be cleared as a result of the steps above.

233

APPENDIX E

SPECIFICATIONS
Model:

Processor:

OZ-707 Scientific Computer Card I BASIC I

8-bit CMOS CPU

Programming language: BASIC

System ROM:

Memory capacity:

Stack:

Operators:

Numeric precision:

Editing features:

Memory protection:

Power supply:

Operating time:

128 K bytes

System internal
Fixed variable area
Program/data area

5K bytes approx.
312 bytes
27597 bytes

Total: 145 bytes

(
Subroutine: 4 bytes/stack)
FOR-NEXT: 21 bytes/stack

Addition, subtraction, multiplication, division,
trigonometric and inverse trigonometric
functions, logarithmic and exponential
functions, angle conversion, square and
square root, power, sign, absolute, integer,
coordinate conversion, pi, etc.

10 digits (mantissa) + 2 digits (exponent)
single-precision mode
20 digits (mantissa) + 2 digits (exponent)
double-precision mode

Cursor left and right, line up and down,
character insert, character delete

Battery backup

3V ':":":" (DC) Lithium battery (CR2016) x 1

Approximately 2 years (at constant
temperature of 20°C [68°F] - varies
depending on the type of battery and use
conditions)

234

Serial input/output features:
Standards: Start-stop transmission (asynchronous) system

Halflfull duplex
Baud rates:
Parity bits:
Data bits:
Stop bit:
Connectors used:
Output signal level:
Interfacing signals:

300, 600, 1200, 2400, 4800, 9600 baud (bps)
Even, odd, or no parity
7 or 8 bits
1 or 2 bits
15-pin connector (for external equipment)
CMOS level (4 to 6 volts)
Inputs: RD, CS, CD
Outputs: SO, RS, RR, ER
Others: SG, FG, VC

Operating temperature: 0° - 40°C (32° - 104°F)

Dimensions:

Weight:

Accessories:

54(W) x 85.5(0) x 2(H) mm
2-1/8(W) x 3-3/8"(0) x 3/32"(H)

18 g (0.04 lb.) (with battery)

Soft case, one lithium battery, and Operation
Manual.

235

APPENDIX F

CARE OF THE OZ-707
• Do not carry the Card in the back pocket of slacks or trousers. This

may subject the Card to bending and damage it.
• Do not bend or twist the Card. Such mistreatment may make it

impossible to insert the card into the Organizer, or it may cause the
card to malfunction.

• Never touch the terminals of the Card - this may damage the card
with static electricity or cause other problems. Also, never allow
liquids or materials to touch the Card as they may cause it to
malfunction.

Note:
Make sure to tum the power off by pressing the rnJ key before
installing or removing the optional IC card. If the power is not OFF
during installation or removal, no key other than the RESET switch will
function and data stored in memory may be lost.

;~ 7T·<7l
CALL. (/)<~ l
C (l j,' r --J L - _ J I.

il [r I
f£;C-h
\ (' II [::.

Kf:' L vED

236

I COMMAND INDEX I
General Commands KEY 0 159
ARUN 103 LEFT$ 161
ASC 104 LEN 162
AUTO 105 LET 163
AUTOGOTO 106 LINE 165
BASIC 107 LIST 168
BEEP 108 LOCATE 173
BREAK ON/OFF 109 MDF 177
CHR$ 111 MID$ 179
CLEAR 112 NEW 180
CLS 114 ON ERROR GOTO 181
CO NT 114 ON ... GOSUB 182
DATA 117 ON ... GOTO 184
DATE$ 118 ON KEY GOSUB 186
DEFDBL 119 PASS 191
DEFSNG 121 PAUSE 192
DEGREE 122 POINT 193
DELETE 123 PRESET .·········· .. ········ .. ··· 194
DIM 124 PRINT 195
END 127 PSET · .. ······ ·· .. ······· 200
ERASE 129 RADIAN ···················· .. · 201
ERL 130 RANDOMIZE ····.···.······.·· 202
ERN 131 READ · · · .. · 203
EVAL 132 REM (') 204
FOR. .. NEXT 135 RENUM ······ ... · ····· 205
FRE 137 RESTORE 207
GCURSOR 138 RESUME 208
GOSUB ... RETURN 140 RIGHT$ 209
GOTO 141 RND 210
GPRINT 142 RUN · ······ ···· .. ·· .. ··· 211
GRAD 144 STOP ·.··· ········· ···. ······· 214
HEX$ 145 STR$ 215
IF ... THEN ... ELSE 146 TEXT 216
INKEY$ 149 TIME$ 217
INPUT 151 TROFF ... ··· .. ·· .. · .. ···· .. ··· 217
INPUT$ 153 TRON · · 218
KEY(n) ON/OFF 158 USING 219

237

VAL 222
WAIT 223
WIDTH 224

Printer Commands
LFILES 164
LLIST 169
LPRINT 176

Disk Commands
CHAIN 110
CLOSE 113
COpy 115
DSKF 126
EOF 128
FILES 133
INIT 148
INPUT$ 153
INPUT# 156
KILL 160
LFILES 164
LOAD 170
LOAD? 171
LOC 172
LOF 175
MERGE 178
NAME 180
OPEN 187
PRINT# 198
SAVE 212
SET 213

Cassette Tape Recorder
Commands
CHAIN 110
CLOSE 113
COpy 115
EOF 128
INPUT$ 153
INPUT# 156
LOAD 170
LOAD? 171
MERGE 178

238

OPEN 187
PRINT# 198
SAVE 212

4-pin I/O Commands
CHAIN 110
CLOSE 113
COPY 115
EOF 128
INPUT$ 153
INPUT# 156
LOAD 170
LOAD? 171
MERGE 178
OPEN 187
PRINT# 198
SAVE 212

Serial 110 Commands
CHAIN 110
CLOSE 113
COpy 115
EOF 128
INPUT$ 153
INPUT# 156
LOAD 170
LOAD? 171
LOC 172
LOF 175
MERGE 178
OPEN 187
OPEN$ 190
PRINT# 198
SAVE 212

r

I
A
AER mode 7, 68
All reset 232
Answer, last 19
Array variables 35

B
BASIC

commands 48
concepts and terms 31
mode 7
operation 9
statements 47

Battery replacement 231

C
Calculations

double-precision 19
errors 29
length 21
ranges 99
regression 83
scientific 22
serial 17
single-precision 19
statistical 76, 82

Care of Card 236
Character codes 229
Constants, string 31
Conversions

angleltime 91, 92
hexadecimaVdecimal 25, 93
polar/rectangular 24

Correcting expressions 71

o
Data files 40, 57
DBL indicator 8, 19

INDEX

Debugging 62
DEFDBL 19
DEFSNG 19
DEG indicator 8
Degree 22, 88
Deleting expressions 71
Device name 41
Direct command 49
Direct input 28
Direct calculation 26
Double-precision 19
Double-precision mode 19
Double-precision variables 37

E
Entry recall 12
Error messages 74, 226
Errors 29
Expressions 43

AER mode 68
deleting 71
executing 73
logical 45
registering 69
relational 26, 44
string 43
title 69

Extensions, of file names 41

F
Filenames 41
File numbers 42
Files

data 40,57
program 40

Fixed variables 34

G
GRAD indicator 8
Gradient 22, 88

H
Hexadecimal numbers 31

conversion 91, 93

Indicators 8
Initializing 2

l
Labels 48
Last answer recall 19
Length of calculation 21
Line numbers 47
Logical operators 45

M
Modes 7,49

N
Names

device 41
file 41

NP (non-print) indicator 8

o
Operation modes 7
Operator precedence 12, 28
Operators

p

logical 45
relational 26, 44

Parentheses 46
Part names 5

Playback 70,73,76,77,78
Precedence 12, 28
PRINT indicator 8

Priority levels 28
PRO mode 7, 50

indicator 8
Program

entering 50
execution 50
files 40,57
listing 51, 54
storing 57

Programming 47,50

R
RAD indicator 8
Radians 22,88
Recalling entries 12
Registering expressions 69
Relational operators 26, 44
Reset 232
RUN mode 7, 10

calculations in 11
indicator 8

S
Scientific calculations 22
Second function (2nd F) key 4, 5
Sequential file 58
Serial calculations 17
Shift key 4
Single-precision 19
Single-precision mode 19
Single-precision variables 37
Single-variable statistics 76
SNG indicator 8
Specifications 234
STAT mode 7,75
Statistics

calculations 75
data entry 77, 83
frequency 78
printing 81
regression 83

"

single-variable 76
Storing programs 57
String constants 31

T
Trace mode 63
Trigonometric calculations 22
Troubleshooting 232

V
Variables 32

double-precision 32
fixed numeric 34

numeric array 35
in calculations 18
in programs 53
single-precision 32
simple string 34
string array 34
using in calculations 18

1

SHARP SERVICE CENTER ADDRESS
Sharp Electronics Corporation

1300 Naperville Drive
Romeoville, IL 60441

(708) 759-8555

To order Supplies or Accessories, contact your local SHARP
Dealer/Retailer or in the U.S.A., only, contact THE SHARP
ACCESSORIES AND SUPPLY CENTER at 1 (800) 642-2122.

Regional Sales Offices and Distribution Centers
Eastern: Sharp Plaza, Mahwah, New Jersey, 07430-2135

Phone: (201) 529-8200

Midwest: 1300 Naperville Drive, Romeoville, IL 60441
Phone: (708) 759-8555

Western: Sharp Plaza, 20600 South Alameda St., Carson,
California 90810

Phone: (213) 637-9488

Electronic Organizer Limited Warranty
Sharp Electronics Corporation warrants to the first consumer purchaser. for a
period of 1 year from the date of purchase, that this IC Card ("the Product") will
be free from defective workmanship and materials. and agrees that it will, at its
option, either repair the defect or replace the defective Product or part thereof
at no charge to the purchaser for parts or for labor.

This warranty does not apply to any appearance items of the Product, any
consumable items such as paper, ink ribbon, or batteries supplied with the
Product, or to any equipment or any hardware, software, firmware, or peripheral
other than the Product. This warranty does not apply to any Product the
exterior of which has been damaged or defected, which has been subjected to
misuse, abnormal service or handling. or which has been altered or modified in
design. construction or interfacing.

In order to enforce the rights under this limited warranty, the purchaser should
mail. ship, or carry the Product. together with proof of purchase, to a Sharp
Service Center. To find out the location of the nearest Sharp Service Center,
see the last page of this book.

The limited warranty described above is in addition to whatever implied
warranties may be granted to purchasers by law. To the extent permitted by
applicable law. ALL IMPLIED WARRANTIES INCLUDING THE WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR USE ARE LIMITED TO A
PERIOD OF 1 YEAR FROM THE DATE OF PURCHASE. Some states do not
allow limitations on how long an implied warranty lasts, so the above limitation
may not apply to you.

Neither the sales personnel of the seller nor any other person is authorized to
make any warranties other than those described above, or to extend the
duration of any warranties beyond the time period described above on behalf of
Sharp Electronics Corporation.

The warranties described above shall be the sole and exclusive remedy
available to the purchaser. Correction of defects. in the manner and for the
period of time described above, shall constitute complete fulfillment of all
liabilities and responsibilities of Sharp Electronics Corporation to the purchaser
with respect to the Product, and shall constitute full satisfaction of all claims.
whether based on contract, negligence. strict liability or otherwise. In no event
shall Sharp Electronics Corporation be liable, or in any way responsible, for any
damages or defects in the Product which were caused by repairs or attempted
repairs performed by anyone other than a Sharp Service Center technician. Nor
shall Sharp Electronics Corporation be liable or in any way responsible for any
incidental or consequential economic or property damage. Some states do not
allow exclusion of incidental or consequential damages, so the above exclusion
may not apply to you.

THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS. YOU MAY ALSO
HAVE OTHER RIGHTS WHICH VARY FROM STATE TO STATE.

SHARP ELECTRONICS CORPORATION

Sharp Plaza, Mahwah, New Jersey, 07430-2135

© 1990 SHARP CORPORATION

PRINTED IN JAPAN

OA5.5KS(TINSE5319ECZZ)(D

	img001
	img002
	img003
	img004

