&

GENERAL INSTRUMENT

MICROE

LECTRONICS

Series 8000

Microprocessor

PRICE

ADVANCED LOGIC PROCESSOR SYSTEM (ALPS)

—DATA SHEET —
— HARDWARE MANUAL —
— SOFTWARE MANUAL -

£5.00

DM25.00

pivalent

$10.00

MAY 1976

GENERAL INSTRUMENT CORPORATION = MICROELECTRONICS

GENERAL INSTRUMENT
MICROELECTRONICS

Fianey ot

B rerdyrtere 381

A TS Wies

Tei B6GT 58 Telen 13128
BELGIUM

CF Clare imernationsl M.V

102 Gen. Gratry

Brunsiies 4

Tel O2-736.00 67 Telax: 24157

Tel 042000 Tales 19210

FINLAND

Jorrn Sarthewn Ky
Heieinr:. PO Bow 18

&F 000 Tegpeole

Tel 46088 Teles 172078

FRANCE

FEF

4 P Bartwiory
FITH Mot rage

FC 964

IRELAND
Mebrone Lid

dohn F. Korwedy Fosd
Mans Fousd

Dby 12

Tet SOVRAS Tales ARTT7

ITALY

Bologne

ety i

Vi Sargr &

Tei ATDEI2

Milana

Adkiny

Vis Jecopo Parms 1

Tt 40440487 8
Roma

Augusto Clocooiar
¥ia C. Pascucel 28

00134 Roma

Teh 6091062

Ackelvy

Poarswle Flaminio Y6
R

Tel IBOGSB0 - WE0S TGS
NORWAY

IM Faing A'S

Boa 101 Bryn. Oslo 6

Tet 107 GAEI60 Tees 15435
SPAIN

Ortatroesk SA

R L]

Barceiorsy £

Tl XN 2007 Telex S2764
SWEDEN

Agers Eisairons. AB

Bos TOSZ -
517207 Surdirgbery
Tal D8 - B85S TS Tolew 106536

SWITZERLAND
Eltwtes Al

At Twvymsigatr. 28
EH BAAD Womingen
Tat D66) 208571

YUGOSLAVIA

bty i
Pomtiach 174 BOM Turch
Tel TROS MG Tews SERIS

Cable DANTGAL Tel Aviv

ol J-BHTIG0 Kowhoon
Telew TB0-T4BSD |

INDIA

SOM s Associsie
510 Groator Kadlanh-1
News Dty 100048
Tak: New Dol 811513

AUSTRALIA

A wnd D Elmesronics (FTY) Lid
23 Burwood Fomt
Burwoosd, Victona

Tat 2B8-8212 Telew IT288
GES PTY) Lu

U0 Adrvsrcier Shrees

Crows Mest. NSW.

Tot 4X0-J488 Toww IS4B6

SOUTH AFRICA

Methoncs (PTY) Lad.

PO Bos 39650

Brarriey 2018

Tol 40 TT4E. Telea 434857

Pacw Flectionie Componsnts (FTY) Lid
PO Bos HOBA

Durewart 1508

Tol 827545 Talex B-B950 SA

Data Sheet

UNIVERSITATS2'BLIOTHEK
HANNCVER

TECHMISCHE
INFORMATIONSE BLIOTHEK

.

UB/TIB Hannover Ba

106 510 ﬁ?‘
| M‘ ml

APRIL, 1976

SERIES 8000
MICROPROCESSOR

UNIVERSITATSEIBLIOTHEK

iNFURM*‘\ | F1%] -\-. r..iLlL_J'THEK

GENERAL INSTRUMENT CORPORATION = MICROELECTRONICS

SERIES 8000 MICROPROCESSOR

Microprocessor System
LP BO0O, LP 6000, LP 1030, LP 1010, LP 1000)

2 CHIP MINIMUM SYSTEM (plue clock)

48 ACCSSIHLE 8 BIT INTERNAL REGISTERS

48 BASIC INSTRUCTIONS

BINARY AND DECIMAL ARITHMETIC CAPABILITY
DIRECT AND INDIRECT INFUT QUTPUT CAPABILITY
AUTOMATIC SUBROUTINE NESTING ON MEMORY DEVICES
FAMILY OF DEVELOPMENT DEVICES

The Series B0O0O0 Logic Processor System is designed to perform any digital
function ueing far fewer packages than a TTL or CMOS implementation.
Typically a 100 package system can be reduced to o three chip molution of
LP 8000 Processor, LP 6000 Program Memory and LP 1030 Clock Generator (two
40 lead DIP plus one 8 lead DIF). The consequent savings in development
and production costs and increased reliability give the user many of the
advantages of a customised LSI solution but without the restriction that it

must be a high volume product,

The Syntem is fabricated with General Instrument's P-channel Nitride Process
which has a proven reliability and production history. All members of the
Series 8000 family including Read Only Memories, General Purpose Input-Output
and Nemory Interface parts are fully compatible with each other,

The LP BOO0 Logic Processor Tnit iteself is a complete B-bit eingle chip
MOS-LSI Microproceesor. It has a modern computer architecture with forty
eight general purpose internal registers. This, coupled with a binary and
decimal capability arithmetic unit, allowe a versatile and sophisticated
implementation of a microcomputer system. The 8-bit Data highway ie
supplemented by a 6-bit Address bus to give a 14-bit address capability
which permits access to 16,384 words in combination of program memory, data
memory or peripheral devices. The addrese space consists of 64 "modules"
which can be either 256 words of memory or ome 8-bit bidirectional I/0 port.

DEVELOPMENT FATLY

A production system may consist of only a logic Processor, LP 8000, and ROM,

LP 6000, (plus Clock Generator, LP 1030). EHowever, the practical development
family which complements the LP 8000 allows the user to implement his hardware
and software in a real time replacement mode for his final mask programmed
product, LP 1000 and LP 1010 parts, plus FROM, can directly replace the LP £00¢
ROM. Indeed the development family may well be used as the complete solution
for short run multi variety systems,

« 8 8 8 8 & B

LOGIC PROCESSCR -~ LP (Part muber LP 8000)

The logie processor (LP) is the heart of the Series 8000 system. It performs
all of the arithmetic and logical functions required and also controls all
activities occuring in the syetem, It has 48 x 8 bit working registers
and an 8 bit input/output interface to which external peripherals may be
attached directly,

PROGRAM MEMORY - PM (Part number LP 6000)

The program memory (FM) contains a 1K x 8 bit memory which stores the user's
program, This chip also includes the program counter which points to the
current address, It is arranged at the top of a four word hardware stack
which is controlled by the LP for subroutine nesting, Two directly.
addressable 8 bit I/0 interfaces are included, so that a minimum system
consisting of one IP and one PM has 24 I/0 leads. Extra PMe can be comnnected
to the main system bus, up to a maximum of 16K words. Each PM and I/0
interface can be addressed by the LP, the module addresses being programmed
at the same time as the customer's program.

MEMORY INTERFACE CHIP - MIC (Part number LP 1000)

The memory interface (MIC) consiste of an 11 bit program counter (Q register)
at the top of a four word hardware stack., The address outputs are TTL
compatible and enable the MIC to be interfaced directly to any external
memory of up to 2048 x 8 bits, The memory can be implemented with standard
parts such as PROM, RAM, core, diode matrix etec,

The memory area can be extended by using several MIC/external memory
combinations, The addresses are selected by hardwiring pins to Vgg or Vec.

INPUT/OUTPUT BUFFER - IOB (Part number LP 1010)
The input/output buffer consists of two addressable 8 bit latched I1/0
interfaces. The addresses are selected by hardwiring pins to Vgg or Vcc.

CLOCK GENERATOR - CG (Part number LP 1030)

The Series 5000 needs only a single phase 800KHz clock, a power~-cn-reset
signal to clear and synchronize the system and two power supplies (+5V, -12V),
Virtually all external components may be eliminated by using the clock
generator (CG). The frequency of the built-in oscillator is determined by

an external resistor and capacitor or can be optionally over-ridden by an
input from an external oscillator. A data synchronising signal (@3N) ie
provided to act as a 'scope trigger and 'Data Valid' strobe for external
hardware.

MAXIMOM RATINGS *

All pins with respect to Veec 20V to 0.3V * Exceeding these ratings
Storage Temperature —55°ﬂ to +150°ﬂ could cause permanent
Operating Temperature 0°¢ to +75°C damage to the device,

Functional operation
is not implied - oper-
ating conditions are
gpecified below,
ELECTRICAL CHARACTERISTICS (LP 8000, LP 6000, LP 1010, LP 1000)
Ve = 45V + 0.25V; Vgi = (substrate at Voc); Vgg = =12V + 1V,

Characteristioc Min Max Unita | Conditions
Clock Frequency 500 800 Kis
Machine Cycle Time 5 8 us
3 Reoet t
Clook and Lngn:n {?‘:n Yoo =1.5 Volts
Logic ‘0" =9.5 Volte
Data Bus
(Input Conditions)
Logic '1' Voo «1.5 Volts
Logic '0O' 1 +0,8 Volts
Data BPus
(Output Conditions)
Logic '1" Voe «1.0 Volts | Capacitive load
Logie 'O +0.4 Volts | only, maximum
Control & Address Bus 27597
(Input Conditions)
Logic 'O Vee =1.5 Volts
Logie '1° +0.8 Volts

Control & Address Bus
(Output Conditions)

Logic ‘0! Vee =1.0 Volts |Capacitive load

Logic '1! ~7.0 Volts | 200pF
Peripheral Bus (Input)

Logic '1* Voe =1.5 Volts

Logic '0° +0,8 Volta
Qutput OF Current (LP 1010) 2 mA |Vds = 1 Volt
Output OF Current (other 1 mA |Vds = 1 Volt
devices)
Output OFF Current(all
devices) s 1 Vig = Vgg at
Power Consumption LF 8000 1000 25°¢

2%E

All other chips 500

COMPLETE SERIES 8000 MINIMUM SYSTEM

DAB 1-8 &
ADB 1-6 o
Control Bus
Heget
Clock
LP 1030 | 1» 8000 LP 6000
-y —— [e=
ALY Registex E -
5 bit ROM
Gt =
=12V —
Agoum,
+5V. _—J 8 T
ov. 8 bit 1/0 8 vit I/ |8 vit I/0
=]l 2V —
1024 Words Program Memory
48 B bit Gemeral Registers
24 TUser Input Output Pins
4 Deep Address Stack
MEMORY IMPLEMENTATION FOR DEVELOFMENT SYSTEMS
lT Series 8000 Syetem Bus T l
LP 1000 LP 1010
Memory Interface Input Output Buffer
(May not be required for certain
R/W 11 bit Memory Cuip T
Memory Address Enable Enable
Memory Page Data Out B bits
2048 x 8 bit words
ROM, RAM, PROM, CORE, ete.

Data In bite (for R/W memory)

r B 8

DAR 1-8 Bidirectional 8-lead precharged data bus, used in conjunction with
addrees bus to implement 1l4-bit address word.

ATB 1-6 Push pull f-lead address bus, This 6-bit word specifies the
memory 'module' address and the A-bit data bus specifies the
1 of 256 'intra module address’,

Proceasor trols

cI0 Indicates direction of data flow on data bus,

CDA Indicates if data bus is earrying data or address informatiom,
cQZ Used to selsot the Q counter or Z register for memory addressing,
CRA TUeed to control the internal address stack,

DPeripheral Signals

PEB 1.8 Thie is a bidirectional 8-bit latched input/output port with an
open drain output configuration, In the case of the LPB000 chip
the 8-bit port is organised such that only bits 5~8 are bidireoct-
ional, bits 1=4 are only available as inputs, For all other chips
in the family the peripheral interfaces are B-bit all bidirectional,

Drive Regquirements
Clock A single phase high level clock is required by the system and this

would normally be provided by the LP1030 Clock Generator. The
elock frequency used can be selected between 500 and S800FKHz, With
mBﬂﬂEEmﬂmkthumhinuproﬂdaanWmhﬂnemlu time,

Reset This is a clock synchronised high level signal, normally provided by
the LP1030 Clock Generator.

Vee +5 Volt supply

Vai 0 Volt (GND) supply

Veg -12 Volt supply

«——MACHINE CYCLE

¢ T Vivomavai

——

= e = -

-

=1 Vot

+§ Faroorimai

L E L L

- =

- -

L

T Y T L L
e I T

Reser

) Bag s g
Frm L < FE o g e e e o o e e e
“ " [% = LR : “
| ey |-||T_mwm mIig
e B TR
i i | < : Ic
,.m.-lnuuul kn.“. r|II_||r|ﬂF.Hu“rnl..mxl_..
" 1 ” I . m b} H
i '
ifhen e e TRR Y
- I “ I .mee 1
b i ol B0 Y : AL
..“l ----]= ..I.l........“r!...llll- |.|.|||..|n|-. -.-.l&“ﬂ..l*ll_-l -
“ - n ! i :
:11I||u|!-||$"||l|||.nnrlu-“n __M y
18 =kl 00 = ! <
' - Sl H SO
e e TR E R T

L |] 1 [
i [~] ' “ & M
T N SN DRSS TSR e IS
{] H] '

- |

L
I
I
1
-
i
1
i
I

el T L T ———

- e R mm

R N R T TN F .
B L Lk L L ————

—_—— -

!
%dee

)

i

I

I

le.a

e e o

- -

Coprres ‘o
APparss Bos
SromE
i g

|
-r--

|
e

P

D o

s e B e e o

]
]
2t
|

R |

14,

| Comrao
=5

e Fes

| PREcAAA4E

—— =

I TP =3, 8 | (WL a = S TETINCS,

CLOCK WIDTH HIGHE TH 450nSec MIN lusec MAX
CLOCK WIDTH LOW TL 450nSec MIN lusec MAX,

T 300 nSeoc MAX,

f 3§ DELAY

300 nSec MAX,

CONTROL & ATDRESS TD

e ,,,,———

L teTpoR ey Lyyeeds oy
aejetfex oY) Uyl seaappe oYy Jupen BIEpP 8I0}E IO
yo3a] Arearjoedsar sucyjonljsuy esIyj eeay]
*883IppY npow-BNUT #y3 epracad o3 peen sf }
enq B3P 31q-g eyl ‘*Lsaryoedsex weaFoxd pue < X OTNPON 308ITPUL IOYE[NEMOOY 803§ XIS
WI¥P Jo SeTNpOm 31Q-952 SSGIPPE OF pen exv ¥ X OTUpON 308IFPUL JOJRTREMOOY RO Ar1
81838} Fex § puE X ayj JO 831q Xj8 I8MOT #YyJ ¥ X OTnpoj{ 308IJpuUl JOYETMMOOY PeO] X11
2 TEI83 1T 319-§ Y3 T4 JojeTuumooy exedwo) dio
2 o203 71 379~-9 Y3 M JojeTmumooy ppy VIV
z TeI83 7] 370~ UITM JOJBnEN0OY ‘M) @ATenToxy 108
2 TeTe3 71 379~ U3 Ta J0ye[nEnooy ‘Hp TeoTdoq THO
2 TeX83 7] 374~g U3 A Jojenamooy ‘gNvV Teoffoq TV
L 819471 379-F UY3TA Jojeramooy peo] sVI
Z TEI93 1L 379-g Y3 TM JOJETUMOOY Proq] TV
*l I@3s57Fax uy pajdoo (9=¥) #3714 ‘s
I838196a uj paydoo Joje(mamooe Jo (E-1) #3714 1 L ¥ 8 BI9ysIPey Ul J0JBIENOOV 83035 158
'l IeyeTRea uj pejdoo
SY® JOJETIEMOOE JO (E=1) 837Qq I9PI0 Iea0] 1 § Te3ejfoy U JOJETHEmMOOY SI038 Ivs
1 18183 71 Mﬁp..n JIOUS YITM I PeO] IS8T
1 Texe3 7T (379-E) 3I0U3 Y3Tm § PROT 881
* IO} ETMO e
. 8y} uj paxoys s suojjuxedo zemyo Tr®
Lt & Wy 30 3[USaX Oyl “Ze3sTReX eAT308dSex eu3 UT
L ¥ S ¥JA sessaappe os[e f["pejusmexcep 9f § Pe038 oxe suojiexado 98ey; JO BITNSAX Ol
ueyy ewes eyj seal¥ €T i1 ¥ ¢ £3 o3 pejurod
a9je1Fax saa(d 2T Juenday *1's uy prey 1 I9387A8Y U3 M JOJETIEMOOY HD SATSNTOXE HOE
B} SS9TpLY J938198X 8y; PuTEsaIppE J08ITpuj 1 Te3afFeY YT JOFULIMMOOY ANV TE0FPoT | any
204 “PU euw *ET ‘21 20 308xTpuT 3N TI-0 1 1036 TFSY U3 FA J03R MO0y PRy Arwulg avd
J0J peumese s] FujEsaIprv 300ITp pue jusemFrw 2 B T038 fBey Uy M J03E[MMOOY PPV QOd Qv
379 anoJ ® aaey Leyl ‘*eIejefex [FUISjUT 1 - eouo £q xegsTPay juswaIoe(bo 1
gb Su3 JO SUC U3TM JOJETIGTIOON I3 JO SIUSLUOD 1 I93sTFey Uf J03ETMMOOY 8I03§ HVsS
éy3 syendiuve 03 peen aXe FUOTIONIIAUT I 1 938 [Py WOIJ JORETTEMOOY PUO] vl
sjuawio] satokg uotjered) 80 FuUCuay

RN

*eoTe] J7 seyofo omy ‘enry Jj serolo eexy] «

*youjs dyyo Lromewm u] peloys

2 UTNOIqNS WOXJ UIN}ey IAH SUO T3 ONI3S U]
A{reoryswojue Iejunod wexPoxg £ supinoIqung o3 o) 809 sujjnoIqng
g/t 308 jou 33q Lxxeo Jy damp wor
2/t 388 37q Lxreo J7 damp r
sIejejiex reuxesuy jJo ,aFed usAes
® yFooxny; souwenbes 03 pes 2/t o3 Tenbe jou g xsqsidey J7 dunp s afeg
g/t eatjysod 33q ufps J dump dIe %z upp e edump
2/t sarez [[® jou Jj dump ZNC
w2/t soxsez Tre Jv dump 2Ir
£ TeuoT3 Fpuoouy dumg Eoly
*epom 308ITPUT 6y} I0J weysis
ey3 dn j3es 03 pesn 8] uorjoOnNI
-38UT XVS &yl “Jujssexppe
e[npon X0j I23sTFex X syy esn £ 300ITPUL OUPOY U JOJE[MENOIY 8I03S s
suofjperado O/I J08IFpUl @yl ¥ $09ITPU] STNPON WOXJ JOJE[IUMDOY PEOT i1 8U0 T4 onIysu]
£ $094JQ S[NPOY UF JOJB[MWNOOY 8I03§ VS yndyng/4nduy
Z $09IJ(S[NPON WOIJ JOFE[NAMOOY PEOY W1
S oo 1 8370-% JUFT TojE[ramooy 3ITUS NSH
Teuofs 1 8319=F 3J9] JojETramooy 3JIYs NST
=Uoom paTesls Feld Arae) 1 379-T FIYSTH Joje(amooy 3JJIys You suofjuIady 3JT4s
L[reuopjTpucoun 3es Feld ALxxep L 3791 3J9] I03B Mooy 3JFYS V51
23 Usamo) etokp wotjezsdy SOTUOLAUY

2

s 2
SO
oy es 3k
2z % 38, 353
TR LT
§Y. B fiaaadls
2248 3 259 3.
j|H: 15
B RRE
4 ;5iﬂi X1
33 Sh. 4 G2si
By Baedd f:i
. | eSS, PPN
;
uh“"%%gi -
gggga'!g §§;- .
pni g g
g |998fasas g3, s
iliqpedted dfas 2
i 1 |
iniiiE Mn !}
f SNANERE 3%

PACKAGE: LP 000, IP 6000, LP 1010, LP 1000

40 Lead Dual In Line,

'L- r_ aEET= T _'H' non ' l"‘_'l
' - -
A -

PACKAGE: LP 1030 Clook and Power On Reset Generator.

B8 Lead Dual In Line,

B8 76 S tlons = LP 10

v
cc

Timing Input
Synchronising Input
Reset Input

TBB

Clock Output

ﬁ” Output

Reset Output

O =) O o oW N =

128000 LOCIC PROCESSOR

Pin Conncctions

1 Vee 21 Peripheral Bus 1
2 Power on Reset 22 Address Bus 1
3 Clock 23 " n 2
4 Not Used 24 " 3
5‘ " " 25 " n *
6 Data Dus 8 26 " L
?‘ t n ?’ 2? n n 6
8 wom 6 28 Not Used

9 ww s 29 noon

10 n n 4 30 " on

11 n o n 3 i | L

12 " w 2 32 n "

13 n o on g 23 noon

14 Peripheral Bus 8 3% "oow

15 " . 7 35 CIO

16 " " 6 36 CDA

17 v " S 37 Qz

18 " "4 38 CRA

19 ~ TS 39 Veg

20 " no2 40 vgi

LP6000 PROGRAM MEMORY

Pin Connections

1 Yecc 21 cQz

2 Data Bus 1 22 CRA

3 non g 23 v

4 e SR 24 ?:g

5 L. 25 Peripheral Bus B8

ﬁ n n 5 zﬁ " ™ B?

7 I T 27 % " B

8 W W 28 " " BS

9 n " B 20 L] n B4
10 Not Used 30 L " B3
11 Power on Reset 31 " " B2
12 Address Bus 1 32 n " Bl
13 1 ¥ 33 Peripheral Bus A8
14 n n 3 % " " A7
15 ed " 4 35 " " A6
16 " L 6 " " AS
1? n n ﬁ, 3? " " H
18 Clock 38 " " A3
19 CDA 29 " "o A2
20 CI0 40 " "oAL

E

Ein Connections
1 Vee 21 Cha
2 Data Bus 8 22 cqz
3 - L 23 CRA
4 " L 24 MIC Enable
5 % =g ¥ Memory Enable
E " L] 4 ﬁ
7 -~ " 27 Clock
8 " " 2 28 Address Bit 1
9 L1 L] 1 2-9 L] n 2
10 Fower on Repet 30 - AN
11 Address Bus 1 n » LA |
12 " . 2 32 . o6 b
13 L " 3 33 " " E
14 L L .‘ H " " T
15 " - 35 " il
16 " " g ﬁ " " g
17 PAD 4 37 ., " 10
18 FAD § 38 » . b &
19 PAD 6 39 Vee
20 CIO 40 Vel
LP1010 INPUT/OUTPUT BUFFER
Z2in Connections
1l Vee 21 PAD 2
2 Data Bus 1 22 PAD 3
3 W n 9 23 75!
4 - S 24 PAD 4
5 . s & 25 Peripheral Bus B8
6 " n 5 26 " " BT
T L] " 6 z'r " " ﬁ
B L] L] T 23 L] L] 5
9 " n A 29 " " B4
10 Chip Select 30 " " 83
11 Power on Reset 1 » " B2
12 Address Bus 1 32 " " m
13 " "2 33 Peripheral Pus AB
14 L] L] 3 34 " L.] i'?
15 PR 35 8 " A6
15 " " 5 36 L W ‘&5
17 » ollll 37 " " A
18 Clock 38 » L
19 CDA 39 " " A2
20 CIO0 40 o L b

A pair of adjacent addresses is selected by PAD 4, PAD 3 and
PAD 2 1.:515tha range 48 to 63, e.g. 011 selects peripheral addresses
54 and 55.

3o mmu_mmw «1 ,._e.

/ ; _
w1
..._1. e | == = Em= e e e
0l D i Ol <
m_.m.. Lils e 800D Teuxejul e
¥ ey *Sey
. 1 e
TR R TR 1
1
D i lul el 300xT0) TewFoaq
| g U3TA 3TUQ sferd
05 Ie}sTiey -|_ 12=u 97807 oFjemy3TIY
114 g X g¥ _|._| 2 b
B0
— YD
mu tomuop [010
Jeojorfey Pupixogy wexSoxdoao Ty
TeuoT30axipid g6
Arup ynduy -1
eng Texeqdirsg |
qo3e] jndyng sxeatay jndyng Te3eTdey
37q ¥ i ¥ oFreyosay PROAR: Svances w0 T4onTy suL
|

eng ®1%Q 374 g

s e T 000RAT D NVEDVIT YOO T TVIEEIAT

1
DABn'_ l
ADB s
v".: s —
Yai Q COUNTER
L ey (11 bits)
R — |
ADB g
o 1} sy
Address "
S-til:tn_ A REGISTER
-
cl10 —— CONTROL
gg; — DECODER peaitey
B REG
CRA — ISTER
el
POR =—— 2
Clué:l: — P
Ml i
Enable Z REGISTER
‘
L
| I
Memory ;
Rw Enable 11 Bit H':‘;'L“
LP 1000 MEMORY INTERFACE CIRCUIT
LP 8OO0 SYSTEM BUS
— Chip Enable
vcc Control Decod
g8 — lontrol Decocing
8 latches 8 latches Address
c10 Sclact
coA e

16 Input-Output pins
(Open Drain configuration; TTL compatible

with pull-down resistors) Tl TR

DAB -8

ADB1-3
Q COUNTER 11 BI c10
I CDA
CONTROL ¢
i F DECODE o
A REGISTER | READ ONLY o
L= MEMORY
ADB4
’ﬁ-!lm—_l 1024 x 8 BIT g
b ADBj
LR Sy i CHIP [ADBo
o= DECODE |__ CLOCK
Z REGISTER — RESET
| |
Ve

INPUT/OUTPUT A INPUT/OUTPUT B

LP 6000 PROGRAM MEMORY

DEVEL -ORT
Circuits

LP 8000 systems use only a small number of integrated circuits for cost
effective implementation, For development and pre-production LP 1000
(Memory Interface Circuit) and LP 1010 (Input-Output Buffer) can be used with
PROM, E-ROM, or RAM to replace the final mask-programmed ROM (see diagram),
The gystem using PROM or E-ROM behaves identically with the final mask-
programmed ROM version, When the program has been proved, the LP 1000,
LP 1010, and PROM/E~ROM ocan all be replaced by LP 6000 to give the final
low-cost smyotem using perhaps as few as two 40 lead DIPs (LP 8000 + LP 6000),
and one 8 lead DIP (LP 1030), Small production runs, or mystems needing
extensive RAM memory can remain with LP 1000 and LP 1010,
Prototype Systes

To simplify hardware and softwars development and help speed the users
product design cycle time, a complete hardware prototype development mystem
ie available to support the Series 8000 family. The GIC 8000 Microcomputer
System provides a test bed for user designed interfaces and relatefl hardware
as well as a program preparation facility with resident, on-line hardware
and software debug aids, The users program can be tested and modified under
real time operating conditions. To make program development fast and
efficient, peripheral interfaces and their related software including TTY
high speed reader, high speed punch or video terminal are included on the
prototype system, In addition, all of the card level modules of this system,
ranging from complete microcomputers to memory or I/0 modules, are available
on an OEM basis for further system integration.
Software

For pure program development to check the flow of instruotions, & com-
plete assembler and simulator written in FORTEAY IV is savailable for operation
on minicomputer systems or on internal or external time share networks,
Manual _

A marmual describing complete hardware aspects of Series 5000, and details
of the program preparation software is available from all Ceneral Instrument
Microelectronics Sales Offices, Agencies, ard Distributors,

Oe
Oe
Oe
Ce
Oe
Oe
Oe
Oe
Oe
De
Oe»
Oe
Oe
O

O

Oe
Oe
Oe
Oe
Cle
Oe
Oe
Ce

MEMORY MEMOHY PUEPOSE
MODULE
MODULE
| I1/0
/ CARD

SERIES 8000
MICROCOMPUTER

TR Hang #ang MCROELECTROMNI
S e : PRI 1A I

ol Birwed. Misitn 114,

A-EAD-5a00, TWE
W0-Aes-1
ra
ywrioon,
;
; Ay
Faria Lima | P94, Bag l':tl-
T E
GENER
AL INBETRUMENT
ﬂft E
ca

Hardware

3.0

4.0

5.0

Introduction to the ALPS System

ALPS System Description

2.1
2.2
2.3
2.4

2.5
2.6

2.7

Structure of Basic System

The Supply Bus and Basic Timing

The Data Bus

The Control Bus

The Address Bus and Module Selection
Feripheral Interfaces

Extending the Basic System

Components of the ALPS System

3.1

3.2
3.3
3.4
3.5

Logic Processor (LP 8000)

3.1.1 Addressing Scheme used for LP Seratechpad
3.1.,2 Basic Logic Processor (LP) Operation
3.1.3 Generating Information for the Address Bus
3.1.4 Use of flags provided in LF

The Program Memory (LP 6000)
Memory Interface (LP 1000)
Input/Output Buffer (LP 1010)
Clock Generator (Lp 103%0)

Interface Considerations

4.1
4.2
4.3

Dieplay Interfacing
Using the UAR/T
Frogramming Teletype Routines

The Instruction Set

5.1
5.2
93
Sed
545
5.6

Description of Instruction Set
Instruction Set grouped by function
Inetruction Set in Op Code order

liotes on Instruction Set

Definition of Instruction Set Operation
Meaning of Symbole used in the definition

[

W =1 =3 W WAAn

13
16

15
15

18
19
19

22

25
26

31

R % W

49

63
67
T1
75

IST OF ans

Page
?g. 1 Blook diagram of Advanced Logic Processing System 4
Fig. 2 System Timing and Clock Waveforms 6
Fig. 3 Data Pue Timing 6
Fig. 4 Showing Effect of Control Bus on ALPS components 8
Fig. 5 ALPS addressing scheme 10
Fig. 6 Simplified Interface Logic of Peripheral Interface 12
Fig. 7 Timing for Peripheral Interface 12
Fig. 8 Adding another LP 14
Pig. 9 LP Seratchpad Addressing Scheme 15
Fig. 10 Simplified Blook Diagram of LP 17
Fig. 11 Plock Diagram of Program Memory 21
Fig. 12 Using the Clock Generator 26
Fig. 13 Timing Diagram LP 1030 29
Fig. 14 Input/Output Configuration 33
Flg. 15 logic Interfaces 34
Fig. 16 Display & Keyboard Format 36
Fig. 17 Display Interfaces 37
Fig. 18 UAR/T Teletype Interface 41

1.0

THE ALPS SYSTEM HARDWARE MARUAL

Introduction to the ALPS System

General Instrument Microelectronics Advanced Logic Processing System
(ALPS) is an B-bit parallel processing system designed for general
purpose logic and calculation problems. TIts instruction set has
been chosen so that common sub-routines may be carried out with the
minimum length of program. The hardware has also been optimised so
that the user needs the minimum number of external components. A
simple system can be built with only two chips and a clock generator.
Dedicated input/output interfaces are provided so that there is no
need for complicated extermal bus multiplexing.

All the components of the ALPS set have been designed to be totally
compatible with each other. They are manufactured using the GIANT
nitride process, known for its high stability and reliability.

The set consists of

(i) LOGIC PROCESSOR =~ LP (Part number LP 8000)
The logic processor (LP) is the heart of the ALPS system.
It performs all of the arithmetic and logical functions
required and also controls all activities occuring in the
ALPS system, It has 48 x 8 bit working registers and an
8 bit input/output interface to which external peripherals
may be attached directly.

(ii) PROGRAM MEMORY - PM (Part number LP 6000)
The program memory PM contains a 1K x 8 bit memory which
stores the user's program. This chip alse includes the
program counter which points to the current address.
It is arranged at the top of a four word hardware stack
which is controlled by the LP for subroutine nesting.
Two directly addressable 8 bit I/0 interfaces are included,
so that a minimum system consisting of one LP and one PM
has 24 I/0 leads. Extra PMs can be comnected to the
main system bue, up to a maximum of 16K words. Each PM
and 1/0 interface can be addressed by the LP, the module
addrespges being programmed at the same time as the

customer's program.

(1ii)

(iv)

ol

MEMORY INTERFACE CHIP - MIC (Part Number LP1000)

The memory interface chip consists of an 11 bit

program counter at the top of a four word hardware

stack. The address outputs are TTL compatible and
enable the MIC to be interfaced directly to any external
memory of up to 2K x 8§ bits. The memory plane may be
implemented with standard chips such as PROMS and RAMS or
cores and diode matrixes can also be used. A memory
area implementation with the MIC chip will have an
analogous operation to the memory contained in the LP6000
mask programmed memories but including the facility of
read/write operation.

The memory area can be extended by using several MIC/external
memory combinations. The particular addresses are selected
by hardwiring pins to Vgg or Vee.

INPUT/OUTPUT BUFFER - I0B (Part Number LP1010)

The input/output buffer consists of two program addressable
8 bit bidirectional input/output interfaces. The output
facility is provided by static latches which with the
addition of a 6K8 resistor pull down to Vgg can drive

TTL directly. Up to eight 1/0 devices may be used in a
system, thus providing 128 addressable input/output lines.
The addresses of particular devices are selected by hard-
wiring pins to Vgg or Vce.

v)

CLOCK GENERATOR - CG (Part number IP 1030)

The ALPS needs only an B800KHz clock, a power-on-reset
gignal to clear and synchronize the system and two
power supplies. Virtually all external components
may be eliminated by using the clock generator (CG).
The frequency of the built in oscillator is determined
by an external resistor and capacitor, or can be
optionally over-ridden by an input from an extermal
oscillator. A data synchronising signal (@3N) is
provided to act as an oscilloscope trigger and a
"Data Valid" strobe for external hardware.

1

XoQao«Lda ESn

"§TdTTTV NELSAS ONISSHDOMd DID0T TADNVAAY 40 WVHOVIQ NOOTH) "OI4

(satIowaw
UTEIIID J0])
o/1
o101 41 [
00 I (THN 008 = 005) XDOOTD WRISAS
WOMd 40 L13moaro AO'T + AZI- = T3\
WY¥® 10 reaoyd NO AO = T8A
HO¥ *1°0 —yi9d Jay30 ASZT'0 + AS+ = 204 "SHLON
Azoway J0 majsdg
AT § X X7
Truragxy
" 8 1 Y Tp RET
g lﬁ_ﬂ.ﬂh
o33w0) 5 Sy Bl — HI H
- | I 8 X ¥Z01 il
HE 1 wa3sig
sowjIajuy * Kxomay Furssaocoayg ¥yoo1o
SR LIaJT
ﬁhﬂh andang/anduy weiiioag oyio paoueapy wa3sks
0001 d1 0101 &1 0009 41 0008 &1 0EO01 &1
.J.
E ﬁuHLﬂwn.u
|— sng ToIjuo)
0 = 1€V
g -1 dva

2.0 ALPS System Description

2.1

2.2

STRUCTURE OF BASIC SYSTEM
ALPS is a modular system which is easily expanded according
to the complexity required. Programs can be written so
that common subroutines are contained in a basic chip set
which can be used in a range of machines.
The system is built around a module bus with four basic
parts. See Fig.l.
(a) Supply Bus (5 leads)
The ALPS system needs two supplies of 45V and -12V
(or -5V and -17V) and an 800KHz clock. A power-on-
reset signal at switch on is necessary to clear the I/0
interfaces and synchronize the on-chip clock dividers
on each chip.
(b) Data Bus (8 bits)
Information (addresses or data) pass to and from the LP
using this bus.
(c) Control Bus (4 bits)
This bus is driven from the LP and controls the activity
of all chips in the ALPS system. .
(d) Address Bus (6 bits)
This bus selects the active area of the system. Any
component in the ALPS system which has a pre-programmed
address which is not identical with the address bus will
be inactive.

THE SUPPLY BUS AND BASIC SYSTEM TIMING

The ALPS system timing is controlled from an S800KHz clock.

This is divided by four on each chip to provide a basic machine
cycle of 5uS. Fig.2 shows the system clock and how the eight
time slots T1-TB are defined. The start of the negative

going edges are defined as F1-F4 and are used as references to
define system timing in the electrical specification (see section
7).

The power on reset signal must be synchronised with the clock

as shown.

1’

-

6 -

.dfﬂ h—l.._.ﬂpﬂug; r:'rc.u.,E
I I

-]

- =

- e

- e = -

-

!

P.‘I'VME

1 I
|
I
[
! I

Reser

i cgte

3
I
|
|
r meadacabane
b

-1----—‘-———-
L

e

X ! ; _. m

R e e Rt Tt ST
o L AR 4 , "

: ~ i "imm "Hmwwm%m ;
' o g 1p R 1)
~ | Imm:lumwm : ;
. : (SERRICUEANTILE
% T § 1
e L A3y 2 §
| g e -l e

- "umMm“ R
WU T e T B imih.J_.I- s o BRS
* | - :
=5 30 e iy o QY -mf-*.-.m
" 't kA I

4 sy 5 IR " i
I T | L

! ||..:m~|||-..“v:|||-:mmabln-"
1 - i i

i 1 1 (]

B B il i e el B A

i : . :

N 18 &

m m : :

| “ " :

ﬂ L m :

" " " :

: ' i :

; : : m

[}] i]

: ' i :

; _ : ;

! | | !

m : m m

I I ' '

AND CLOCK WAVEFORMS

SYSTEM TIMING

FIG.2.

450n Sec MIN 1u Sec MAX.

CLOCK WIDTH HIGH TH

450n Sec MIN 1u BSec MAX.
300n Sec MAX.

CLOCK WIDTH LOW TL

@3N DELAY

I00n Sec MAX.

CONTROL & ADDRESS TD

2-3

2.4

THE DATA BUS

The 8 bit data bus activity is controlled by the LP using the

4 control busses (see 2.4). Information, which may be

addresses or data, can be transferred: (see Fig.3)

(a) from LP to another ALPS component. In this mode the LP
precharges all data busses in T2, T3, T4 and then
conditionally discharges it in T5 and T6. The data is
now ready to be read into the addressed ALPS component on
T7 and T8.

(b) from an ALPS component to LP. 1In this mode the LP
precharges all data busses in T2, T3 and T4. The addressed
ALPS component discharges the data bus in T7, T8 and at the
same time is read into the LP for processing and/or decoding.

Note that the LP always precharges the data bus every machine

cycle. Many instructions do not use the data bus, e.g. 'increment

accumulator! in which case the charge on the data bus remains
until the next machine cycle.

The data bus normally carries 8 bits of data to and from the LP

with data bus 8 as the most significant digit. Note that the

data is inverted. This is only of importance when debugging

a system by monitoring data bus activity.

The data bus is also used in conjunction with the 6 bit address

bus to provide the least significant 8 bits of a 14 bit address.

Whenever any components are connected to ALPS system it must be

borne in mind that the data bus is a high impedance bus so that

it is not possible to connect items which require significant
input current (e.g. TTL). This is of no concern to the user
who only uses ALPS system components as they have all been
designed to be compatible with the data bus requirements.

Components requiring input current must be connected via any of

the ALPS peripheral interfaces.

THE CONTROL BUS

The control bus consists of four control signals.

CIO: controls whether information is written onto the data bus
or read from it.

CDA: determines whether the information on the data bus is
data or an address

==

SINANOJHOD STV NO SN TOMINCO J0 IOJAIE ONIMOHS P°014

d1 Lq pesn aae sopoo asayl ATW) &

uotzexado ou E 5= SUSps M L i M M ﬂ ” “ #
3oeI§ ysng pue P <~ ssAIppe ¥ovls ysng pue D& SsaIppe | T O I I #
(D <~ ssaappe Dessaappe | 0O T T =
ﬁaﬁ; 7 Aq pessaxppe ¢ nﬂ_“m“
90V LISJUT 03UT U TIM ®IEP (UOTIWO0T OJUT BIWP IITIM M uotjesade ou 1001
((000T=*
M wotyetado oy uoTjeiado ou M _._“ “ .“ M
uoryexado ou (SUTINOI~QNE WOIJ LINGOY QUTINOI-QNE WoIJ wim3iay | 10 1 0 #
(uoTyegado oy uworeado oN | OO T O »
M nEﬁEEEuEEEEM NBaﬂnEﬂusuﬂﬂﬁEM S to e
d71 03 20BJI2UT WOIJ pEAS wWIEP (b Jh Seinb b vibn deex:{ §O29J UOTIONIIEUY (] Tooo
(((J]oooo=
‘Wd “dT ut se T0¢
eowjiequ] Telaydried ol i il i T it ey | m .MW m
W D ﬂ. ﬂ.
QESS]HAAY FINAOK 40 FdAL mm gz
-
o ag
LEXE
8 e e
ged e
g3

2.5

CQzZ: controls whether the Q or Z register is uded in the PM,
PMD or MIC.

CRA: controls whether the 4 word hardware stack on the PN,
PMD or MIC is pushed (or popped). It differentiates
between jump and subroutine instructions.

Fig.4 shows all 16 possible codes and the effect they have on

the ALPS components. In practice the LP only uses the codes

0000, 0010, 0100, 0101, 1000, 1100, 1101 and 1110.

THE ADDRESS BUS AND MODULE SELECTION

All components in the ALPS system are comnected to a common
module bus, to which the outputs of each component are effectively
wire OR'ed. The system is divided into modules for purposes
of addressing and the address bus (6 bits) selects which of
these 64 possible modules is active.
A module is defined as

256 x 8 bits of ROM
OR 256 x 8 bits of RAM
OR 1 input/output interface.
For calculating the maximm size system for a given application
it is useful to describe the ALPS system components in terms of
modules (maximum permissible 64).

Component Module No. of Modules
LP 1 8 bit I/0 interface 1
TOTAL 1
PM 1K x B bits ROM 4
2 8 bit I/0 interfaces 2
TOTAL 4
MIC 2K x 8 bits External 8
Memory TOTAL 8
1.0.B. 2 x 8 bit 1/0 inter- 2
face. TOTAL 2

-10-

dWEHD S ONISSIMaay sS4V

o1

*(801 40
*EJEp J0J pesn LTuc :FurssaIppe J0J pasn JoN *saowjiaqutr Texaydyaasd eyqissod $g Jo 3no | s3pafes Md uo)
Taure 9__..H
arqrssed g
Avaae Lrowom ssaJgppw o3 RYOT JO N0 [papooep JO Ino OIW T 5309738 | R X NZ + OIM
[J0 yowa

0 dryo | saynpom § Fupupejuco
Leaxe JOW SSoJppY 03 $ZOT JO INO [pPepodap WA 8309798 sdiyo z s3joaytes Hd

£ ¥ 5 9 L - [£ v S 9
Jusuodwon

sng ®aeQ (sornpow apqrssod 0 jJo | saurjop) S4TV
Shg SSAIPPY

- 1] =

Intramodule selection is performed by B additional address bits
carried on the data bus. This permits selection of 1 of 256 data word
locations in a memory module. If an I/0 module was accessed the

data bus only carries the 8 bit data word, because there is no explicit
intramodule address for an I/0 location.

Memory modules are further grouped in 2K x B bit pages and since the
PM is a basic 1K x B device the PM hardware has been arranged such
that the chips can be used in pairs to appear as one continuous

2K x 8 bit memory. The active chip is automatically selected by
the 11th bit of the system address.

The pair of chips can be considered as one 2K x B bit chip for
programming purposes, Fig.5 illustrates the addressing scheme.

When address information has to be written into the Q or Z

registers of memory chips the active PM or MIC is selected by address
bus ADB4, 5 & 6. This specifies a group of 8 modules and for the

PM, the address information will be writtem into a pair of chips,

i.e. 2 x 4 modules; When reading information from a pair of PM's,
ADB3 is examined to determine which of the pair the data is to come
from. With a MIC chip implementation, normal address decoding selects
the required memory location specified by the 11 bit address.

For the case of peripheral interfaces, these are also assigned
module addresses which are specified by the 6 bit address bus.
Using PM chips, amy peripheral address can be selected except 0 and
63, (Module 0 must be reserved for the start of program and 63 is
already allocated to the LP I/0 interface. Due to pin limitations
on the I.0.B. chip only three moudle address leads are provided
and these are used to select pairs of I/0 peripherals in the range
48-63. The three select leads are PAD2, 3, 4 and they are
compared with the system address bus ADB2,3,4. The address bus
ADB5,6 must be at a logic "1" to select an I/0 device, this gives
the range (48 + 0 => 48 + 15). The A-B selection from the pair

of peripheral parts is performed by address bus ADB1.

The normal method of allocating module addresses is to start

the program ROM or RAM arrays at module 0 and work upwards, and to
assign peripheral interfaces from 63 and work downwards. This method
makes program writing simpler and enables easy expansion of the system,

‘

-
et it sttt et wtt Ll e S e B T e T R
TS U B S i e
. i i i i | i ! i ay e i, - ! : !
. i i 1 \ i i | | sens por | Reedoll - | b+ e
’ =t PR LT R —m— L pe— f § " ' i F=1 =
M i i ¥ 1] [i L 1
: : 1 " - “ “ “ " .“ll._-.“h __.L.'L i m _ ! - =y wal .
VoW A U - e S TR O TR A Dl e Ry
Yr] ____ll g i ' B T SR B . =i i : __ ! bl e
- e ' ™] i i
e B ot e B P B e et S S
i i i ! ' iy, 1 sabmgrnap | I i ' -—
j’l—ﬂ- 0 I ojeminean: pung Waisies Bed pew nighesy Omd = md @ 1001 § T
4 ONIN h. " .n. : e - o : ol b G .!Ill..-“ -5.-..-.“.1 "-l gl |m|_|__“.-l¢.-l.--n1.l_,_!|_-__.-t. Ty -__.._ﬂl._.l_." P
i v _
. \ ..L:L. | S5 o _ £ b ol SRS
L 3unoid) i VR R SRR S U R LN 1R, S UG = M) W d
| n_—- nernerer .uH I roers t | "%y R g
i - . |_||..|ﬂ TL.Il.l e B [Irrl.lal L S
“ | | _
J_II __ﬂq.._l - .I"|II lllll '
]] |
i | i : -
" i H b e
: : "

Bemit mhin pieste spwd 6 .
w5 e dnbasg | Pested dprwie| Tl 8 Supries sleias b mopleesm 88 fpot i my s 48w BB @Y 0 B8 N el B 8

ol Ll

1) ki
-

i
on e ks

- —

! J 1

TOVIuaIN] 1vE3Adiadg i \ SN e _
I

Tdi1v Bohal 40 : _”__. Ll s
GEIFTRFTT ' ;
(]
'8 3¥No9i3 | ciageT 39
]
"SININOJWOD TYN¥3L1X3 ; "BOVHN3INI SETTY

-13~ ‘

2.6 PERTPHERAL INTERFACES

The input/output interfaces are identical on all ALPS components
except that on the LP (module address 063, see below).

The standard 8 bit interface consists of 8 latches connected to

8 open drain MOS output transistors. The configuration is shown
in Fi.g.6 & 7. When reading from the interface the pins are
treated as inputs and the data is fed to the LP via the data bus.
Input and outputs are effectively wire OR'ed together so that when
information is to be read from the interface, it is necessary to
write 0000 0000 into the latches to prevent incorrect information
being read in from the latches. This is done automatically at
power on. This feature can also be used to advantage. For
example it is possible to use an unused interface to store an 8 bit
word. I/0 number 63 on the LP differs in that it can read 8 bits
of data but only send four bits of data out (bits 8-5) as there |
are only four latches. ,
The peripheral interfaces can be addressed in two ways:

(i) Directly (using LAM and SAM instructions). As there is
only a 3 bit data field available to specify the peripheral-
being addressed, 56 is added to form addresses in the range
56-63. This is convenient in practice as it is normal to
allocate peripherals from module 63 working downwards while
the program starts at module 0 and works upwards.

(ii) Indirectly (using LIX and SIX). Any of the I/0's may be |
addressed in this mode as a full 6 bit address is available
stored in the X location of the scratohpad store. |

1’.

WOSSII0Nd IT907 UIHIONY ONIOOV g aInbTg

—————

| 000847

< h + a5

0009 41
SININOJWO0D Sd1Vv |N¥3HL0 _ "a
W31SAS

ey I
_H.ﬂ{tm_tt_iut bt‘.ﬁ-ﬂmmn:m
(313 W3Q0W 3113SSVI)

-4 -

(013 QNVYOEA3IN AVId4SIO)

n._q._u:..im._
vt L i
FIISVA 0009 47
Sd1v ¥ W
m.ﬂ.mzauzou v H10 d -

& S B L B

d

3. COMPONENTS OF THE ALPS SYSTEM

b

3.1 LOGIC PROCESSOR (LP)

3.1.1 Addressing Scheme used for LP Scratchpad.

The LP contains 48 8 bit working registers (the scratchpad)

which are fabricated from RAM. The scratchpad can be

addressed in two ways:

(a) Direct Addressing: a data field in the ALPS
instruction specifies the required register.

(b) Indirect Addressing: a data field in the ALPS
instruction specifies that the address will be found
in another register. In the case of the LP this can
only be the ST register which is used solely as a
scratchpad address register for indirect addressing.

40 |
41
42
S
+—-
— —

eF
addr essablel

figs L.P. scratchpad addressing scheme

N

oo

The ST register consists of two three bit registers.

T (the most significant three bits) can only be changed
using special ALPS instructions which load it with a

three bits literal specified in the user's program,
(Instruetion: LTS), or from the accumulator (Instruction:
SAT). § is a three bit register which can also be loaded
from program data (Instruction: 1SS) or from the
accumulator together with the T register (Instruction: SST).
Full details of these instructions will be found in section
5. Register S can also be incremented or decremented.

A flag detects when S # 7 which is used as a jump
condition,

A four bit address field is used in the ALPS instruction
set to specify the register to be used. Codes 0-11°
(0000 - 1011) are interpreted as the direct addressing

mode and the appropriate registers are accessed. The
remaining codes are interpreted as indirect addressing
using the 8 T register as follows:

Four Bit Address Field Register Accessed

0 - 11 (0000 - 1011) 0 - 11 (0000 - 1011)
12 (1100) register pointed to by S T
13 (1101) register pointed to by § T,

S decremented
14 (1110) register pointed to by S T,
S incremented

15 (1111) do not use
The S register is decremented after being used for code 13
and incremented after use for code 14.
Fig. 9 shows the addressing in diagramatic form arranged
as 6 planes of 8 registers. The T register selects the
plane and the S register selects the register. The full
capability of the T register (8 planes) is not used due
to physical limitations on chip size, so that T = 110 or
111 is not used. If by accident it is, the scratchpad
will generate 0000 0000 on the data outputs when read.
There will then be no undesirable effect on the data
stored when trying to write using using these values of
T. Note that fig.9 shows registers 0-15 as directly
addressable because special instructions exist to
directly address register 12 (also called V), 13 (W),
14 (X) and 15 (Y). Registers 12 and 13 are freely
available to the user but 14 and 15 are used for

1

¥oo1o
983y FE) FE) ooy

/ L1 1]

| ~.
. L .
P sy T
111l = = = = - [euwIagjuy
¥ " Omd
llllll sne
£ oy X s§aappy
seg |HIIIl-==— 7 - - s 4
4
u..“uw.“ﬁ“ Frodng QLI0Y TRWTORQ YA
ey ke =)
—r o8 RS _TFRE, |
—I— 4

-1?-

1235 19ey Fuppiop il a
" WOM TOX3u0)
iilﬁt& o |I— weaFoadoso gy
TRsw e
Aywo ynduy p- I

1
yogzw] nd3ang sdaapag Indang a103g Arezodwa) 1a3s iag
itg ¥ y aFarvuyoaayg BOTIONIISTY

| = ,
T REENRS——.

special registers used for addressing (see 3.1.3).
3.1.2 Basic Logic Processor (LP) Operation

A typical machine cycle will be described (see fig.10).

The LP requests (using the control bus) a new instruction

from the program held in memory (instruction fetch).

This appears on the data bus and is read into the instruction

register and temporary store. The instruction remains

in the instruction register until it has been executed

(1, 2, 3 or § machine cycles). The instruction is decoded

by the microprogrammed control ROM which generates all the

control signals required by the LP and also controls the
rest of the ALPS system via the control bus. It also
examines flag conditions for jump instructions and
provides the necessary sequencing for multi-cycle
instructions.

Most instructions use the arithmetic and logic unit ALU

which can perform the following operations:

logical: AND, OR, exclusive OR, 'no-operation', shift

right or left 1 bit

arithmetic: binary add, BCD add, decrement.

"No-operation'! is not a true logical operation. It

allows data to pass through the ALU unaltered, e.g. when

data is transferred from scratchpad to accumulator it must
pass through the ALU.

Data is fed into the ALU from three possible sources:

(a) The Accumulator: this is the main working register of
the machine in which the results arising from ALU
operations are usually stored.

(b) The Scratchpad: (see 3.1.1).

(¢) The Temporary Store: this holds a copy of any
information arriving on the data bus. This is used
to enable literal fields contained in machine
instructions to be fed to the ALU and also to act as a
store for the second half of two word instructions.

In general the temporary store holds all data before
leaving or entering the LP.

It is not possible to perform all combinations of the

arithmetical and logical operations with all three sources

(see section 5 for details of available combinations).

3.1.3

Jelad

The outputs of the ALU can be fed to the accumulator,
temporary store, 5.T register, scratchpad or Y extension
register (YER). YER is a copy of bits 4, S5 and 6 of the
data held in scratchpad Y (location 15) and is used in
addressing the external ALPS components (see 3.1.3).
When an instruction has been executed a new instruction
is required which must be fetched from memory. This is
done while the current instruction is om its last execution
cycle so that ne time is wasted by the memory access time.
This scheme is called an overlapped fetch and execute.
Cenerating Information for the Address Bus.
The address bus selects which of the 64 possible modules
is addressed. The program is normally held in pages of
2K words formed of a pair of PM or 1 MIC plus
associated memory. Only three bits of address are needed
to specify each 2K area and these are stored in the Y
extension register so that it is not possible to execute
program from a different 2K program area unless the YER
contents are changed. This is easily done by a simple
subroutine.
The X and Y registers are used in particular addressing
instructions.,: Y holds the full current page address and
X holds an alternative address. Program is always
executed from the program area addressed by Y. It is
possible to obtain data, or change the Q or Z register in
page X. This is useful in preparing to change pages in
a program, and for storing and retrieving data addressed
by the Z register.
Normally only three bits (4, 5, 6) of the Y register are
needed to specify the 2K active page. These are held in
the Y extension register YER. The full Y register is only
needed when it is required to change the contents of the
Q (or Z) registers in page Y, as bits 1, 2, 3 must be
loaded into bits 9, 10, and 11 of Q (or Z).
Use of flags provided in LP.
Four flags are provided in the LP. There are:

(i)s = 7 flag (S7): This is situated on the outputs

of the 5 register and detects when

the contents are equal to 7 (111).

- 20 -

(ii) Carry Flag (CAR): The carry flag detects overflow
from bit 8 (MSD) of the ALU.
It is used for BCD add (ADR) and
when eemparing numbers (CMP).
It is cleared when the accumulator
contents are shifted right one
bit (RSA) and set when they are
shifted left one bit (LSA).

(iii) Zero Flag (ZER): The zero flag is situated on the
outputs of the ALU and detects
when 0000 0000 is present.

(iv) Positive Flag (P0S): The positive flag detects
when the most significant bit
(bit B) of the ALU outputs is 1,
j.e. 1xox xxx. No special
significance is attached to bit 8
in the LP system.

Flags §7 and CAR are static and no special care is needed

in their use, Flags ZER and P(S are dynamic and it must

be remembered that they are set by whatever data is on the

ALU outputs. For most instructions that do nmot explicitly

use the ALU functions, the accusulator contents are

passed through the ALU and back into the accumulator, and

in so doing the ZER and POS flags may be set as follows:

Result equals zero ZER = 1
Result not equal to zero ZER = 0
Result positive (_. 0) PS = 1
Result negative (< 0) POS =0

If the flags were set by a non-accummlator instruction

(i.e. BCD add ADR , decrement DEC or compare OMP) their
value may be corrupted during the first cycle of the next
instruction. If this is a conditional jump, the positive
and negative flags may be changed so that any further
conditional jump instructions using POS or may give
unexpected fesults.

The table below shows which jumps may safely follow one
another, safe sequences being shown by * and unsafe
sequences by 1.

-21-

LP 6000 PROGRAM MEMORY. - Fig. 11.

N T 2 'F C10
CDA
DECODE k?h:
READ ONLY i
MEMORY
1024 x B BIT — ::':;‘f
e chre [Auuﬂ
DECODE | CLOCK
| RESET
___ Yoo
Vil
TH
INPUT/OUTPUT A INPUT/OUTPUT B

- 2@ =

FIRST INSTRUCTION

J1Z
"'Ez 1 Unsafe
Jip| i1 1 1 1

S| # | » | » | * Safe

jg * » * *

SECOND INSTRUCTIONS

3.2 THE PROGRAM MEMORY - PM (Part No.LP 6000)
The program memory (PM) holds the users program in a 1024 x 8 bit
ROM. The pattern is defined by one mask in the GIANT process
and is most conveniently specified by a paper tape.
From the tape, the mask is automatically generated which minimises
any possible source of data error.
The current address of the program is held in the program counter
Q which can be incremented to step through a program. This is
reset to zero at power-on-reset and so the first location nmumbers
of the ROM array must hold the first instruction of the program.
The Q register is connected to the data bus and part of the
address bus (bits 1, 2, 3) so that under certain conditions it can
be preset to a specified value, For example, when a program
jump is performed, the LP sends the new program start address
along the data bus and address bus and this is loaded into the
program counter, If the instruction is "go to subroutine! it is
necessary to store the old value of the program counter. For
this reason Q is the top register of a stack of four registers
which allows nesting of subroutines to a depth of three, i.e. the
user may program a subroutine of a subroutine of a subroutine called
by the main program. The remaining registers RA, RB and Z are
not reset at power on zero. This is of no concern for correctly
written programs but may cause confusion if the stack is popped
before any value has been pushed into RA, RB or Z. Z can be
preset to a given value in the same way as the Q counter, Care
must be taken to ensure that this is not done when the maximum
depth of subroutining is being used because Z being the bottom of
the stack, holds the final return address.

=17 -

The PM also contains two 8 bit peripheral busses.. These are
independant of the rest of the circuitry and are only placed on
the PM for user convenience.

The module addresses of the memory array and the interfaces are
specified by the user at the same time as the main program. A
small matrix is coded with these values so that the chip is only
selected when the contents of the address bus matches one of the
speéified addresses. The chip is then controlled according to
the instructions received on the control bus from the LP, to
form a 2K active program area which appears to the LP as a
continuous programming area.. This is achieved by making the
program counter 11 bits long rather than the 10 bits necessary
for addressing 1024 words of memory. The 11th bit selects whether
chip A or B is active according to whether a 0 or 2 was
programmed in the address matrix. When a pair of chips are used
in this fashion the contents of the stack are the same on each
chip as they are loaded in parallel. The fact that the 2K active
area is spreadover two chips is of no concern to the programmer as
the changing from one chip to the other is fully automatic. The
simplest ALPS configuration can be built with one LP and one PM.
Even with this system, 20 input/outputs and 4 inputs are
available. (The limitation of the 4 inputs is due to peripheral
number 63 situated on the LP having only 4 bidirectional and

4 undirectional lines (inputs).

3.3 MEMORY INTERFACE - Part No. LP 1000

The ALPS system normally uses the PM for program storage.
However, for program development this may be inconvenient to use
as the masked read only memory is obviously impractical for
debugging purposes., The memory interface chip (MIC) enables
any form of read/write memory to be used with the ALPS system,
e.g. RAM, PROM, core, diode matrix. In operation it is almost
identical to the four register stack provided on the PM except
that the address bits are brought out of the package via TTL
compatible outputs. It can also address up to 2K of externald
memory compared with 1K for PM. A maximm of 8 MICs can be
used in the ALPS system.

When used with a normal read/write memory an IOB chip will be
necessary to buffer the data (see below) & Fig. LP0OO1.

There is no reason why the MIC plus external memory should not
be used instead of the PM but the larger package count and
increased cost means that this approach is only suitable for
small production runs or where it is likely that the program
may require changing.

The address of the MIC is determined by hardwiring externmal pins
as follows.

Connections

Veg Veg Vee 0=7

Vee Vee Vee 8 -15
Veg Vee Veg 16 - 23
Vee Vce Vee 24 - 31
Veeo Vee Ve iz - 39
Vee Vee Vee 40 - 47
Vee Ve Veg 48 - 55
Vee Vee Vee 56 - 63

A chip select is provided to inhibit the MIC operation.
The address bus, control bus, PAD inputs and chip enable are

all TTL compatible.

- 25 -

3.4 INPUT/OUTPUT BUFFER - Part No. LP1010

The basic ALPS system provides 24 input/outputs in the basic two
chip (LP + PM) system.

As the program becomes longer more PMs will be added to the system,
so that input/outputs will increase with program complexity.
Many simple systems often need only the simplest of programs

but many I/0s and for these applications the IOB has been
introduced to allow economical expansion of I/0 capability
without paying for unnecessary .extra program space. It
consists of two 8 bit I/0 parts of the standard open-ended

ALPS pattern (see fig.6). The addresses are selected by three
pins which are connected to Vgg or Vcc. Addresses are only
selectable in adjacent pairs in the range 48-63 as follows:

Connections Selected Address

PAD 4 PAD 3 PAD 2 Peripheral Bus A Peripheral Bus B_
Vee Vee Vee 48 49

Veg Veg Veo 50 51

Veg Vee Veg 52 53

Veg Vee Vee 54 55

Vee Veg Vee 56 L ¥

Vee Veg Vee 58 59

Yec Vee Vee 60 61

Yeo Yoc Ycc 62 63

A chip select is also provided which can inhibit the IOB operation.
The I0B is also useful in conjunction with the MIC to provide

data buffering for any read-write memory.

The address bus, control bus, PAD inputs and chip enable are all
TTL compatible.

I RR————

3.5

CLOCK GENERATOR - Part No. LF 1030

The ALPS system needs only a simple high amplitude clock and
a power on reset mynchronized with the clock. This can moet
easily be provided using the clock generator (CG). A block
diagram of this is shown below, The circuit generates the

necessary clock and reset signals for the system. The Reset
and Synchronizing Inputs are directly compatible with TTL/DTL

systems,

i ———— T —— —— ————— g —

Oscillator <+ 4

v

|7 UIN Output

sl Clock Output

8 Reset Output

|

|

|

|

D

|

Power A Sauch :

On Logic

Reset |
Logic E‘} :
I

kg

For the Clock Output to follow the Synchronizing Input in
the slaved mode, the Timing Input should be tied to a logie '0',

- 27 =

The ALPS Microprocessor System requires a reset signal that is syn-
chronized to the system clock, and at Power On the system must have a
minimum of two clock periods of reset to force all component circuits
into their initial state. Logic on the LP 1030 monitors the power
supply lines to the system and generates on the Reset Output (pin 8) a
signal giving this minisum of two clock periods of reset for the system,
The negative edge of this signal, which enables the system, is correctly
synchronized to the system clock and the f3N signal. This latter con-
dition ensures that the Reset Output is only enabled at one particular
period of a machine cycle of the system, one period of P3N defining one
machine cycle, If, however, during the power up period the Reset Input
ie at a logie '"l', the Reset Output will remain in ite positive aotive
state until this Reset Input is taken to a logie '0'. The Reset Output
after this input change will switch te its inactive negative state syn-
chronised to the system olock and f3N signal for the reasen previously
described.

The LP 1030 monitors the Reset Input during that period when 3N is pos-
itive and the system clock is negative, If between these periods the
Heset Input has changed from a logic '0' to a logic 'l' then the Reset
Output will change to its positive state en the positive edge of the f3N
subsequent to the LP 1030 monitoring the change of input.

For Reset Input changes from a logie '1' to a logic '0', the Reset Output
will change to its negative state on the first positive edge of the sys-
tem clock occuring during the positive peried of 3N after this input
change.

The Reset Output has an intermal pull down resistor to Vgg, nominal
value 2.5 KOhm,

The @3N Output alse has an intermal pull down resister to Vgg, nominally
3.5 KOhm. The f3N signal is of importanmce in the ALPS Microprocessor
System because the Data Bus of the system is true only during that period
when @3N is positive., Its availability assists system debugging.

The Clock and Reset Outputs of the LP 1030 can drive typically a system
comprising of six circuits without additiemal circuitry., For additiomal
drive requirements the Clock Output will require bipelar buffering,
however, The Reset and f3N Output drive capability can be increased by
connecting 1KOhm pull down resistors to Vgg from these outputs.

MAXTMUM RATINGS *

All pins with respect to Vee -:wgtou.;vn # Exceeding these ratings
Storage Temperature -25 C to +35n c could cause permanent
Operating Temperature 0°C to+75C damage to the device,

ELECTRICAL CHARACTERISTICS (ﬂlﬂ}ﬂ-ﬂkﬂ“fﬂﬂﬂlﬂi).
Vgi = GND (substrate at Vec);

Vee = +5V + 0.25V;

Functional operation is
not implied - operating
conditions are specified

below,

7“ = =12V i‘ 17-

Parameter Symbol Min, Typ Mex, |Unit | Conditien
Supply Voltage Vee +4.75 B5.25| ¥
Ve -13 =11 |
Heset Input
Logic '1' Vrii | Voo -1,5 v
Logie '0' Vrio 0.8 v
Synchronizing Input
Logie '1' Veidi Veo =1.5 v
Logie '0' Velo 0.8 v
All Outputs
Logic '1' Vol Veo ~1) Sinking 20mA
Logic 'O Voo -10 v Vag = =12V
Voo = +5V
Input Leakage Iil 1 ud Vin = Vgg af
25°¢C
Capacitance on Inputs ci 10 P
Clock Output
Width 41 450 700 ns
Ripe Time thr 200 nS 1KOhm pull
down driving
60pF
Fall Time tht 200 nS As tér
@3N Output
Rise Time tir 300 nS 60pF load
Fall Time t3r 500 nS 60pF load
Propogation Delay
logic '0' to '1' thl 300 nsS
logic '1' to 'O' tg0 300 nS
Reset Output
Time
logie '1' to 'O txf 0 400 700 nS
logic '0' to '1 trr 400 nS
Reset Input
Let up Time thrl 300 nS
thrt 100 nS
Synchronising Input
Frequency f 800 | KH=z
Pulse Width High 450 nS
Pulse Width Low 450 nS

LOALOO CHSEH

I0ANT JESHE
INAIN0 NEP

LOLLN0 HDOTO

L0dLn0 IS8Tq

LOdNT JISTH

IndIno neg

40400 30010

L . .

0°¢ +70°%
Permissable operating area for systems
using the internal oscillator on LP 1030.

500 KH#
0% +70%C

Permissable operating area for systems
using external oscillator to LP 1030.

}1

4.0 INTERFACE CONS IDERATIONS

The Advanced Logic Processing System ALPS has been designed to a
strict philosophy of being very simple to implement in a users system.
The minimum complete processing system contains only three active chips,
the LPS80O0O Processor, the LP6000 Program Store and the LP1030 Clock
generator along with a few resistors and capacitors to control the clock.

With this basic system, the user has access to three input/output
groups, two on the program chip having eight bit input output capability
and one on the processor chip which has an eight bit input but only a four
bit output capability. The standard input/output port has a logic
¢onfiguration as shown in fig. 14 . The output data is held static by a
flip flop, the output of which is connected directly to the gate of the
gutput transistor. A legic zero in the output storage will turn OFF
the output transistor. This is the state produced after the application
of power on reset POR.

The final output configuration is a simple open drain MOS transistor
with its source connected to Vcc, the positive chip supply. This
configuration gives versatility in output buffer design allowing any
voltage rail to be utilised. 1In the ON state the output transistor will
source current from the positive supply and in the (OFF state, the output
normally would be pulled to a suitable voltage via a resistor. A
selection of possible interface designs are included at the end of this
section.

When the user wishes to use the input facility, it must be remembered
that the output register is directly coupled to the output transistor and
the output word would appear wired-or on any input data. It is common in
several programs to use the input port to read a previous output word but
if this is not the intention, the output register should be cleared to all

geros before any input is requested.

fosa2

-2

The input/output ports contained on the individual I/OB chip are

slightly different from those contained in the other chips, in that the
open drain output transistors can source twice the output current for the
same Vds voltage drop. This feature can simplify several interface
designs, and for example it allows direct coupling to a TTL input with

only a single pull down resistor.
The inputs are directly compatible with several other logic families

including TTL and CMOS. When used with simple switches, an antibounce
facility can be incorporated in the program if switch bounce was likely

to be a problem.

[oes3

= s g I - i 1 #] 1
; | = [_ ; I Pasey g | ! , | |
1 i __ | | | _ I “ — T | _ " _ “
| d 1 9w biaieh | | I.I...I_.-.._l__l._....l
I | | | _“ “ | pEsi pur | B bk coint | ; _r I |47 0 vad 3
_ | _ : el TP ——af——— FEITYITIR —= | “ - :
- —— [T]] 3 LF) L 4 I —)
St ey e : . d t__: | [Ljeuarypusy I .-:_.__ B § =i | | m " TR
i i I H I :) | sng mivg I i _ ! _ | i
| I u “ H i b= —Iu i % _l | . i “ll i i === - I_l N
- S— S R ——— _.n — o — S = —. - - — e — —. - — - ._ r —
! i 1 i _. | H | _ _ I _ _ |
_.-”| e e 1l i S B ! “ wdine ua | | | wivp o1 Buwiprosar | | I [|
I I i “ *_ | | | sswadde 3 | J | e | pabinydsip | | | " “ _—
I _ I | [ioaE 880 pwo| (Ruisies pur pro) T _.._..::_ r..._lil Wd'd R A ahisia) S H_qn _ |
' _|I_ | ¥ 2E083 uo spusdap paads) pres ?_E._na-p_-__-n | uu-___..__,.-_.“__: | n::_ prRi .__ _.___n o “ __ _ | S
: : | usipm | .
| d I|._ | | _ | weq | I I|I._.| oy O - |_..||.IiJ ||||||||
..:. 0 | | i i R S D I+I T S) __
410 N 4 7 i E | _
TTer T S e s e R 7'y 2L na " | B _
e e et e
I I | | [_ | | [Lt TR s = il Ny 1“ = /N
I._...I.-.-I i i e l.;...“-|4|-[l QL e B b Rl b S s B e 06 I__|1 | | _
i | _ i
| | _. i | | # “ | %001
| | | | | .h ﬁ _. ._
_ _ | | _ , : : :
Vi | | | I 1 RS e
i LT R o § a4 Sl TR = B S O S A
2 ' R, Rl Y T) e A
;-
I 8l+Ll
_ sng
: | elep
; _ 0}
peo) —— | L1
|BUlax 2 " _
uoijeIRBTjueH L J snq
INaIng Thda; I D a ejep
T SIN6T

| + 5V
_.I I
| MOS
l oV
10Kk ov -0V
| 33K -12V
I
TYPICAL CMOS INTERFACE TYPICAL TTL INTERFACE INV
| + 5V l *5V
: : IK3
— | . T
1
o TTL
| |
| |
| < 6K8 | 33K L
I ov | ov
= '
| - 12V i - 12V
ITL INTERFACE LQ.B, CHIP TYPICAL TTL INTERFACE NON INV,

4.1

-55 -

Display Interfacing

The Advanced Logic Processing System can be programmed to
interface with almost any type of display device. Since the
character composition is contained in a read only memory look
up table, any character format such as 7 segment, decimal
starburst etc. can be handled.

With the data organisation being controlled by the software
program, various multiplexing arrangements can be employed,
i.e, digit serial segment parallel, or any other chosen method.
With all display types it is necessary to provide the correct
current or voltage buffering to suit the system being used.
When using a multiplexed display arrangement it is often
possible to utilise the multiplex output pulses as keyboard
strobes and this technique has been used in the example

of section 7.0 of the Software Marmal.

|

IGIT DRIVERS

P

S¥3AINO
IN3IN3S

ANGLNO 1NJNI
l1lg 8

AY

DIGIT

— EIGHT

|
|
|
I
|
I
|
=

I
_ x I
I o] |
| < |
_ - |
I g% _
I g > |
o w

| @ X |
| > . |
I % e |
| . !
_ o |
_— Y oo |
| I
| |
Vi i ol s i el i]

pbeensy B "EFFQC]
INd1NO LNdNI 118 9

SH3IA 80
11910

AR
FORMAT

EY

w

Figurg 1¢

page 27

| + 5y
|
—i[|
anode
| 10K
| T
cathodes
|
DIGIT SELECT DRIVERS

for COMMON ANODE DISPLAYS

I + 5V

segment
current limit

ot

| oV
ENT_DRIVER

4.2 Using the ALPS system with

THE UNIVERSAL ASYNCHRONOUS TRANSMITTER/RECEIVER UAR/T (AY-5-1013)

The ALPS system is based around a parallel eight bit data architecture,
but several peripheral devices, such as teletypes, certain printers and tape
systems are based on a serial data organisation. To enable the ALPS system
to converse with these peripherals, programs have been developed which uses
the UAR/T device to provide a serial data converter. The UAR/T device
contains all the logic necessary to provide an asynchronous serial data
interface which can transmit or receive variously formatted data. The
UAR/T provides a variable bayd rate controlled by a sixteen times data rate
clock and the word format and control bits are programmable from the ALPS
system., The data word is checked automatically during the receive cycle
and various error conditions are tested.

In operation the UAR/T device is initialised by the system power on
reset and before operation is initiated the various control characters
which program word length, parity mode, number of stop bits, etc. must be
set, and a Control Strobe (CS), must be applied. In most applications
the word format will be fixed and the control word and control strobe will
be hard wired., A level is sufficient to operate the control strobe, a
complete pulse is not required.

With all control conditions complete the UAR/T device may be used to
transmit or receive and in full duplex if necessary. If transmission is
required, the processor must set up the parallel data word on the appropriate
input foutput buffer which will be connected to the parallel inputs of the
transmitter buffer register. The processor must now output a negative
going Data Strobe signal (I8) which loads the transmitter buffer during the

negative period and initiates the data transmission from the positive edge.

An inverting buffer is necessary to provide the correct logic levels.

When the transmitter buffer has been loaded the Transmitter Buffer Empty
(TBMT) signal will go low (logic zero). Once transmission has been
initiated TBMT will return to the' high state and at this point the transmitter
buffer may be loaded with the next word. Further transmission is controlled
by testing the TBMT flag and outputting DS as necessary.

The data receive function is activated automatically by the UAR/T upon
the sensing of a start bit on the receiver serial input. The receiver
section will complete the entry and checking function on the incoming
serial data stream and upon reaching the centre of the first stop bit it
will present the data in parallel to the receiver buffer register. The
Data Available flip flop is also set at this time and providing the Status
Word Enable (SWE) line is low the DA signal will be gated onto its
respective output. The other receiver status words Parity Error (PE)
Framing Error (FE), and Over Run (OR), are also controlled by the SWE
signal and these can be tested for level if required. The transmitter
status signal TBMT is also controlled by the SWE ioput.

The processor program must include a polling routine which regularly
inspects the DA output , also operating the SWE input if it is not hard
wired. When DA is found to be at a high (logic one) level the processor
must then operate the Received Data Enable (RDE) line which gates the
parallel data from the receiver buffer onto the tri-state ouput lines.

The program must then provide an internal data store sequence to load the
accumulator from the peripheral. This will input the received data to
the processor. After the data has been read the DA flip flop must be
reset by pulsing the Reset Data Available (RDA) line. The UAR/T system
will then be ready to transfer the next received data. The transmitter
and receiver sections of the UAR/T are double buffered and data may be in
transfer on the communication line while other data is being input or

eutput from the processor.

- 40 -

An external oscillator is necessary for operating the clock of the

transmitter and receiver registers. The clock inputs are TTL compatible

and the frequency must have a stability of better than four percent and an

absolute value of sixteen times the sum of the total word length and

baud rate.

Teletype Keyboard Teletype Printer der
- + [Reader + /Punch= Tope Sewcs
oV Control
oV =12V -
620 00 270 1
1K m K
-12V
220 Ll
100 10 é
01 K 4K7 100
+5v 4 T I
28 1200 Baud
Oscillator —--,
110 Baud
217 4D oV

2627282930313233 20 25
UAR/T AY-5-1013 3,16,35
1K w S §+5V
_ 13 L"‘E‘ IE_. S %1 B
. ¥ + 5V
EUFFEFEN .\/\f’*-m-ut
& TAANA _-|
4 33K
15 §15 AAN A
K K '_‘_'AV'V\-
W a - 5
EBK _# _Jh-q o '
§ 31 30 29 251 —+sv ~ 0}

23 p—-12v_ Ve

4039383736 353433 32
10 10.B H o
- 12V LP 1010 LOB, af— o
24 ¢ g
234567891213141517 10 2018 18 11 16— om—|
Yag
-12V
1 234567843 2346 5
~ I —ci0 cLK
POR

¥
DATA BUS ADDRESS BUS CDA
oy 1 | | |

LRl
i

TR S A Y P R
2122232425 2627283031 323335 34 4144 37

AL PS. Teleryre INTERFACE - pig. 1s.

T e

4.3 MH}lWMMWMIﬂﬁlUﬂa

The following four routines allow the ALPS system to communicate with
an ASR33 teletype using the General Instrument Universal Asynchronous
Receiver/Transmitter (UAR/T AY-5-1013). The routines have been written
as subroutines but can be used as in line code by omitting the RET
instruction. There are two input and two output routines featuring direct
and indirect I/0 instructions. Two more input routines are given which

allow the use of a tape reader step relay.

Connection of the UAR/T to the Peripheral Channel

peripheral module peripheral module
bidirectional | 1
data bus control bus
i —a
UAR/T
b
L/"
&3 Teletype
~N

For direct input/output the data signals are connected to peripheral
module 61 and the control signals to module 62. For indirect input/output
peripheral 40 is used for data and peripheral 41 for the control signals.

-45_.

Teletype Qutput Routines

These routines print a character, stored in the accumulator, on the
teletype. Upon exit from the routine a character is left in the
accumulator. The Transmitter Buffer Empty flags, TBMT, is tested in the
busy loop at the label WAIT. When the flag becomes set (appearing as a one
in the accumulator) the busy loop is left and a DATA STROBE signal (D8) is
sent to the UART. This causes the UART to read the character from the data
signals on the peripheral latches and to start transmission. The
Transmitter Buffer Empty Flag is cleared by the Data Strobe Signal, thus
one character is not sent until the previous one has been completely

transmitted.

The Directly Addresses Teletype Output Routine

Character is in Accumulator
TT0: SAM 5§ save character on latches
Test UAR/T Buffer Bupty Flag
WAIT: LAM 6 test TEMT
JIP Wait Busy loop
LAS 1
SAM o send Data Strobe
LAs ¢
SAM 6 clear Data Strobe
LAM 5§ reload character to accumulator

RET optional subroutine return

il -

Indirectly Addressed Teletype Qutput Routine

This routine acts in exactly the same way as the directly addressed
routine. The difference is that instead of using LAM and SAM instructions
it uses LIM and SIM instructions with the X register loaded with a module
address. The previous contents of the X register are stored in register 11
and the character, held in the accumulator on entry to the routine, is saved
in register 10, The busy loop is at the label WAIT as before:

TTO: SAR 10 save character in temporary register
LAX , save register X
SAR 11 in temporary register
LAL 40 set up data I/0 address
SAX 3 store it in X
LAR 10 get character -
SIM , store on latches
LAL 41 set up -
SAX , control signals peripheral
WAIT: LINW , 1s character in UART?

JIP Wait busy loop

ST 3 send Data Strobe

SI® , clear Data Strobe

SAX ’ restore X register

LAR 10 reload character to accumulator

RET optional return

o i

Teletype Input Routine

As with teletype output there is a flag which must be tested before
proceeding with the I/0. This is the DATA AVATILABLE flag of the UART and
is set when a character has been received by the UART. It is cleared by
the signal RESET DATA AVAILABLE (RDA) to allow another character to be
received. To open the tristate receiver buffer of the UART, thus

allowing the character to be read, the signal RECEIVED DATA ENABLE (RDE)

must be applied.

The Directly Addressed Teletype Input Routine

TTT: LAM 6 Test Data Available

LSN
JIP TTI
LAS 2

SAM 6 Send RDE

SAM 5 clear data latches

LAM 5 read character and

SAM 5 save on latches

LAS 4 send RDA and clear RDE
SAM 6

LAS) clear RDA

SAM 6

LAM 5 restore character to

RET accumalator

Indirectly Addressed Teletype Input Routine

As the two teletype output routines differed in their addressing modes

so do the two input routines. The indirect routine similarly using LIM and

SIM instructions.

8

Busy!

SAR

FEERBEEE

SAX

SIM

LIM

EEEE

SIM

3

§EE &

11

Busy

11

10

SR i o

-4 -

save X register

in temporary store

set address of -
control signals

read in control signals

test Data Available

send RDE

data peripheral

glear latches

read character and

store in register 10

send WA and clear RDE

restore X register

reload character

- 7%

Teletype Input Routines Featuring Reader Stepping

The reader step relay is connected to bit five of the control signals
peripheral and is actuated during the busy loop of the input routine.

Thus the directly addressed input routine becomes:

TTL: LAL /10 set bit five
SAM O actuate reader
Busy: LAM o
LSN
JIP Busy

LAS 2 send RDE and release relay

SAM 6

LAS 0

SAM 5 clear latches

LAM 5 read character and
SAM 5 save on latches
LAS 4

SAM 6 send RDA and clear RDE
LAS o

SAM 6 clear RDA

LAM 5 restore character
RET

and the indirectly address routine.

I LAX
SAR 11
LAL 41
SAX
LAL 41
SAX
LAL /10

SIM actuate relay

Busy:

LSN

JIP

SIM

SAX

SIM

LIM

SAR

SAX

SIN

SIM

SAX

Busy

10

41

11

10

test data available

send ROE and release relay

clear latches
read character and

save in register 10

send Rﬁ and clear RIE

restore X register

reload character

- 49 -

5. THE INSTRUCTION SET

The ALPS instruction set consists of 48 instructions which can be

1, 2, 3 or 4 machine cycles. Most of the commonly used instructions

are 1 or 2 machine cycles long. As the system has an overlapped

fetch and execute, the run time of any program can be calculated by

adding up the number of cycles of each instruction and multiplying

by the machine cycle time (5uS min.)

The instruction set is presented in different formats as follows:

5¢1 A description of the instruction set showing some uses of each
instruction.

5¢2 A list of the instruction set grouped by function. This is
useful when writing programs and looking for an instruction to
perform a given function.

5+2 A list of the instruction set grouped by op code order., This
is used when checking the contents of memory or checking program
coding.

5.4 A list of the instruction set showing a detailed breakdown of
data flow and the state of the address bus, data bus and control
bus during the instruction execution. This is useful when
debugging a system and also shows the precise manner in which

the instructions work.

e

5«1 A Description of the Instruction Set

SHORT LITERAL INSTRUCTIONS

bt 8 7 6 § 4 3 2 1

instruction format Op code literal LSS, LTS
Op code literal LAS

MNE- ES
orcobe MNET. INSTRUCTION cycL
1111 e 1A load accumulator with short 1iteral 1
0010 e LSS load S with short literal 1
0011 1w LTS load T with short literal 1

The instruction LSS loads the § register with the three bit literal which
appears in the instruction. The contents of the accumulator are unaffected.
The instruction LTS loads the T register in a similar fashion, These

two instructions are used to set up a start address before addressing the

L.P. scratchpad indirectly,

The instruction LAS loads the accumulator with a four bit short literal
(bits 1-4). The most significant bits 5-8 are filled with zeros, This
is useful for introducing single B.C.D. numbers or any other 4 bits of
data into the system in a single cycle.

"REGISTERS S AND T

- AW W T ety TR Ty

instruction format L fpwtm‘ie by iy

opcope MNE- INSTRuUCTION CYCLES
0000 0010 SAT store accumulator in register T 1

0000 0011 58T store accumulator in registers 8 and -l

The registers S and T (used indirectly for accessing the RAM registers)

can be loaded by the short literal instructions LSS and LTS or from

the accumulator using the instructions SAT and SST. When the vélue
required in the T register is arrived at by computation (it is not

known until the program is run and thus cannot be held as a short

literal) it can be loaded using the SAT instruction,

The S register can be loaded at the same time by using the SST instructions.
An example of the use of the SST instruction might be when the RAM registers
are being used as a lookup table (storing a list of values). If the S and T
registers are loaded with data received from an input the values read from
RAM register by indirect access will be a function of the input signal

(i.e. a conversion from ASCII to another code.)

- 52-
o s e - |

LONG LITERAL INSTRUCTIONS IR L5

Wik 2 7 & B & 2.2

instruction format Op-Code _ ‘) j
literal data
opcodE MNS: INSTRUCTION CYCLES
0000 0100 = ILAL load accumuilator with long literal 2
0000 0101 ALL {AND' long literal with accumulator 2
0000 1100 EOL 'EXCLESLVE ORE long literal with
accumulator 2
0000 1101 ORL '0R' long literal with accumulator 2
0000 “1110 ALA binary add, long literal to
: accumuilator k 2
0000 1111 CMP compare long literal with
accumulator 2

These six imstructions fetch a long (8 bit) literal from the next word of
program memory and perform arithmetic (add, load, compare) or logical operations
(AND, EXCLUSIVE OR, OR) with the literai on the contents of the accumulator.
The logical operations may be used to manipulate or examine individual bits

of a word for example, to test whether bit 5 of a word in the accumulator

is set the following instructions could be used,

ALL /10 (/10 is the literal data in hexadecimal
i.e. 00010000)
JNZ SET

The ALL instruction will perform a logical AND of the literal with the
accumulator effectively setting all the bits except bit five to zero.

If bit five was set before the ALL instruction the JNZ (jump if non-zero)
instruction will be satisfied and the program will jump to the label set.

If however, bit five was clear before the test, the accumulator would be
zero at the JNZ instruction., Thus the jump condition would not be satisfied
and the program would continue at the next instruction,

- -

The compare instruction CMP is used to test the value of a variable (a
counter or an arithmetic result) against an eight bit literal., The contents
of the accumulator and the literal are added together in the Arithmetic and
Logical Unit and the status flags (CARRY, POSITIVE,ZERQ) set or cleared
according to the result, The contents of the accumulator remain unchanged.
For example the test for the character carriage return (ASCII value 13) in
a teletype input routine the code below could be used (with the character
in the accumulator)

CMP CR
JIZ CARRET

Because the compare instruction uses the addition facility of the A,L.U.
the two's complement of the character is inserted in the literal. Thus
for the character carriage return (0000 1101) the literal would be
11110011, Adding carriage return to the literal gives:-

0000 1101
1111 0011
1 0000 0000
carry accumulator
Thus the result is zero.

To demonstrate using the compare instruction to test the result of an
arithmetic operation the following instructions test if the contents of
the accumulator lie between zero and nine,

JIP OK
JMP ERROR number less than zero

OK: MP -9
JIP ERROR number greater than nine

The compare instruction adds the centre of the accumulator and the literal
-~ and sets the positive flag if the accumulator contained a number greater
than nine, Thus the JIP ERROR instruction will detect the erroneous
condition,

ACCUMULATOR AND REGISTERS V,W,X,Y

instruction format

8

op cope MNE
0000 1000 LAV
0000 1001 LAW
0000 1010 LAX
0000 1011 LAY
0001 1000 Sav
0001 1001 SAW
0001 1010 SAX
0001 1011 SAY

INSTRUCTION

CYCLES

ioad accumulator from register V
load accumulator from register W
load accumulator from register X
load accumulator from register Y

store accumulator in register V
store accumulator in register W
store accumulator in register X
store accumulator in register ¥

Lt

=t s e sl

The four registers V,W,X,Y cannot be accessed directly by the LAR or SAR
instructions because the op codes for LAR or SAR on registers 12,13, 14

and 15 are given special meaning by the processor.
instructions are set aside for loading and reading these registers.

Thus eight special

The

action of the instructions is identical to the action of the LAR and SAR

instructions.

module addressing registers,

The registers X and Y have a particular significance as

See ADDRESS CONTROL INSWRUCTIONS (page 57).

- =

REGISTER ACCESS INSTRUCTIONS J

bt -8 -2 B S L"F 2

instruction format I op code argument J

OP CODE_ [ONjc INSTRUCTION ___ CyoEes
1000 #HHe LAR load accumulator from register 1
1001 e SAR store accumulator in register 1
1010 =t BAD binary add register to aceumulator i
1101 etk DEC Decrement register by one i
1110 e ADR BCD add accumulator to register 2
1011 =6 AND Logical 'AND' register with accumulator 1
1100 =8 EOR 'Exclusive OR' register with accumulator i

The above instructions are used to manipulate the contents of the
accumulator and the ram registers. They have a four bit argument (0-15),
Register access is direct if the argument lies between 0 and 11 but indirect
for arguments 12, 13 and 14, The action is indefined for argument 15,
The Decrement instruction (DEC) is used to maintain a counter or pointer
using a register. For example a loop which must be entered 7 times:-

LAS ©

SAR REG

LOOP :

|

DEC REG

JIP LOOP
Decimal addition is accomplished using the BCD add instruction ADR. This
two cycle instruction adds the contents of the accumulator to the register
during the first cycle and performs a BCD correction during the second cycle.
The decimal carry is set or cleared by the result of the addition and is
used by the next decimal addition, The contents of the accumulator and
register are treated as two four bit binary coded decimal digits,
Using indirect auto irrement (or auto decrement) register access Fun
sixteen digit decimal numbers can be added together, Repeated addition
and shifting can give multiplication, The logical operations of AND and Exclusive
OR are provided to enable bit manipulation of iha contents of the registers,

M 8 T 55 4 |3 =1

instruction format op code
op cOpe MNE- INSTRUCTION CYCLES
MONIC A Vi
0001 1100 LSA Shift accumulator 1 bit left 1-
0001 1101 RSA Shift accumulator 1 bit right 1
0001 1110 LSN Shift accumulator 4 bits left 1
0001 1111 RSN Shift accusulator 4 bits right 1

These instructions are self esplmifoyy. They are used to manipulate the
bits of a uuﬂ, to multiply or divide a two digit decimal number by ten
(LSN and RSN), The single bit shift instructions LSA apd RSA set and
clear the carry flag respectively,

bt -8 T . Bl {— T,

instruction format op code
A INSTRUCTION CYCLES
0001 0010 SZX Store accumulator in Z on module X 3
0001 0011 SZY Store accumulator in Z on module Y 3
0001 0110 5QX Store accumulator in ¢ on module X 3
0001 0111 SQY Store accumulator in Q on module Y 3

o increase the addressing capabilities of the processor -two of the
internal RAM registers X and Y are designated ADDRESS CCHIROL REGISTERS
The Y register contents define the program area, whereas the X register
defines the data area. The four address control inatru;:-tiuns store an
eleven bit address (formed from bits 1-3 of the appropriate register
and the eight bits of the accumulator) in the Q or Z register of the
module addressed by X or Y register. Thus to store data in a location,
the X register must be loaded to point to the module of the location.
ithe address of the location within the module must then be loaded into
the accumulator. Execution of an SZX instruction will load the Z
register with the location address. The data can then be stored (or
fetched) using a DATA TRANSFER instruction SIX (or LIX). Similarly,
the Q register can be loaded using an SQX to provide a start address of
a routine in another program area. The instructions SAX, SQX and SAY
are used to produce a change of program area as demonstrated in_the
examples.

- 58 -
Examples

Fetching data from a module
LAL MODATA

SAX set up module address

LAL ADDATA

SZX set up intra-module address
LIX fetch data

MODATA is the module mumber of the location and ADDATA is the address of
the location within the module.

Storing data in a module

LAL MODATA
SAX
LAL ADDATA

SIX

load data to accumulator

SIX

Changing program area

set up module address

STARTADDR
set up start address

change program to new area
dummy instruction

EEEEEEE

The SAY instruction changes the program over to the new area but since
the instrpction execution and fetch are overlapped, it has to be followed

by a dummy instruction which will not affect the operation of the changeover.
Another SAY instruction is a good choice of dummy instruction.

bit 8 7 6 5 4 22 1
instruction format op code ‘—I
MNE~

OP. CODE MONIC INSTRUCTION CYCLES
0000 0110 LIX Load accumulator with (Z), module X 4
0000 0111 LIY Load accumulator with (Z), module Y 4
0000 0010 SIX Store accumulator in (2Z), module X 3
0000 0110 LIM Load accumulator from peripheral, module X 4
0000 0010 SIM Store accumulator in peripheral, module X 3

The instructions LIX, LIY and SIX are used to fetch and store data in a
module indirectly via the I register of that module. The use must be
greceded by an SZX or SZY instruction as described in the examples for the
ADDRESS CONTROL INSTRUCTIONS. It is possible to store in and load

from the data area (X register « SIX and LIX) but only possible to load from
the program area (Y - register - LIY). This is because the program area

is wsually Read Only Memory.

The instructions LIM and SIM are used to fetch and store data from I/0
peripheral devices, The particular I/0 module is specified by the lower

6 bits of the X register, The use of the LIN and SIM instructions must be
preceeded by an SAX instruction to set up the required module address.

JUMP INSTRUCTIONS

bit 8 7 6 5 &

< A .
instruction format 0p code | argunent I
e s .
argument I
& 2 & e . P
op cope MNE- INSTRUCTION CYCLES
MONIC = _
0100 e IMP Unconditional jump 3
Lon-n a2 -
0100 1#=# Jiz Jump when result is zero 3/2
R
0101 (e JNZ Jump when result is non-zero 3/2
0101 1##s JIP Jump when result is positive 3/2
ki aa) :I-H-H-
0110 it JRS Jump if register $ is not equal
FHHE to seven 3/2
0110 1w Jcs Jump if carry set 3/2
M
0111 (et JCN Jump if carry not set 3/2

e

The destination address of the jump instruction is generated from the three
bit argument in the actual instruction and the eight bit argument in the
next word, This generates an eleven bit address which allows a range for
the jump instruction of 2K.

The conditional jump instructions JIZ, JNI, JIP, JRS, JCS and JCN test the
status flags. If the appropriate condition is satisfied the program behaves
as if an unconditional jump JMP had been encountered. if the condition is
not satisfied the program continues with the next sequential instruction.
The unconditional jump instruction takes 3 cycles, the first to fetch and
decode the instruction, the second to fetch the nextword from memory and

the third to load the progam counter with the new address. An unsuccessful
conditional jump goes through the first two cycles but does not load the
program counter. Thus the time taken for a conditional jump is described

as 3/2 machine cycles.

- Bf=

INPUT/OUTPUT INSTRUCTIONS

it B 7 6 W45 & ¥ &S

instruction format op code argument

op cobe MIEZ INsTRucTION CYCLES
0010 O LAM Load accumulator from module
0011 (e SAM Store accumulator in module

module = (% +5£)

input or output to a peripheral is a lengthy time-consuming process
when the LIMor SIN instructions are used. To increase the speed of
input/output the LAM and SAM instructions are provided. “hese have
a three bit argument (0-7) allowing eight modules to be selected.
Since modules 0-7 in a system will usually be R0M an offset of 5C is
added to the argument to move the directly addressed I/C's up to
56-63.

A comparison of the use of SIMand SAM instructions to put the data
held in register REC onto peripheral 57.
LAL 5§57 LAR REC
SAX set up module
address SAM 1 send data
LAR REG
SIM send data

The indirect addressing code needs 5 words of memory and takes 7 cycles
to execute whereas the directly accessed system needs 2 words and takes
4 cycles.

- 62~

SUBROUTINE INSTRUCTIONS

bt B8 53 21

instruction format Op code _ argument

argument I

MNE-

OR CODE MoNIC INSTRUCTION CYCLES
0111 1% GOS Go to subroutine (push stack) 3
b e
0000 0000 RET Return from subroutine (pull stack) 2

The 'Go to subroutine' instruction (00S generates an eleven bit address in
the same manner as the jump instructions, However, instead of this address
overwriting the contents of the program counter the old address is saved
in anotier register (pushed onto the stack) and then the new address is
loaded into tne program counter. Up to three old addresses can be saved
on the stack before overflow. Return from subroutine causes tie last
address stacked to be "popped" from the stack and loaded into the program
counter. In this way a piece of code can be entered by a jump-like
instruction from anywhere in the program with tne added advantage of’ being
able to return to the exit point in tae main program.

/anduy
- K i I £ A STNPOK o P UT JojE[nENOOR ax03§| [I70 1000 AbS
- 2 ES 1 £ X 9TnpoW uo B uy JojeTmEmoO® 23038 | OTT0 1000 x0s
- " * I £ X STNMPON U0 Z UT JO03R[NMMOO® 23038 | [100 1000 AZS
- #® % I £ X OIMPON WO Z UT JOJRTIWNDOE 103§ | OIO0 1006 Xz§
- i * I I A UT Jo3enumoO® 21038 | 10T 1000 AVS
- . * I I X UT JojeTnamdo® 31035 | 0101 1000 X¥S
- " ™ I I (M UT Jojernamoo® 103§ | 100T 1000 MYS
- W # I I A UT JojETnEMOO® 21038 | 0001 1000 AVS
- " & I T X *Fox woaj JojwTmmmode peol| [101 0000 iV
- * #* I X *Fox woay JozeTnumooe pwo| OTOT 0000 V1
- *, # 1 I A *Fox moay Jojerrumooe peo]| [00T 0000 V1
- “ ™ 1 I A *Foa mouy Jojermumooe peoll 000T 0000 AV
183238 THoI TOIJU00 SSAJIPPE ¥ JOFETNEMOOY
9 - " < I I (€ ‘2 “r sarq) & *Faa uy Jojerrumoo® 2J038 | 1000 0000 1vs
_ 9 - ». * I I *1°S *Foa uy JojeTnEmoo® 21038 | T100 0000 18§
& 9 - » * 1 I TRI9ITT 330US YITA L PROT | el 1700 SI'T
_ 9 - * 1 I TRa93TT 34048 YaTA § PeoT | wuwT 0700 s8T
! (Furssaappe 3094TPUT) SINSTRAIX F JOJETNENOOY
(4 - » - I I J3ISTHI UT JOJP[MEMOOE 23038 | swwws T00T uvs
s - * # I I I23STHAT WOIJ JOJE[NEMOO® PROT | wuws 0007 V1
- * * T I TRIITT 3JI0UYS YITA JOJE[IEMOO® PROT | wwsn [TTI SV1
A A
- * # z z TeI23T] FuoT Yata Jojernumooe peotl 0010 0000 ™V
¢ (Furssaappe 300aTp) saegsToa F Joj3 ¥ TEMOOY
Lire) oaez oATarsod qsTLaug |
aou Iag SOVLE SOIVLS SIHOM SITOAD NOLLONNA HI00 S INORENK

SI1938TWoY FUTI0NS puw FUTPRO] J0j SUOTIONIISU]

Euigﬂiﬂu.—!g;ﬂ 25

Po30aj ¥ Jou JE[d = -
uoryvaado Lq poayoajie Feld = # 1AM
- * W 1 1 DT §3Tq ¢ Joernmnodw JTYS [rrrr 1000 NSH
- " ® I 1 3J97 €37q ¥ Jojernumooe JTYS | OTTT TOOO NST
ra pageaTd & ® 1 1 WFLL 3Tq | J0P[NMOOE IJTYS | TOTT 1000 VS
z 98 a # I T 3J9T 31q [JO3RTNUmMOO® 3JTYS | 00TT TO0O VSl
ssuoTaeaadp 3J3TYS
z * * * z z (sdord dTTI | mmee mss
SM3EIS §328) TYIRTT YITA Joepnumode aredwop | (11T 0000 dHD
HHHE HHRE
" #* * z z (328 3j0u L1aed) JOJETNWNOOR 03 TRILATT AAY |OITT 0000 YV
§ % * * # I z (TewToaq) J93s8TFoa 03 JOWTNUNOOW PPE (DM | swmeex OTIT MY
< - * * I I I Aq ae3sTdaa uawaxda | sewsw TOTT k1|
! S - * * I I (Areutg) JO3PTMUMOOR 03 JIASTIANI PPY | s OTOT ave
,M isuoTielado oTIAWTIY
: S - » » I I IojeTnENOOR PUE I93STHOI YATA HO SATSHTOXY | wwxs OQOTT wod
£z 22 oo
- & * rA s TeJa3 1] FUOT JOJETNENIOT YITA YO JATSHTIXE | 0OTT 0000 108
WHHHEE R
= ® # z z Te1237] Fuop JojenEmOO® YITA HO | 1011 0000 THO
5 - % « I 1 (Lreutg) JOJRTNUNOOE PU® JIASTFIL YITA ANV TPOTHOT | wwws TI0T NV
R R
- “ » Z z TRI23 7] Fuoy JO3¥TMWNOO® YITA (NY TEOTHOT | 1010 0000 TIV
ssuoTiegadp TeOTdOT
Xaae) odez eATITsod ys T
230N 22§ SOVId SOLVLS AUOM STTILD NOLLONNA |00 SOINOWENK

SUOT3TIad) 3JT1S PUE UOTITPPY ' [POTHO] J0J UOT3ONIISUL

ONTJNOHD NOLLDMMLSNT X6 XMVWHNS 135S NOLLONMLISNI SITV

pe3oezye jou Fely

uoryexado Aq pejoezye Feld = » @I
" - » I £ X ompoN ‘(Z) UT JOJETENOOE SI03§ 0100 0000 XIS
= 5 # 1 ¥ X 9INPoN WoIj (Z) YITA JOJR[IEMDO® PO 1110 0000 AT1
4 # # ! L4 X OTnpoR woxj (Z) YITA JOJR[UMIOT PO 0TT0 0000 o
! (Juyssagppe 09ITPUT) J9FSURI] BIR(
- * # I £ X ompow ‘Tesoydrrad Uy JojeTrEMIO® 103§ 0T00 0000 WIS
- ® # 1 r X o[npow ‘Tereydyred woljy JojvTEmdOw pROT OTT0 0000 W1
t (Furssaappe joeaypur) andang/ynduy
- # # 1 £ (95+w#+) PTNpow 03 JOJETTWMIVY #4340 1100 WVS
< * * I (4 (95+exs) INPpON WOIJ JOJUTMENIOE PEOT ##20 0100 WY1
- 3 (Suyssaippe 302aTP) andyng/anduy
8jou seg o B SMEOM STTIOAD NOLLONNA =00 i S
SOV14 Snivis SOTN ONENK

(*pauoo) FI93ETIOY JULIOIS PU® PUTPEO] J0J HUO[IONIFSU.

pautjapun awodaq Feyd = | fpa3oazje jo0u ey = - fuotieaado £q pajoejje FEld = & 6|
v 1 1 1 I I uotierado pautTiapul | 1010 1000 doN
v 1 1 ! I I uotiesado paurjapun | 0010 1000 doN
4 1 1 ! L I uoTaeIado pautjepun | TOO0 TOOO dOX
£ - - - I I (xossaooad ut

paauawayduy jou ‘ATUO UOTIONIISUT JOIBTNWTS) ATEH | 0000 1000 I'TH

$SUOTIONIISUT PauTjapun pue TOIIUOD 1085230014

I - | 1 I 4 (3o®as TInd) auranoaqns moxj uinjay | 0000 0000 1T

I - 1 1 z £ (3ov1s ysnd) surInoaqns 03 o | ssxl 1110 S00
IFUDTIONIEUT 2UTINOIQNS

HHEHE sHHE
1 - ! I z /'t 3@s 3ou doyy drs Laawo J7 dwmf | sun0 TITO Nofl
G -
; I - 1 1 z /e 398 dory drrs Laawo j7 dwmf | ses1 0110 sof
o HEE R
o I - 1 1 z /'t L # § ae3sTiaa uaym dumf | s OTT0 ul
|}
e e
{ - 1 I z Z/£ aatatsod st ansax uwoym dun[| sxs1 1010 dif
=i '3 3 .5.1
I - 1 1 z Z/'t 0 # 3nsaa uays dunf | x40 1010 rad)
E 2 2 - B L]
T - 1 1 z Z/E 0 = 3mnsax uaym dumf | sw=1 0010 z21f

I - 1 1 z £ dum[peuoTITPUCOUN | wund OQOTO dih[
iornpom ® uryita dum[

L11e) ooz oAT3ISO4 ystraua
230N 23§ QW14 SNIVLS SIHOM SITOAD NOLLONNA 300

SOINOKANRK

TOI3UC) FUTLIOJSUEL] J0J SUOT3ONIFSUL
ONIANOUD NOLLONMISNI Xd AHMVMWWNS IHS NOLLONMISNI Sd'iY

e —

pauljapun sawodaq Fefd = 1 fpezoajjye jou Fe[d = - ‘fuorjexado fq pejoajye FeTd = & XTI
TeI=23TT HHEE -
z " #* " i A TeI23 7] Fuol YyaTA lojenEnode agedmo) o ITTT 0000
TEI23TL SR
= » " z Z J03UTIUMO0® 03 TRI3TT Fuoy ppy YIV | OTIT 0000
TeI2171T g NN
- W * z z Te123 7T Fuol yaTa Jojepnamooe “yo THO IOIT 0000
TeIaaT] HRER EEER
b * * [< TeI93TT FUOT YITA “J03¥[Numoo® YO SATSNLOXH 104 Q01T O000
- ¥ * I 1 A 49§THox wWoay JOJE[NMNAOE PEOT V1 10T 0000
o » # 1 ! X J938THo WOJJ JOJE[NUNOOE PROT vl O10T 0000
- # * 1 | M hﬂﬂmﬁmﬂ‘.— mwo.xjy ha_u._ﬂ.—.ﬁ..uu_u pro] MYl 00T 0000
- u * I I A 4938THa1 Woxj JOjE[TWMOOR PO AVI | 000T 0000
|
s - # # I ¥ g u?v.weuﬂwﬁ ..wu E: kua.ﬂawwn prol AI1 ﬂﬂa 0000
| - . - 1 4 X u?uuuﬁ_uﬁu qar hupqﬁuus wuﬂ E m: %
TeIalTy HHHGE R
- F * z z TRI23 T Fuol Y3TA Joje[nEnode puw [eoTHo] TIV | 1010 0000
TeI231I] AR SEAE
- " . A A [EI937] Fuol yaTA JORnENOO® peo] VI | 00TO 0000
9 - #* " I I .wm J23STHM U JOJU[NENOOW 31035 LSS LIOD Q000
Y @ uT 103¥ 228 2J03 WIS 0100 0000
- * * I E H:ﬂoﬂ nﬂu.mwmn.m&m% uf 103 00% al10] XIS 0100 0000
9 - * - I I 1 193sTHoa uUT JOjeTnEMOO® 21038 I¥S 1000 0000
I = | I I A (yoeas [Ind) 2UTINOIqNS WOIj] wWInyay NACE. | 0000 Q000
L e
930N 99§ TRD O49Z ARMTECd | gryom sTIOXD NOLLONNA X TR | 090
SOVId SOLVLS OINOWANK
HATHO JAA00—d0 NI AMYWHAS LAS NOLLOMYLSNI SdTV £S5

PaUTJOpuUN SoWO00dq FETd = |

fpaaoajje jou Fefd =

- fworjeaado Lq pagoajye Feld = & XAN

- * # I I IYFTL 83Tq ¥ JoUTIMMOO® FTYS NS¥ | TITT 1000
- - # I I 3J9T §371q ¥ Jojernamode 3JTYS NST |ortr 1000

z PoIRaTD = T I WYFTL 37q [JOJE[NEMOOET JITYS ¥Su I0IT 1000

z 308 * # 1 I 3J9T 319 T JOJEINUMOOE 3 JTYS ¥S1 | 00TT 1000

- # #* I I A 223STHoI UT J0JP[NUMOOE 31035 AVS 10T 1000

- ' “ I I X a93sTiea UT JojPEMOO® 103§ X¥S | 0101 1000

_ - * " T 1 M I938THaa UT J03W[NENOOE 103§ MVS | 100T 1000
8 - “ # I 1 A 193872 UT JOJETMIMOOE 103§ AYS | 000T TOOO
_ - * - I £ A ognpom wo ¢ P UT JOJP[MENDOT AI03S AbS 1110 1000
- # * 1 £ X aqnpomt uo * B U JOJPINENIOR JJ01S x0s OII0 1000

v 1 1 ! I 1 uoryesado pauyjapu) dON | 1010 1000

¥ 1 1 1 I T uotjesado pautjepun doN | 0ot0 71000

- " # I £ X a[mpow ¢ Z UT JOJE[IEMOOE 103§ iz8 1100 1000

- * * I £ X ornpow ¢ Z UT JOJELMUMOOE 103§ XZS | 0100 1000

v 1 1 1 I I uoTyerado pautjapup dON 1000 1000

¢ 1 ! 1 T I (ATuc uoy3onazsur Jojernmys) sosssooad IrEH ITH | 0000 1000

230N 29§ Adrep o4z SATITEN | gryom sITOAD NOTLONN UTILISO WSTIME | ono0-do

SOV1d SOLY1S

OINOKINK

HATHO A000—d0 NI XMVHWIS L3S NOLLOMHLSNI STV

pautjepun sawooaq FeTd = | fpajoage 30U Fepd = - fuoryeaado £q pajoajje Fefd = # XM
(ssaappe TRI93TT 3Tq 1T = D 398) HHEEE W
1 - 1 1 z Z/€ 308 Arrwo Jy dumf SOl | w1 OTT0
(ssaappe TRILSITT 379 1T = 0B 398 IIHHE IHHHE
I L 1 1 z Z/ L 4 § d038THaa J7 sul ¥#%0 0110
(ssoappe TRIITT 3Tq [I = D 398 PR
I - 1 1 z Z/t aatateed j7 dum dif | wexT T0T0
' (ssaappe TRI93TT 319 [I = D 398 A
N I - 1 1 z Z/t 0122-U0U JTNSaJI JT Nl ##0 T0T0
I
(ssaappe TeI03TT 3Tq I = D S308 P
1 ~ 1 1 z zZ/c oxez sTenbs jnsax 37 dum ZIf | #==1 0010
(ssoappe TRIe3TT 379 1T = O 8398) R R
T - 1 1 (4 £ dun[TruoT3ITPUOOW) dil | ===0 0010
') - » 3 I I ({-0) Tea0aTT 10Yys YITA | peo] SI'T #xxl [T00
- " * I £ (9S4##%) STNPOW UT JOJE[MEMOOE 103 WVS | w0 TT00
9 - " # I I (L-0) TereaTY 3I0US YITA S peo] b5 | w0100
- d * I (4 (9S+wu) F[NPOW WOIF JOJETNMNOOE PROT RV1 | #=20 0100
230N 29§ ey oxez AT | qniow swmixo NOLLONNA w0 WSTIRE| on-g0
SOV SALVLS OINOWINK

HATHO FI00-d0 XMVKWAS LAS NOILONMLSNI SdTY

pauTjopun sawodaq Ferd = | fpajoajye jou Sery = - fuoryeaado Aq pe3oagyw FeTd = » IAEN
- * i I I TRIIT] FJO0HS YITA JOJU[NEMOOE PRO] SVI | wwns TITX
S ‘e " #* * 1 z (see) 2238TFOa 03 103UTNUNMOOR PPE (D WAV | e OTTT
: S - # # I T U0 Aq (wwnn) J9ISTHAI JUSWAION 0M | s TOTT
= S - n * 1 I JOJE[NEMOOR YITA () J0ISTIM ‘YO SATSMTOXE H0d | sssx OOTI
1 § - " " I I JOJRTIUNOOR YITA (wwwn) J93sTHox “GNV TeoTiOT ANV | #ene TTOT
.1 - * " I I Lreurq faojeprumoow 03 (wuss) J93STHox ppy ave wens OIOT
g - » » I I (je0¢) 2238THOa UT JOJPTMENOOE JAeS HVS s TOOT
.t - % * 1 1 (#s0) 2938THOa WO JOJUTNENOOE pPROT V1 sene 0001
(ssaappe TRIaTL 379 1T = D 308) Eaae e
I - 1 I z (743 (wowas ysnd) auranoxqns 03 09 S00 | sl TTIO
(ssouppe TPI03TT 379 11 =D HJ. P———
I = 1 1 z /€ 398 jou Lireo jv dun Nof | #=20 T1ITO
930N 99§ farey oz amTSNd| gruow srmoxo NOLLONNA UERID WSTIMWE) gro0-d0

SOVId SALVLS OINOWINK

HAQHO FA00-d0 AMVHWWNS LIS NOILONMLSNI SITV

- 11=

5.4 NOTES ON INSTRUCTION SET

Note 1 - Condition of Status Flags with Conditional Jump Instructions

During a multicycle instruction the contents of the accumulator are
passed through the Arithmetic and Logic Unit (ALU), and may be operated
upon, depending on the instruction. When data passes along the data lines
oat of the ALU the positive and zero flags are set according to the data.
The carry flag is not affected. Thus in the first cycle of a conditional
jump instruction the positive and zero flags may change from their state
at the beginning of the instruction. If the flags were set by a non-
accumulator instruction (a register instruction) their values may be
corrupted during the first cycle of the next instruction. This is
particularly important with consecutive conditional jumps.

For example:

DEC REG1 decrement register one

JIZ ZERO jump if zero to

JIP POS jump if positive to POS
The positive and zero status flags are set by the DEC instruction and
tested by the JIZ instruction. If the test is unsuccessful (i.e. result
is not zero) control passes to the JIP instruction and unless the contents
of the accumulator are exactly, thesame as the data which set the flags
(i.e. contents of register one), the positive and zero flags will be
corrupted by the JIZ instruction. Thus the JIP instruction may give an
unexpected result.

The safe combinations of jumps are shown by an asterisk in the

table and unsafe combinations by an exclamation mark.

Al - ==

FIRST INSTRUCTION

JizZ JCS
1z | e | ges | jon
Uil T O T
"‘IHZ 1 Unsafe

el S) A
JRS****

jg #* 1# * ¥*

Table -~ Combinations of Conditional Jumps

#* Safe

SECOND INSTRUCTIONS

The positive and zero flags are dynamic whereas the carry flag is a flip-
flop only altered under special conditions (see Note 2). The JRS
instruction (jump if registerS is not equal to seven) tests a logical
AND of the bits of register seven and is thus unaffected by data on the

data lines (unless S is being changed).

Note 2 - Setting the Carry Flag
The Carry Flag is a BCD carry flag and is affected by four instructions

only. The instructions are BCD add (ADR), compare (CMP), single bit left
shift accumulator ISA and single bit right shift accumulator RSA. Left and
right shift instructions, respectively, set and clear the carry flag. ADR

and CMP set the flag according to the result of their operation.

_'?'5-.

NMOTE 3 - The Halt Imstruction HLT

The Halt instruction is a simumlator instruction only and is not implemented
in the processor. It terminates a simulation of a program, causing the
Simulator to print out the contents of the 48 processor registers. The

effect of the HLT instruction op—code in the processor is undefined and

the instruction should not be used (see note 4).

MOTE 4 -~ No Operation Instruction NOP

Three more instruction op-codes produce undefined results in the processor
and should not be used. They have been given the mnemonic NOP, although

the Assembler does not recognise it, In the Simulator a NOP instruction

NOTE 5 -~ Register Addressing

The register instructions contain a four-bit code which identifies the register
to be accessed. Now four bits can uniquely address only 16 registers and so
a special convention is assumed by the processor. Two three bit registers

S and T point to the row and plane respectively of the array of 48 registers
to identify one particular register. § can take values in the range 0-7

(8 rows) leaving T with legal values 0-5 (6 planes). S can be incremented,
decremented and loaded, T can only be loaded.

When the processor finds a register instruction which attempts to access
register 12 it assumes indirect register mode and accesses the register

pointed to by S and T. Register S is autodecremented after the indirect access,

when a direct access of register 13 is attempted and autoincremented after the

indirect access when a direct access of register 14 is attempted. The table

below illustrates these points.: Note that a direct access to register 15 is

uﬂ.dﬂfinedi
Register "Directly Accessed" Register Actually Accessed
0-11 0 - 11
12 register pointed to by ST
13 register pointed to by ST. S decremented.
14 register pointed to by ST. S incremented.

15 BEWARE! Undefined.

?4

NOTE 6 - Loading Registers S and T

Registers S and T can be loaded with 3 bit short literals by the instructions
LSS and LTS. Bits 1-3 of the instruction words are loaded into the appropriate
register., The instruction SAT will store the accumulator bits 1-3 in register
T but the instruction SST will store accumulator bits 4,;(1_ in register T and
bits 1-3 in register S. This point must be watched when loading T from the
accumulator.

The instruction SAT can be used to "switch" the indirect register access from
plane to plane. A whole row of registers can be accessed by changing T.

When used with autoincrement or autodecrement indirect accessing, whole planes

of registers can be manipulated with great ease.

B

NOLIVHEdO L3S NOLLONMISNI 40 NOLLINIJSG g°'S

(Bhcpe-td

T T R Ly

=10 | N =t (o=t)um|ooc oo © BN 8398 4 + ¥
on | (D)HER=4 N 2 [RI23TT SuoT Yat | seee: o
HO=I0] (0)nme=sur (o=F)uax |0 0 0 0 V=V | sogerumose aaedwog | TTIT 0000 0
o | (D)NEN=2 A ¥ - .t
T40=:D (0)=+ N » (o=P)umx|lo oo 0 d + v=ty
L
o | (D)REIR=:d % " - " JOJRTIMMOON | o et
F=0 | (0)wme=su e KPP 00100 el o3 TeI93TT PPY | OTTT 0000 VIV
(D)a=:4d m
: . . - b T
T+B=:0 (D)W= uI m (o=F)yax{o 0 0 0O d v=1y :
a Te123 1] Fuot
‘ (D)W= d % A i I™h JIOJUTIUMIDR | samen dHHHE
FRO=I01 (o)waw=sur . (sP)Ex| 000 0O b ‘W0 TPOTHOT| T0TT 0000 T™HO
% _nﬁ;u__@_.-ﬂu._ L - o g .
FRO=I0 | O g (o~¥)uax | 0 0 0 0 d p=1y |
TeI23 T duoT
K (O)e=:4 " N) [ITH JOJRTINIOW | s a9
HO=01 (o) nme=sur (o~7)emx1 0000 ==Y ‘H0 FAISNTOXA| 00TT 0000 109
o | (D)W= d - :
T+H=:0 (O W= AT (o~F)umk |0 0 0 0 d POV y=:y
re123 11 Juot
o | (D)HEDE=24 = = - YITM JOJRTIUMODY | st 60t
=01 (0)ram=1u1 (9=F)¥EK | 0 0 0 0 Ll ‘aNV T®oT#07| 1010 0000 TV
. | (D)NEN=:4 R =
=0 |)= (o-Fluax o 00 0 &=V
ow | (DINEDN=2d _ R [BIOITT FUOT YITM | spmese e
=201 (o)waw=u1 (y-¥)uaxjo o000 L aojeTrumase peot| 00¥0 0000 vl
(€-1) sav (o~¥)uay mmmm TOTIONNA WIOD=dO |OTMONENN
Jajunon sng 30N
S0 g vaeq e] 08 NOTIVHAJD TVNMELNT
|8 HOTIONMIS'TT

SISNE SSUAAY NV VIVD TVNHALXT

L9 -

() Walke=: d

1 asastiaa ur

45]
(D) Wilke=: W1 = (o-v)uaxl oo o0 o] 9 (E-1)¥v=AL | Jo3epmumoow 31038 | 7000 0000 Ivs m.
(D) W=z d @ (-P)v=:1 1S amst1iaa uy -

(D) Wilke=: ¥1 m (-¥)uax| oo oo} 9 (E-1)¥=:5| Jo3ernmmoor sac1s | 1100 0000 1S
(D) Wilke=: d W Te13 7T m
(O) K= M1 E (o-¥)uax| oo o o] © (E-1)d=:1| 3a04ys [aTA I PROT | wexl TT100 SIT| i !
] W o
(0) Wilhe=t d . eI 7Y g1
(O) Wilke=: M1 = (o-¥)uax| oo o 0| 9 (E-1)d=:S| 330US YIPA S PROT | w1 OT00 S| &
— pede
(O) Hile=2 d) O=: (8=5)V | TRI93TT 3J0Us YITA 8 |

() W= 3 M (9-¥)uax| oo o0 0| - (P=-1)d=: (¥P-1)¥ JOUTNUNOOW PROT | sees TITT SY1

'FEE
ang (€-1) aav (o-p)aav| > n=o NOLLONNA H00-d0 | DINOKINK
LEL | 30N 4
- oz NOILVMAJO TVNUEINI
e a—_— Laieuesid o NOLLONMLSNI
SHSNE SSAWAAV ANV VIV TVNMALXH

1

ﬂ:l

T
.|

_MSE__?:_ =2 (g-5)V Ata 8319 ¥
TH0=1D (D) Wilk=: H1 = (9-¥)uax looo 0| - (8=5)¥=:(P-1)V | aozepremooe 3JT4S |IITT 1000 NSH
D) Wille=: d £ 0=3 (P=1)V 1391 sa1q ¢
1+0=: 0 [(D) Wk M1 o (O-v)uax foo oo | - (¥P=1)¥=:(g-5)¥ | acqepnumoow 3JT4S |OITT 1000 NS
-lJ
| Z 0=380 ,
D) Wil d 2 . 0=+ (8)V IFTE 379 1
I+0=:D (D) MWilke=: ¥l o (o-t)uax loooo| 2 (8=2)v=t(L-1)¥ | aojupnumoo® 4TS [1OTT 1000 VSu
m
.“4_ Humﬁ_
D) Wil d A 0= (1)V¥ WL 319 1
0= D (D) Wikt M1 ~ (~v)umx looo00]| T (L-1)V=:(8-2)V | Jo3eTnumoow 3JTUS |OOTIT TO0O VST
.) *E¥
sng (€=1)aay (o-v)aav |28 25 NOLLONNA AWO0-d0 | DINOWIANK
J33umod LiE o] =2 310N . " :
weldoad sng SS21pPpY [oa3uoD | 298 NOILVHAdO TYNHIALNI

SASNH SSIHAAV aNV VIVO TVNMALXE

NOILOMMLISNT

- 78 -

01457 (appe) jve=8 " (appe) e
usy3 0=gN JI
o+’ T (appe)wva=’ * (appe)Rva
HO=:0| (0)Wak=:uI (o-v)umx|oooo| S usy3l o=n JI
JI2)8THaa
Futuesu ou gn pue ¥ s398 03 JO3ETTUMOOE =
- ITLT TIIT (-v)uax oo 10| S ‘2 SIHV+(IPPE) HVE=: (IPP®) WVY PP® (DM | see¢ OTIT uav m
(D) Wilke=:d suo £q m
HO=:0 | (D)WEW=2¥1 & (o-F)uax o0 0 O S I=(IPPe) WV=: (JIPPE)RVY | 193STHaI JUAMAIOA | see TOTLT oFa | &
mi J03BTNIMooe =
() Wilé=: d E. YITA J3938THaa 5
=D | (B)HER=41 m (o-¥)uax o 0 0 © g (IPPR)WVY JOX? V=iV ‘M0 FATISOTIOXT | swe# O00IT Hod m
e
m J0j3ETMmoaoe @
(D) Ralke=2 d 2 L. YITA I93STHaa ;
+0=:0| (0)Wiak=:HI = (o-P)uEx o0 0 O S (IPPE)WVY PUR ¥=:V ‘ONV TROTHOT | TIOT aNv | g
._n-) =
s (Axeurq) -
(0) HilW=:d e J03ETNENOOR g
HO=: 0| (O)Wilke=: ¥ (o-v)aEx oo 0 0 S (IPPR) HVIHV=2V 03 JSTHA PPV | e OTOT avd | @
() Wiak=: d J938THaa uT
HO=:D| (O)WdH=:41 (o-v)aEx oo 0 O S V= (JPPE)WVY | JO3R[NEMOOR 3I03S | swws TOOT HVS
(B) Wilke=: d J1938TFea mwoay
HO=:0| (0)Hil=:4I (-P)uax lo 0 0 O S (IPPE) HVYE=:V JOJETNUNOOE PROT | swss 000T v
p 8888 .
sng (E-1)Hav (o-¥)aav CER= NOILONNA AA00-d0 | DINOWANK
Jajun w
e i e NOTIVHAAO TVNNALNT
8 889 oIju
g Badrr TN NOTIOMMISNT
SASNA SSTMAAY NV VIVD TVNHMALXH
|
o
b=
1

(D) Hidk=:d _ X a93s1Fax ut
D=2 D |(D) Wit I (o-v)uax|loooo0| - V=:(ST)HVH| Jojeprumooe 21038 | 10T 1000 AYS
(D) Wille=: d X J93sTiea ur
D=2 D |(D) Walke=: M1 (o-v)ymr joooo0| - Vi (PI)RVH | J03e[numdoe 3103S| OI0T 1000 AVS
(D) HiHe=2d & M J93sTiea uy
T4+0=:D |(D) Wilk=: ¥1 m (o-v)ymxloooo]| - V! (E7)WVH | ao3ernunooe a101S| 1001 1000 MYS
(D) WilWe=2d = A 1938THax Ut
THO=:D (D) Wilk=: Y1 ~ (-v)yaxjoooo0| - Ve (ZI)WVH | 203RTNUMOOE 31038 | 0DOT T000 AVS
‘AE:N__.H:_ m A A93sTHea Woaj _
1+0=: D |(0) Wilke=: M1 - (-¥)uaxJloooo| - (ST)RVi=iy | 2ojernumooe peoT| (10T 0000 AV1
=
(D) Wilk=:d .m.r X d93sTHaa woxj
HO=:D |(D) WalW=: ¥1 & (~F)uax oo o 0 —= (VI)Wvi=:y JOjeTnumaae pEOT | OI0T 0000 vl
_An__.__x.m__..ﬁ"n M 1938TFea moag
HO=:0 |[(O)Wilh=: 41 (P)yax jooo o] - (ET)RVE=2Y 10jenunode peoT| 00T 0000 MV
(D) Wilk=:d A I931STI3a woaj
D=2 D |(D)Kilk=: M1 (o-t)umx foooo0]| - (Zr)WVE=iV | Jo3eTnEmode peeT| 0OOT 0000 AV
e FEE i
sng (E=1)nay (9-¥)aav HE= o NOLLONNA FA00-d0 | OINOWINK
J23umo) Lt | 10N i - —
Wedd0ud sng SSaIppy 1003u0) | @98 NOLLVHE40 TVNHAINI
SASNH SSAMAAY NV VIVG TVNNALXH SOLEHBRE

- BO -

po=:p| {D)HIE i (E-n)ux | (9-v)uEx joo 0 0 V=:¥
- E=D2= 1001 (o yyiloo 1| - V=tV
97 A ornpow ‘P uy
- d (E-1)ux | (o-P)uax oo 1 0 V=id | JojE[numooe 303§ | TIT0 1000 A0S
=D munwz..af_ﬂ_ s (€-1)ux | (o-¥)uax |0 0 0 0 ViV
- Amu;un"ﬁ_uau (ot)xlootr | - V=iV
X o[npow ‘P uy
- d (E-t)uxr | (o-P)uax oo 1 0O V=id | J03eTnumooR 3109 | OITI0 1000 X0s
FOm:D| (D) KH=id (€-1)ur | (o-¥)usx [0 0 0 0 V=t
(D)= — -
- (E=1)2= Hm_uo 1 (ovmalorra| - V=V .
A sTnpow ‘z uy
- d (E-1)ux | (o-v)um oo T O ¥=td | JO3ERMEN0OY 31038 | [I00 1000 AZS
. (€-r)ux | (o~¥)¥ax jo o 0 O V=¥
l C-1)x=:(11-6)2 (o-1)x o111 - Y=3Y
- d (E=n)ur | (~v)umx oo T O V=id | J03ETIUMOOW 3J03S | 0100 1000 Xz§
sng E-nav Ko-arv 88845 NOTLONAA H00-dO | DINOWANK
J23umnon iw] 230N
wexFo.uad sng SEJJIPPY Toa3uen | s2g NOIIVHE4O “TVNULNI NOTLOMIL NI
SASNE SSTUAUV ANV VIVO TVNYALXH

(E-r)ux| (-¥)uax | o0 0 0 . Y=ty
=i
(£-1)ux rr1looor| - V=tV (95 +) 2
srnpow ut 5
¥ d (€-1)u1 1t11looro - V=:d | J03eTrumOO® 21035 | w0 TIOO WS |2
: o
401 D ma&_ﬂt_mmu (e-r)ur| (o-v)uax|oooo| - d=1V (95 + w) Z
= hﬁ.ﬂ.ﬂ aTnpow wWo.xjy
J0 YV=id (E=-1)u1 ITrjoooo0 - V=iV JOJETIUNDOR PRO] | wnd OT00 WV
(£=1)uaay (o-v)aav mm m 9 NOLLONA FA00~-d0 | DINOKINK
Ja3unon sng e e NOLLVMAJO TVNMAINT
mweadoa] e aag
sEng SsaJIppy Tea3uc) NOTLOMILSNT
SASNE SSANMAAY ANY VLVO TYNMALXA

- B i

B R e el b e LI B e il

" (E=1)x (o¥)xjooo 1| - V=V H.Mwam“

- d (E-1)ur| (o~v)uax| oo 1 O V=1d | aojeTmumoo® 21038 | OTO0 0000 X18
e (e-1)uzx| (o-¥)uax| o 00 0 V=iV

A (E-1)uxr| (o-v)uax{oo 1 0 d=1V

= (e-1)x{ (o¥)x|lor100]| V=¥ .“quﬁﬂ

- (E-1)x (-¥)xJoro00 V=2V J03ETIEMOO® PROT | [TI0 0000 AI1
HO=:D % (E-1)uxr| (o-v)uax|{ oo o0 0 V=1V s s

> (E-1)u1| (o-¥)uak| o0 T O) &=V nﬂﬂﬁu” Huﬂ -

il (E-1)X (o¥)xjoroo0 V=1V .Muw_ﬁﬂﬂ

= (E-1)x| (o¥)xJor1o00 V=V | Jo3e[numoow peo] | OIT0 0000 X1
S— sng (€-1) |av (o~¥)uay mﬁmm e NOLLONNA H00-d0 | DINOWANK
weafoag vy o | e NOLIVHAJO TVNYALNI

NOLLOMML SNI

SISNg SSTNAAV NV VIVOD TYNNALXI

l

*weaFoxd ay3 Jo sousnbes ay3 IFuwyo Jou s0p purw SITILD omy ATuUC SIYE} UOTIONIISUT IYJ PITJSTIeS J0U ST UOTITPUOD ayy JI
*(sopodo £) dum[TePUOT3TPUCOUN THULIOU B ST SIAIT[2q UOTIONIISUT Y3 ‘parjsties sT uoryrpuod dunl o3 JI1
*(NOI') 39 jou Laxeo 37 dum[pue (S0f) 398 Aaxed jyy duml ‘(S uwsass upwauod
jou saop § aeasyFea Jt duml “(41[) satarsod jt dumf “(zN[) oaez 3ou 37 dunf ¢(zI[) ousz T duml —:isdum(TRUOTITPUOD XT§ daw YL

iR HEE

W0 TTITO nol
FHHEE HHRE
sl OTTO sof
- a310ul00d 98
() Wilke=2 (= EHHE HHE
3 - E=1)41)| (o-y)yaIx OO 0 O V=3V : —
LD | (O) g I H sdun{ TeuoraTpucg | 0 OTIO Wy
HO=:0 | (D)NAW=:d (E-pur| (o-p)uax oo 0 O =1V PITJRTIVS—UON | s 3t ; .”
- d1
: { . =p)ar] (o-F)uax lo 0o 0 O V=¥ -
D=0 | (D) Rk Y1 aj0mooy sag | R e [g
- d=: (g=1)0| (E-1)ur=:(11-6)d| (o-P)wax l[oo 1 1| 1 ViV ##0 1010 ol -
sdun[TRUOTITPUOD | s st ¢
+0=:0 | (D)KiW=24d (E-)ur| (o-t)uax jloo 0 0O V=:¥ InJssa00ons | sl 0010 zil | ¢
= Manw__mﬁ_._ el (e-1)ux| (o~v)umx o 0 0 0 Veiy
5 d=:(8-1)0| (E-1)ur=:(11-6)0| (~P)HIX OO T T I V=iV
dum[| st sEew
HO=:0 | (D) Rilk=2d (E-1)ur| (o-¥)umm oo 0 O V=ty TEUOTATPUOOW]] | wes® 0OI0 dil
mm g m NOTLONNA WOO-d0 | DINOWINK
J93umen sng (E-1)mav (o=¥)aav it SRS ,
weadoad r1e(T T 29€ NOLLVHAJO TVNHAINI
. NOTLONMLSNI
SHSNE SSAIMAAV NV VIVO TVNYALXE _

- 84 -

SiSNg SSTHOAV GNV VIVO TVNHILXF

) Wil £ d (€-1) :
; =1)ur| (9-¥)uwax Jo o0 O V=1V (oe3s TInd)
—LiD=iD) : eupI ke
(E=1)ux| (-P)yEX [T 0O T O V=iV Woxj WIN3SH | 0000 0000
L4D=:D MMWEHMH (E-1)ux| (9-¥)umx |oo 0O V=iV
d=t(B-1)0 (E-1)HI=:(11-6) 0=
D=Vl =
Vil »
H8=iZ »
(E-1)ux] (o-Y)uax jr o0 1 1 V=1V £
(owas ysnd) | seees e
(D) WIW=3d (E=r)ux| (o-¥)uax oo 0O V=Y sutanoaqns o3 o9 | sl ITT0
(£-1)aay (9o-¥)uaav mMmm NOLLONNA A00-d0 | DINOWINK
MM NOLLVHAJO TVNMAINT
SNy SSSJpPpY [ox3uod NOLLOOMISNT

' I
U™

L=]

'

5.6 HARIWARE S YMBOLS

B Instruction Register

P Data Buffer

A Accumulator

YER Y extension Register

Q Program counter and top stock register)
RA Second stack register ;
RB Third stack register :f: Subroutine stack
z Data address register :::
RAM CPU registers

v CPU register 12

W CPU register 13

X CPU register 14

Y CUP register 15

U4 BCD carry flag - lower digit

U8 BCD carry flag - upper digit

BN Result Zero flag

BP Result positive flag

MEM Memory (external to the CPU chip)

MEANING OF SYMBOLS USED IN THE DEFINITIONS

= "becomes" This symbd means that the contents of the register/
accumulator on the left-hand side becomes equal to the
value of the expression on the right-hand side.

ARRAY [_Pﬂ{l Means the contents of the register/memory location
pointed to by PTR. ARRAY is the name of the memory or
register array. Wwhen ARRAY is a register name PTR will
be a hit number or a bit range, in which case, the
symbol will mean the contents of the appropriate bits,
Thus RAM [add.ﬂ is the RAM register (in the processor)
pointed to by addr. Where addr is calculated according
to the formula:-
if the argument (bits 1-4) of the instruction lie in the
range 0-11 then addr equals the argument (i.e. direct
register access).
if the argument is 12 the access is indirect and addr
is given by the contents of registers T and S.
if the argument is 13 the access is again indirect via
Sand T, but 5§ is decreased by one after the access.
if the argument is 14 the access is indirect via S and
T, and S is incremented after the access.

5 semicolon Indicates that the two activities on either side of the
semicolon occur simultaneously. When an activity is the
name of a status flag this means that the flag is set by
the contents of the data lines during this machine cycle,
i.e. A:=A; U4; US means that the accumulator contents
are cycled around the data lines and U4 (first BCD carry)
and U8 (second BCD carry) are set according to the
accumulator contents,

: colon The activity following the colon is dependent upon the
status flag before the colon. If the flag is set the

activity is performed.

= AR =

When an insttuction is fetched from ROM memory the Q register
(program counter) points to the word to be accessed. The Q
register is the top register of the stack in a 2K page. The
program counter is the Q register in the page containing the

Program. It is incremented after each fetch.

The fetched instruction is loaded into the instruction register B
and, simultaneously, into the data buffer P. The P register is
accessed when a data literal must be removed from the instruction
word, During a jump instruction the wecond word of the instruction
is fetched (using the Q register) into the P register. The
complete address is assembled from part of the instruction (in the

instruction. register B) and the contents of the P register.

Thus the P register performs two functioms- allowing the arithmetic
and logic unit to access part of the instruction word, and providing
a buffer for words fetched from the ROM to be put onto the address
lines.

A similar technique of providing an image of a register, to be
accessed by other parts of the processor circuits, is used with the
Y register in its function as a module addressing register. A
three bit register YER is loaded with an image of bits 4, 5 and ©
of the Y register. The contents of the YER register are then

put onto the address bus lines ADBOX, ADBSX and ADB4X when a
program address is needed. The YER register is used in preference

to the Y register because of the increased speed of accessing.

The symbol MEM is used to represent the 2K page of ROM selected by

the module address contained in the YER register. Thus the
expressions

Br=MEM [Q]

pe=MEM[Q] Q:=QH

mean that an instruction word if fetched (using the Q register) from
the currently selected program ROM page and loaded into the instruction
register and the data buffer register. The program counter (Q

register) is then incremented.

Two static flags U4 and UB are used to indicate four and eight bit
BHCD carries. puring a BCD add instruction the flags arc set or
cleared, as appropriate, in the first cycle of the instruction.
They/

- 89

They are used during the second cycle of the instructions to
provide BCD correction.

The control signals CIO,CDA, CQZ and CRA are held on the four
control bus lines. CIO controls imput/output, CDA is the data
or address control signal, CQZ specifies whether the Q register
or the Z register is used during a ROM access and CRA controls
the movement of the stack.

Software

SECTION INDEX

Section A The ASSEMBLER
1. Fundamental Computer Operation
2. Introduction to Assembly Languages

3« Programming in Assembly Languages
4. Assembler Directives and Mnemonics

5« Cross-Assembler Operating Procedure (PDP11)

6. Appendices

Section B The SIMULATOR

Section C The CYBERNET Cross-Assembler

Section D Programming Examples

Section E GLOSSARY

SECTION A

THE ASSEMBLER

INDEX OF CHAPTERS

Chapter One - FUNDAMENTAL COMPUTER OPERATION
1.1 Justification of an Assembly Language

Chapter Two - INTRODUCTION TO THE ASSEMBLY LANGUAGE
Source Program Format
2.1 Statement Format
2.2 Label Field
2.3 Operator Field
2.4 Operand Field
2.5 Comment Field

2.6 Format Control

Chapter Three - PROGRAMMING IN THE ASSEMBLY LANGUAGE
3.1 Character Set
3.2 Separating and Delimiting Characters
3.3 Illegal Characters
3.4 Operator Characters
3.5 Permanent Symbols
3.6 User Defined Symbols
37 Direct Assignment
3.8 Register Accessing and Direct Assignment
3.9 Register Addressing Modes
3.10 Macro and System Routine Calls
3.11 The Number Systems
3.12 The Program Counter and the Data Address Register
3.13 Jump Imnstructions

1.14 Activities outside of a 2K Area

Chapter Four ~ ASSEMBLER DIRECTIVES AND MNEMONICS

Assembler Directives

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

4.10

Program Location - ORG
Symbol Assignment - EQU
Symbol Assignment - MODUL
Data Storage - DC

Data Storage — ASCII
Assembly Listing - SPACE
Assembly Listing - EJECT
Assembly Interruption - EOT
Assembly Termination - END

Instruction Set Mnemonics

Chapter Five - CROSS-ASSEMBLER OPERATING PROCEDURE

The Cross Assembler

5«1
5ed

5.3

Appendix

General Description of the Cross—Assembler
Initial Dialogue

Listings and Error Messages

Simalator File

Paper Tape Punching - Loader Tape

= ASCIT Character Set

= (Cross=Assembler Dialogue

-~ Cross-Assembler Listing

- Hexadecimal and Modified Hexadecimal

- Assembly Language Special Characters

CHAPTER ONE

FUNDAMENTAL COMPUTER OPERATION

Computers (large, mini~ and micro-) consist basically, of a
processor, memory and some input/output devices. The pProcessor
executes instructions of a program which are in sequence in memory.
The instructions are a fixed length string (a word) of bits and can
be regarded as just a collection of parallel inputs to a complex
logic network, which is the processor. The instructions are
fetched from memory by the processor (the last act a processor
performs when executing an instruction is to fetch the next),

The memory is a list of words each one of which can be individually
accessed by specifying its address. The address is held in the
program counter which is incremented after each instruction fetch.
The processor can fetch data from and store data in any location

of the memory. It can also change the program counter, effectively
" jumping" about the program by fetching the next instruction from
the newly-addressed location.

Example 1.1

Instruction Address of r

Address Mniamand Operand Meaning

0100 LD 102 Loads the contents of
location 102 = 0

0101 JHP 103 Jumps over location 102
to 103

0102 (& Data

0103 ST 100 Stores O in location 100

The above program, in a simple fictitious language, loads the contents
of one location inte a register and then stores them in another
location. If the user decided that he should subtract, .say 5 from
the data before storing it in the second location the program would

becomet=

miress. SRCSCY . operend Meaning

0100 LD 103 Load 6

0101 SUB 104 Subtract 5

0102 Jup 105 Jump over data

0103 6 Data

0104 5 Data to be subtracted
0105 ST 7 Store in location?

Every address after the inserted instructions must be changed and
some addresses before must be changed to allow the program to execute
as required. Note that data and instructions can both be stored in
the same memory, the JMP instruction in the above program is required
so that the data in location 103 (i.e. 6) is not fetched by the
processor and interpreted as an instruction. In general the data
and program as physically separated in separate parts of memory or
avoid mixing, this generally tends to make software more reliable.

1.1 Justificatim of An h!mbl%_&_

The ALPS processor responds to, and executes, instructions which
are stored in a memory as a string (a word) of binary O's and 1's.
While these strings have meaning to the processor they are confusing
for the user and some form of symbolic representation (Mnemonic) is
required. The assembly language exchanges the machine code (i.e. O's
and 1's) for instruction memonics, which are short meaningful strings
of characters. The user can select nnemnnicganr namesjwhich characterize the
nature of the instruction and can write fairly readable programs using
them. To obtain the 0's and 1's that the processor needs, the user
can convert each mnemonic of his program by consulting a table, to
the appropriate machine code - a laborious procedure — or he can use
a computer program, the assembler, to convert them for him.

At this stage the user program consists of mnemonics and numbers,
which are converted by the assembler to machine code instructions and
data, Consider the situation of a user with a program consisting of
mnemonics and numbers, who wishes to insert some more instructions in

the middle of his program. If the numbers are addresses (say -

destinations of jump instructions) the entire program may have to be
modified to account for the change of addresses caused by kthe
introduction of new instructions. See example 1.1.

This is obviously a very time-consuming procedure fraught with
possible errors and to sidestep it we let the assembler check the
addresses for us. Instead of using absolute addresses we use

symbols, which can be meaningful names that the assembler can recognise

and assign values to. This, as well as reducing errors and simplifying

modifications, makes the program more readable as shown in example 1.2.

The symbols can have values assigned to them by the assembler as in

STOCK and REQD, or they can have their values assigned by the user in

a statement of the form shown in example 1.,3. Thus é&onstants can be

assigned/

Exa.mgle 1.2

Address Instruction Name of
Label Moamonic Operand
0100 LD STOCK
0101 Jup OVER
0102 STOCK 6

0103 OVER ST SPARE
and the modified program

Address Instruction Name of
Label Mnemonic Operand
0100 LD STOCK
010 suB REQD
0102 Jup OVER
0103 STOCK 6

0104 REQD 5

0105 ST SPARE
Example 1.3 User Assigned Symbols

THREE : BQUALS 3

LABEL| : FQUALS O

EXIT @ HQUALS LADELS

Meaning
Loads STOCK = 6

Jumps over data

Data

Meaning

Load STOCK

Subtract REQD

Dxta

Data

assigned symbols without necessarily being actual labels.

The assembler can be made to read the label symbol, the
instruction mnemonic, the operand symbol and then ignore everything
else in the input line. Comments can then be inserted after the
operand symbol to illustrate the operation of the program without
affecting the interpretation of the assembler,

A further advantage of using an assembler lies in the choice of
number systems available. At machine-code level the numbers must be
binary (0's or 1's) but at assembly language level we can use binary,
octal, decimal, binary coded decimal or hexadecimal systems. The

choice of default number system will depend upon the word size.

CHAPTER TWO

INTRODUCTION TO THE ALPY ASSEMBELY LANGUAGE

Source Pro_& ram Format

2.1 Statement Format
2.2 Label Field

2.3 Operator Field
2.4 Operand Field
2.5 Comment Field

2.6 Format Control

CHAPTER TWO

INTRODUCTION TO THE ALPS ASSEMBLY LANGUACE

Source Program Format

2.1

Statement Format

A statement can consist of up to four fields which are identified by
order of appearance and special terminating characters. The general
format of a ALPS assembly language statement is:-

label: operator operand comment

The label and comment fields are optional. The operand field is
dependant upon the type of the operator. A statement must contain at
least an operator and may contain any of the other types.

The assembler interprets and processes these statements one by one,
generating one binary (machine-code) instruction and sometimes a data

word.

Label Field

A label is a user—defined symbol and is assigned a value by the
assembler. The value assigned will be the address of the current
location, i.e. the address of the instruction as in Example 1.2, or
will be obtained from the operand field in the case of a user-
assignment as in Example 1,3.

A label is a symbolic means of referring to a specific location within
a program. If present a label always occurs first in a statement and
must be terminated by a colon. There can be only one label per line.
The first 8ix characters of a label are significant and can be

preceded by any number of spaces.

Trailing/

2.3

2.4

Trailing spaces between the seventh label character and the colon are
ignored. Any characters except colon can be used in a label but
alphanumeric labels are recommended for clarity.

A symbol used as a label cannot be redefined in a user program.

Operator Field

The operator field follows the label field (if any) in a statement,
leading spaces and tabs are ignored. The operator consists of up
six characters, starting at the first non-space character after the
label field colon (or start of line) and terminated by a space. It
be an instruction mmemonic or an assembler directive, When it is &=
instruction mnemonic, it speci”ies the instruction to be generated

the action to be performed on the operand which follows (if any).

Operand Field

This field is the last field used by the assembler and follows the
operator field, intervening spaces being ignored. It can be up to
eight characters long and is terminated by a space, except when the
operand is an ASCIT string. Such a string is enclosed in single
and can extend up to the end of the statement line. The operand fis
can be optionally followed by a comment, separated by one or more s
The operand is that part of the statement that is manipulated by the
operator field, Operands can take one of the following forms:-

(a) decimal number

(b) hexadecimal number

(c) label (of up to six characters in length)

(d) # (current location))

(e) * + decimal number % see Section 3.12

(f) # + hexadecimal number g

(g) @

(h) @ +) indirect register addressing - see Section 3.9

(i) ® - %

(j) , (comma - null operator) - see Section 2.5

2.5

2.6

Comment Field

This field is optional and may contain any ASCIT characters., It is
ignored by the Assembler and can be used to document the program. The
comment can be the only field on the line or can follow the operand
field., If the first character on the line is a number sign ¥& the
entire line is treated as a comment, If the operand field contains a
comma, the Assembler treats this as a null operator replacing it with

spaces. It then treats all further characters as a comment.

Format Control

Horizontal formating of the source program is controlled by space or

tab (which is transliterated to space). These characters have no
effect upon the assembly except when they serve as field delimiting
characters. Vertical formating is controlled by the form-feed
character. Two assembler directives are provided for vertical formating
of the assembly listing which is horizontally formated and paged by the
assembler.

See Appendix C for examples of listings,

CHAPTER THREE

PROGRAMMING IN THE ALPS ASSEMBLY LANGUAGE

Index

3.1 Character Set

3.2 Separating and Delimiting Characters
3.3 I1legal Characters

3.4 Operator Characters

3.5 Permanent Symbols

3.6 User Defined Symbols

3.7 Direct Assignment

3.8 Register Accessing and Direct Assignment
1.9 Register Addressing Modes

3.10 Macro and System Routine Calls

31.11 The Number Systems

7,12 The Program Counter and The Data Address Register
3.13 Jump Instructions

3.14 Activities outside of a ZK Area

CHAPTER THREE

PROGRAMMING IN THE ALPS ASSEMBLY LANGUAGE

This chapter describes the components of legal assembly language statements.

3.1 Character Set

A subset of the ASCIT character set (see Appendix A) is used in source
program statements and includes:-

(a) the upper—case alphabet A-Z

(b) the digits 0-9

(c) the following characters:

Character Name Function

Carriage Return %
formating character

Line Feed
statement terminators
Form Feed)
colon label terminator
number sign comment field originator
’ comma null operand field indicator
space field terminator
tab field terminator
/ slash precedes a hexadecimal constant
#* asterisk current location counter
+ plus sign arithmetic addition operator, or post
autoincrement (indirect register mode)
- minus sign arithmetic subtraction operator, or post
autodecrement (indirect register mode)
E] at sign indirect register mode
' single quote ASCIT string delimiters
. period no present function
g dollar sign no present function;reserved for

system use,

3.2

3.8

3.4

3.5

jlﬁ

3.7

Separating and Delimiting Characters
As stated above, comma, semicolon, colon, single-quotes and space are

field delimiters and should be used with care in any other conditions.

Tllegal Characters
There are currently no illegal characters (except those used out of

context). However, it is strongly advised that only uppercase
teletype compatible ASCII characters should be used when writing

programs .

QOperator Characters

Two arithmetic operators + and - are used in the assembly language in

two contexts:-
(a) used with the current location counter symbol # (see Section 3.13)

(b) used with the indirect register access symbol @ (see Section 3.9)

Permanent Symbols

These are the instruction mmemonics and assembler directives and are
a permanent part of the Assembler. They need not be defined before
assembly. Their definitions are relevant only to the operator field,
the same symbols can be defined by the user as label symbols although

this could make the resulting program confusing to read .

User Defined Symbols

User defined symbols are those used as labels or those defined by
direct assignment. They are added to the symbol table as they are

encountered during the first pass of the assembly.

Direct .lui.;nlent

A direct assignment statement associates a symbol with a value. When
a direct assignment statement is encountered the symbol is entered
into the symbol table and the specified value associated to it.

A direct assignment statement takes the form

SYMBOL: EQU expression

where /

REG 1: BEQU 1
REG 2: EQU 2
D
L]

L]
1

LAR REG 1
AND REC 2

The above is more readily understood than:-
LAR 1

AND 2

EXAMPLE 3.8.1 Register Accessing and Direct Assignments

directly
accessed
"

REGISTER

S3

52

51

I#I-MN""Q

= i

EXAMPLE 3.9.1 Register Arrangements

T3

Tl

3.8

3-';

where SYMBOL is the symbol to be assigned (delimited by a colon),
FQU is the assembler directive denoting direct assignment (see
Section 4.2 and 4.3) and expression is one of operand expressions
(a) decimal number

(b) hexadecimal number

(c) label

(d) # current location

(e) # 4 decimal number

(f) # + hexadecimal number

Note: that an assignment does not take up any program space, it

merely associates a value with a more convenient or descriptive name.
Only one symbol can be assigned per direct assignment statement and
it cannot be redefined, nor can a direct assignment reassign a

previously declared label.
No forward referencing is allowed with direct assignments.

Register Accessing and Direct Assignments

It is advisable, when using register accessing instruction (LAR,
AND, etc.) to use as the operand a symbol whose value is assigned
to be the number of the register to be accessed. This improves
readability and may be of future use with program debugging aids.

See Example 3.8.1.

Register Addressing Modes

The register accessing instructions contain a four bit code with
which 15 registers could be directly addressed. There are, however,
48 registers on the processor chip and to allow access to all of them
two three=bit registers S and T are used. The 48 registers are
arranged as an array of 8 rows and 6 planes (-the eight bits of each
register forming the columns). See Example 3.9.1. Register T
addresses the plane of the array and register 5 the row.

Both/

Register "directly accessed" Register actually accessed Action on S

0-11 0=11 none
12 RAM [S'I‘] none
13 RAM [Si'] decremented
14 RAM [SI] incremented
15 Bewardl Undefined undefined

where RAH[ST]lH.ns the register pointed to by S and T.

Tm - -2 of R i.ltﬁr Address

Note: When addressing modes 13 and 14 are used the RAM location
accessed is the one that's address is the value of the S,T
register before the instruction execution was started. The
3 register contents are modified, decremented or incremented,
only after the RAM has been used.

1.10/

Both registers can be loaded from the accumulator or with three bit
literals. Register S can be autoincremented, autodecremented or
left unchanged according to the instruction addressing mode. To
allow for these three indirect modes of register access,three of

the direct modes are given special meaning.

If an attempt is made to directly access register 12, 13 or 14 the
processor traps it and interprets the instructions indirect,
autodecrement indirect or autoincrement indirect register access.
Table 3.9.2 summarises the above. A direct access of register 15
gives undefined results. Registers 12, 13 and 14 are not affected
by a direct access on them.

Indirect accessing causes the register pointed to by S T to be
accessed, autodecrement indirect accessing reduces S5 by one after
the access and autoincrement accessing increases S by one after the
access. Thus all 8 registers of a plane can be indirectly accessed
by successively autoincrementing or autodecrementing S.

To clarify, on the assembler listing, the use of indirect register
addressing a special symbol used. When the assembler finds an

Mat sign" (@), after a register access mnemonic, it assumes indirect
addressing., Tt then searchs for an operator symbol (+ or -) and

assembles them as:-

Symbol Meaning Instruction Argument
L indirect addressing 12
@ - autodecrement indirect 13
&+ autoincrement indirect 14

Any other use of @ or arrangement of @ and + or - is illegal.

To allow registers 12, 13, 14 and 15 to be directly accessed they
are given names (V, W, X and Y) and eight instructions are provided
for loading and storing to and from accumulator and register.

See Chapter Four - Instruction Set,

3.1ﬂ

J.11

3.12

Macro and System Routine Calls

Two characters, the period (.) and the dollar sign (§), are reserved
for future expansion of the assembler to include macro and system
routine calls. The macro (or routine name) preceded by a period
(or a dollar sign) would be treated as an assembler directive, to

cause the assembler to insert suitable code.

The Number Systems

The default number system of the assembly language is decimal. Operands
can also be given as hexadecimal numbers. Hexadecimal numbers are

preceded by a slash and contain the characters 0-0, A-F, where:-

A = 10
B = 11
cC = 12
B = 13
E = 14
F = 15

Two hexadecimal numbers can be packed into one eight bit word. The
largest hexadecimal number that can be held is FF (= 255). See
Example 3.11.1,

The ‘processor instruction set includes an instruction for adding
together Binary Coded Decimal (BCD) numbers. BCD numbers are a
subset of the hexadecimal system. One decimal digit is stored in
four bits and six of the possible sixteen arrangements of the four
bits are unused. Two BCD digits are stored in one word. The
conversion of a number stored in BCD for input or output is very
simple and for this reason the redundancy of the number system is

acceptable.

The Prugram Counter and The Data Address Register

The program counter Q and the Data Address register Z are eleven
bits long and thus can be used to address 2048 (2K) individual 8
bit locations of memory. During execution of an instruction the

program/

Decimal Internal Representation
Decimal 104 104 0110 1000
Hexadecimal /1A 26 0001 1010

EXAMPLE 3.11.1 Number Systems

3.13

program counter points to the next instruction te be executed. At
the end of an instruction the next instruction is fetched from
memory inte the instruction register IR, and then the program counter
is incremented (increased by one). The program counter can be
modified under program contrel to cause a "jump" to another part of
the program.

If the user wishes to stere data in or load data from memory, the
program must load the data address register Z with the address of

the location te be accessed, and then access the location with a load

or a store instruction (see Chapter Four - Instruction Set).

Jump Instructiens

A program "jumps" when the processor is caused to execute, not the
next sequential instructien, but another one elsewhere in the program.
This is achieved by changing the contents of the program counters so
that the next instruction te be executed is fetched into the processor
from the destination of the jump. The program counter can be
directly modified by the precesser (as in a jump instruction) or
indirectly by an instructien which stores a value in the counter.

In the former case the destination address is determined at assembly
time, whereas in the latter it is computed at runtime. The latter
technique (hand-loading the program counter) can be used to provide

an indirect jump via a list of routine names. Extreme care must

be taken, when modifying the pregram counter in such a fashion, to
ensure that the processor jumps to the start of an instruction (and
not to the second word of a twe word instruction or into data).

The source program can be written entirely using labels as destinations
for jumps or by using relative jumps. 1In relative jumps the address
is the program counter plus or minus an offset, although it is
assembled to an absolute 11 bit address. The operand of the

instruction takes one of the three forms:-
(1)/

(i) # current location

(ii) * + decimal number

(iii) * + hexadecimal number,
when an asterisk is encountered alone the instruction argument is
the contents of the program counter. If a plus or a minus is
found the following symbols are scanned to assemble the offset

(which can be given in decimal or hexadecimal). The offset is then
added to or subtracted from the program counter to give the instruction
argument, These forms of operand can be used with most instructions,
not just the jump instructions. It is important that the consideration
of the destination address, given in the case of "hand-loading" the

program counters be given when using program counter offsets.

3.14 Activities Outside of a 2K Area

To overcome the limitations imposed by a 2K range of addresses the
load, store and jump instructions all assume a 3 bit extension to

the Q or Z registers. This makes them effectively 14 bits (although
in the case of the Q register - program counter - only the bottom 11
bits are actively incremented) allowing 16K of memory to be accessed.
However with this simple system of one extension register, when a
program is running in one 2K "page" it can only access locations in
that 2K page. To access locations in other pages it must jump into
those pages by changing the extension. This is crude and wasteful
of space, so the processor is given a choice of two "module”
selecting registers X and Y. (With an eight bit word 2506 locations
or one module can be uniquely addressed.) Each page of memory has
its own Q and Z registers, The processor assumes that the program
lies in the page addressed by the contents of the Y register. Data
can be fetched from the program page by using an instruction to load
the accumulator with the contents of the location pointed to by the
Z register, on the module pointed to by the Y register. [Data can
be stored in or fetched from any page by using an instruction which

accesses/

YER Qor Z

6 -4 11 - 9 8~-1

3 bits 3 bits 8 bits

v
accesses 8 pages
or 16K of memory

[W 8 v
a:m;asu modules asDaRIE
Hmﬂ 256 words
- of memory =1 module
< \
S .

EXAMPLE 3.14.1 Addressing Scheme

To jump to a location in another page: the page number is held in bits

4-6 of N and the module number in bits 103. M is the address within a

module.

LAL N load N into accumulator

SAX store it in register X

LAL M load M into accumulator

SQX set upQ 1-8 =M and Q 9-11=X 1-3
LAX reloads N into accumulator

SAY set up Y (and YER) - jumps to new page
SAY dummy instruction (see text)

EXAMPLE 3.14.2 Changing Pages

accesses the location pointed to by the Z register on the module
pointed to by the X register, For the purposes of program counting
the 3 bit extension to the address, mentioned above, is held in the
"Y extension register™ YER, which is a direct copy of bits 4-6 of
the Y register. See Example 3.14.1. The YER register is used to
increase the speed of instruction fetches. When the user's program
has to change page the program counter in the new page is set up to
the required entry point and then the Y register, and hence the YER
register, is loaded with the new page number. See example 3.14.2.
The last instruction executed in the old page will change the YER
register to the new page but the next instruction will already have
been fetched from the old page. Thus it is advisable to have a
dummy instruction which can be executed "during" the page change
witheut causing side effects. A repeat of the last instruction

executed (SAY) is an obvious dummy instruction.

CHAPTER FOUR

ASSEMBLER DIRECTIVES AND MNEMONICS

Index

ASSEMBLER DIRECTIVES

4.1 Program Location

4.2 Symbol Assignment

4.3 Symbol Assignment

4.4 Data Storage

4.5 Data Storage

4.6 Assembly Listing Directive
4.7 Assembly Listing Directive
4.8 Assembly Interruption

4.9 Assembly Termination

4.10 Instruction Set Mnemonics

ORG

MODUL

ASCIT
SPACE
EJECT
EOT

END

CHAPTER FOUR

ASSEMBLER DIRECTIVES AND MNEMONICS

This chapter describes the Assembler Directives and the Instruction Mnemonics.
Directives are statements which cause the assembler to perform certain
processing operations. They control program location, symbol assignment,
data storage, assembly listings and assembly termination or interruption.
Directives are held in the operator field. The label assignment directives
must be preceded by a label, the data storage directives may be, and all

others must not be,

Assembler Directives

4.1 Program Location - ORG

The directive ORG instructs the assembler that the program counter
is to have a new value, This value is given in the operand field
in decimal or hexadecimal form. The format of the statement is:
ORC origin address (comment)

where the comment field is optional., There may be any mumber of
spaces before ORG, but at least one between ORC and the address.
There may not be a label., If the first statement of a program is
not an ORG directive the assemblerassumes an origin of zero.

See Example 4.1.1 and Appendix C.

4.2 Symbol Assignment - EQU

The direct assignment directive EQU is used to assign a value to a
symbol. The symbol to be assigned must be in the label field

(terminated by a colon) and the value, a decimal number, hexadecimal

number /

STATEMENT
ORG 506
ORG /AFF
ENTRY: ORG 3
ORGC TYPE

EXAMPLE 4.1.1

PROGRAM COUNTER

506

2815
illegal syntax
illegal syntax

Use of the ORC Directive

number or a previously defined label, must be in the operand
field, The format of the statement is:
S YMBOL: EQU decimal number (comment)
hexadecimal number (comment)
pre-defined label (comment)
As always the comment field is optiomal.
The symbol is assigned a value equal to the bottom eight bits of the
operator; that is, the Assembler extracts the intra-module part of
the address (the operator).

See Example 4.2.1 and Appendix C.

Symbol Assignment - MODUL

The direct assignment directive MODUL assigns a value to a symbol in
the same manner as BQU. The value assigned is a six bit number
equal to bits 9-14 of the operand; that is, the MODUL directive
causes the Assembler to extract the module number from the address
(i.e. the operator). The statement format is:
S YMBOL: MODUL decimal pumber (comment)

hexadecimal number (comment)

pre-defined label (comment)

See Example 4.3.1 and Appendix C.

Data Storage - DC

The Define Constant directive DC causes the Assembler to load the
value of the operand (in the range 0 to 255) into the current
location. The operand can be:

(i) Decimal number

(ii) Hexadecimal number
(iii) A previously defined label.
The format of the statement 1is
(symbol:) nC decimal number (comment)

hexadecimal number (comment)

label

S5ee/

STATEMENT SYMBOL VALUE OPERAND VALUE

THREE: EQU 3 decimal THREE 3 - 3
HAY: QU /A hexadecimal HAY 10 - 10
EXIT: EQU OUT label EXIT 40 ouT 40

MATHS: BEQU ADD label 255 MATHS 150 ADD 406
EQU START illegal syntax
BEGIN: EQU HEAD illegal if HEAD is undefined
ADD: BEQU CALC illegal if ADD is already defined
WO

illegal because TWO is already defined.

EXAMPLE 4.2.1 Use of the BQU Directive

STATEMENT SYMBOL VALUE OPERAND VALUE
THREE: MODUL 3 THREE 0 - 3
LABEL: MODUL /AFF LABEL 10 - 2815

EXAMPLE 4.3.1 Use of the MODUL Directive

PROGRAM COUNTER STATEMENT CURRENT LOCATION VALUE SYMBOL VALUE
107 TWELVE: DC 12 12 TWELVE 107
DC 10 10 - -
2577 DATA: DC /4C 76 DATA 2577
DC /AYF illegal operand - greater than 255
DC -4 illegal operand - less than zero
DC TWELVE 107 - =

DC 'STRING' illegal operand

EXAMPLE 4.4.1 Use of the DC Directive

4.7

4.8/

See Example 4.4.1 and Appendix C. Only one location can be loaded

per directive. The label and comment fields are optional.

Data Storage - ASCII

The ASCIT directive informs the Assembler that the operand is an
ASCIT string enclosed in single-quotes, which is to be loaded one
character per location in consecutive locations. Thg ASCII string
in single-quotes, can be between 1 and 16 characters

long . The statement format is:

(symbol:) ASCII 'ascii string! (comment)

See Example 4.5.1 and Appendix C.

All ASCII characters except carriage return, line feed and single
quotes can be used in the ASCIT string. DC directives must be used
to load the internal representation of these three characters into
memory, The internal representation used is the seven bit (bit 8

equals zero) standard code. See Appendix A.

Assembly Listi_nﬁ_nlrer.tivc = SPACE

The SPACE directive may have neither label nor operand (although it
may have a comment if the comma or null operator device is used, see
Chapter 2 Section 2.5). It causes the Assembler to insert one
blank line in the output listing. See Appendix C. The statement
format is:

SPACE (, comment)

Assembly Listing Directive - EJECT

Like the SPACE directive EJECT may have neither label nor operand but
it can have a comment. The assembler sends a form-feed to the line-
printer, to generate a page throw and to continue the listing at the
top of a new page.

The statement format is:

EJECT (, comment)

See Appendix C.

PROGRAM COUNTER STATEMENT LOCATIONS CONTENTS CHARACTER SYMBOL VALUE

3011 ASCIT '"THE CAT ' 3011 84 T - -
3012 72 H - -
3013 69 E - -
3014 32 - -
3015 67 c - -
3016 65 A - -
3017 84 T - -
3018 32 - -
3019 STRINCZ: ASCII 'SAT! 3019 83 S STRINGZ 3010
3020 65 A = i
3021 84 T A -
ASCIT 12 illegal operand
ASCII no effect

EXAMPLE 4.5.1 Use of the ASCII Directive

4.8

4.9

Assembly Interruption - EOT

The EOT directive warns the Assembler that the source program continues
on a ney tape. It is used in long source programs to divide the
paper tapes into manageable lengths. When an EOT is found the
Assembler warns the operator via a message on the teleprinter, and
then waits for him to load the mext tape. When the tape is ready
the operator must type CO to centinue, It is advisable to include
an ORC directive at the beginning of each tape in case a tape is
loaded out of sequence.

The directive may have a comment (using the comma device) but neither
label nor operand.

Statement format:

EOT (, comment)

See Appendix C.

Assembly Termination - END

An END statement must be the last statement of the source program.

The directive cannot have a label or an operand (it can have a comment).
The END statement terminates pass one of the assembly and initiates

pass two, statements after the END being ignored. If an END

statement is not found before the end of the file the Assembler

prints a warning message on the lineprinter and then inserts an

effective END in preparation for the second pass. See Appendix C.

Instruction Set Mnemonics

See the Hardware Manual for an explanation ef the hardware concepts
and capabilities of the machine., The instruction set mnemonics are
listed below in family groups according to function. They can all
have labels but not all can have operands. Whether a family can
have operands is noted with the family description.

Accumulator/

Accumilator and Registers (operand)
load accumulator with a long (8 bit) literal

LAL

LAS

LAR

SAR

load accumulator with a short (4 bit) literal

load accumulator from register. See Chapter Three

store

accumulator in register. Section 3.9

_il_g;risters Sand T

LSS
LTS
S5T

SAT

load § with a short (3 bit) literal (operand)

load T with a short (3 bit) literal (operand)

store

store

accumulator in registers § and T (no operand)
accumulator in register T (no operand)

Accumulator and Address Control Registers (no operand)

LAV
LAW
LAX
LAY
SAV
SAW
SAX
SAY
SIX
SZY
SQX
sQY
Logical

load accumulator from register V

load accumulator from register W

load accumulator from register X

load accumulator from register Y

store
store
store
store
store
store
store

store

accumulator in register V
accumulator in register W
accumulator in register X
accumulator in register Y
accumulator in Z on module X
accumulator in Z on module Y
accumulator in Q on module X

accumulator in Q on module Y

Operations (operand)

ALL
AND
ORL
EOL
EOR

logical AND, accumulator with long literal

logical AND, accumulator with register
logical OR, accumulator with long literal

exclusive OR, accumulator with long literal

exclusive OR, accumulator with register

Arithmetic/

Arithmetic Operations (operand)

RAD binary add register to accumulator
DEC decrement register by one

ADR ACD add acc mulator to repister
ALA add long literal to accumulator
CMP compare accumulator with literal

Shift Operation (no operand)

LSA shift accumulator 1 bit left

RSA shift accumulator 1 bit right
LSN shift accumulator 4 bits left
RSN shift accimulator 4 bits right

Input /Output Direct (operand)

LAM load accumilator from module

SAM store accumulator in module

Enput Output Indirect (no operand)

LIX load accumulator with (Z) on module X
LIY load accumulator with (Z) on module Y
SIX store accumulator in (Z) on module X

Jumps within a Page (operand)

Jup unconditional jump

JIZ jump if Tero

JNZ jump if not zero

JjIp jump if positi e

JRS jump if register S o 7
JGS jump if carry set

JCN jump if carry not set

Subhroutine Instructions

C0s go to subroutine (operand)
RET return from subroutine (no-operand)
In addition to the above mnemonics the Assembler also recognises HLE

which halts the Simulator Program but has no effect in the processas

B T

CHAPTER FIVE

CROSS ASSEMBLER - OPERATING PROCEDURE

The Cross-Assembler

5.1
5.2
5.3
5¢4

General Description of the Cross Assembler
Initial dialogue

Listings and Error Messages

Simulator File

Paper Tape Punching - Loader Tape

CHAPTER FIVE

CROSS ASSEMBLER - OPERATING PROCEDURE

The Cross-Assembler

The CROSS—-ASSEMBLER is designed to simplify the creation of programs for
the computer kit. It converts the user's program, written in symbolic
form, into the operation codes that the processor can execute. Thus it

is possible to define labels, constants and instructions with easily
identifiable names that are meaningful to the user. The Cross—Assembler
is written in ANSI FORTRAN IV and requires about 18K of core memory for
operation (when run on a PDP 11). It can be modified to run on computers
with a smaller core memory, however, the standard version has been designed
to run on the PDP11 and Sigma computers.

5.1 General Description of the Cross-Assembler

The Cross-Assembler operates in two passes. On the first pass it
produces a fixed-format intermediary copy of the free-format source
file and collects information about the symbols and the individual
statements, The source program can be prepared on punched cards

or paper-tape. In the second pass the instruction mnemonics are
decoded and the binary equivalent of the statement constructed

using information stored in the symbol tables.

The size of the source program that can be handled by the Cross-
Assembler is limited by the size of the tables. Without modification
the Cross—Assembler can assemble a program that:

(a) contains fewer than 500 input statements including assembler

directives

(b)/

5.2

5.3

5.4/

(b) has no more than 100 defined program labels
(¢) shows fewer than 500 label cross references.
In addition the source program must not exceed 4K (4096) words of
ALPS memory. The Cross-Assembler is written in Fortran in such a
way as to facilitate changes to the specification, with regard to

the maxipum number of statements or labels.

Initial N.lluﬂ

The Cross-Assembler announces itself and asks the operator gquestions
about listings, paper tape punching, simulator files and symbol
tables., The answers to the questions are usually YES or NO or a
number. When the correct response is neither YES, NO nor a number
the CROSS-ASSEMBLER will prompt the operator. The dialogue and

some answers are shown in Appendix B.

Listings and Error Messages

Some errors are detected during pass-one and appropriate messages
are output by the Cross-Assembler. The messages are self-explanatory
and are inserted after the line in error in the pass one listing.

If the line has not been listed the error routine will list the line
before outputting error messages. At the end of pass one the total
number of errors detected is printed on the teletype and the line-
printer., A warning message will be printed on the lineprinter if
an END is not found before the end of the source program file, it is
however only a warning and is not counted as an error. The Cross-
Assembler always prints a pass-two listing and the errors detected
in pass two are printed after the line in error. At the end of the
assembly the total number of errors detected in the second pass is
printed on the teletype and the line printer. Examples of listings

and the effect of Assembler directives are given in Appendix C.

-y |

Simulator File

The Cross-Assembler can prepare a file of the output of the assembly,
as an image of the program in 4K of memory. The operator can decide
not to create the file and hence sa.e space on the backup storage

de rice.

The creation of the simulator file is terminated as soon as an error
is detected. By this means, an old correct copy of the simulator
file is not destroyed by a new incorrect one.

The file is used by a Simulation program to simulate the execution
of the program on a ALPS system. The Simulation program is written
in ANST FORTRAN IV and Digital Equipment's MACRO-11 for running on

a PDP 11 equipped with a line printer.

Paper Tape Punching - Loader Tape

Optionally the Cross—-Assembler can punch a paper which contains, in
one of two formats, information describing the user program in core.
The two formats are:

(i) character

(ii) binary.
The character format is used when the paper tape may have to be
modified or patched using just a teletype. The contents of each
location (each location specified in the source prpgram) are printed
as two modified hexadecimal characters (see Appendix D) using
standard ASCIT code. When the bottom four bits of the modified
hexadecimal character are removed, they produce the decimal that
the character represented. The binary format is used when a
program is complete and unlikely to be changed. It has the
advantage of producing tapes about one half as long as the character
format., In binary format each character represents one eight bit
word (1 track per bit). A count has to be given at the beginning
of the tape of the total number of locations represented since

1:|1|L'rt‘,."r

there is no way of encoding an end of tape signal. The first
character of the tape is the format description (i.e. B for Binary,
C for Character) and the last few characters are the checksum.

The format of both tapes is shown in figure 5.4.1.

The paper tape is prepared for loading the program into memory
using the absolute loader of the system programs. If an error

occurs during assembly the punching of the tape is discontinued.

APPENDICES TO SECTION A

APPENDIX A
ASCITI Character Set

Character 7 bit Octal Decimal Hexadecimal Character 7 bit Octal Decimal Hexadecimal
Space 040 a2 20 A 101 65 41
1 041 33 21 B 102 66 42
» 042 4 22 H 103 67 43
s 043 35 23 D 104 68 44
- 044 36 24 E 105 69 45
4 045 37 25 F 106 70 46
& 046 38 26 G 107 71 47
F 047 30 27 H 110 72 48
(050 40 28 I 111 73 49
) 051 41 29 J 112 74 4A
052 42 2A K 113 75 4B
+ 053 43 2B L. 114 76 4C
3 054 44 20 M 115 77 4D
- 055 45 2D N 116 78 4E
: 056 46 2E 0 117 79 4F
/ 057 47 2F P 120 80 50
0 060 48 30 Q 121 81 51
1 061 49 K} | R 122 82 52
2 062 50 32 s 123 83 53
3 063 51 a3 T 124 84 54
4 064 52 k| i 125 5 55
5 065 53 35 v 126 86 56
6 066 54 3% W 127 87 §7
7 067 55 37 X 130 88 58
B 070 56 38 Y 131 85 59
9 o071 57 9 z 132 90 5A
: 072 58 3A [133 01 5B
H 073 59 k] \ 134 92 5C
074 60 ac il 135 93 5D
2 075 61 30 : 136 04 SE
076 62 JE — 137 95 5F
. :
i Tﬂ: ii i mﬂ 015 13 D
Form Feed 014 12 c
Line Feed 012 10 A

APPENDIX B

Cross-Assembler Dialogue

GIM LTD ALPS CROSS-ASSEMBLER VO01C 13-DEC-71

DO YOU WANT THE OUTPUT LISTING ON THE LP OR TTY?

ITY

DO YOU WANT A PASS ONE LISTING?

NO

DO YOU WANT A LOADER TAPE PUNCHED?

NO

DO YOU WANT TO SAVE A COPY OF THE MEMORY FOR THE SIMULATOR?

NO
DO YOU WANT A SYMBOL TABLE(SY) OR A CROSS REFERENCE LIST(CR)?

5Y
Typical PDP11 Operating System Commands
LOG 100 100 log onto system
A DA 0B-JAN-76
B AS SOURCE, 1 user program source code
AuAS SY: LISTING, § pass 2 listing file
2 AS SY: LOADER, 7 resetting loader tape of user progras

A RUN ALPS 11 start the Assembler

APPENDIX C

Cross-Assembler M

GIM LTD ALPS CROSS~ASSEMBLER PASS-ONE ERRORS 13-DEC-71 PAGE 1
5 QWERT YUTOPLKJH
OPERAND IDENTIFIER TOO LONG
5 FRED: MODUL PETER
INVALID OPERAND
7 PETER: EQU SAM
INVALID OPERAND
END OF TAPE 1 FOUND
PLEASE LOAD NEXT TAPE AND THEN TYPE CO
co
END OF TAPE Z FOUND
PLEASE LOAD NEXT TAPE AND THEN TYPE CO
co
3 ERRORS DETECTED IN PASS ONE

GIM LTD ALPS CROSS~ASSEMBLER INSTRUCTION LISTING 13-DEC-71 PAGE 2

ADR CODE ARG ST-NR STATEMENT
1 ORC 1
2 o THIS IS A COMMENT
gg 81 1 3 LAR 1
g2 B¢ 4 LAR FRED
UNDEFINED OPERAND
g W 5 QWERT YUIOPLK JH
UNDEFINED OPERATOR
UNDEFINED OPERAND
6 FRED MODUL PETER
7 PETER QU SAM
e 37 7 8 saM St <7
gos agoy 9 ™MP BRIAN
UNDEFINED OPERAND
g7 g 1¢ HLT COMMENT
11 EOT
12 %= COMMENT TAPE 2
13 EOT
14 7~ TAPE 3
gus grig g 15 cMP Vi)

10 END

GIM LTD ALIS CROSS~-ASSEMBLER SYMBOL TABLE 13-DEC-71 PAGE 3
SYMBOL ADDR SYMBOL ADDR

SAM oo
4 ERRORS DETECTED IN PASS TWO

APPENDIX D

Hexadecimal and Mddified Hexadecimal

I In addition to the decimal and hexadecimal numbers in the source programs
.i the Assembler uses a modified hexadecimal system for the loader tape, In
I character format, one character is used to represent each ; word (4 bits),
to simplify the loader program, the characters are chosen so that the

' bottom four bits of their ASCIT code are the four bits of the § word they

represent,
Hmber | ASCIT Oode | ia e | ASOIT Gade | L e
V' 00 110 000 o 00 110 000 0000
1 00 110 001 1 00 110 001 0001
2 00 110 010 2 00 110 010 0010
| 3 00 110 011 ki 00 110 011 0011
| 4 00 110 100 4 00 110 100 0100
5 00 110 101 5 00 110 101 0101
O 00 110 110 6 00 110 110 0110
7 00 110 111 7 00 110 111 0111
8 00 111 000 8 00 111 000 1000
9 00 111 001 9 00 111 001 1001
A 01 000 001 J 01 001 Q10 1010
B 01 000 010 K 01 001 011 1011
c 01 000 011 L 01 001 100 1100
D 01 000 100 M 01 001 101 1101
E 01 000 101 N 01 001 110 1110
F 01 000 110 0 01 001 111 1111
Note: Normally teletypes portray mmber O as fand letter 0 as 0

Special Characters

Character

Carriage return
line feed
form feed

L
-

#

APPENDIX E

ASSEMBLY LANGUAGE

colon
number sign
comma

space

tab

slash
asterisk

plus sign

minus sign

at sign
single quote

period

dollar sign

Function

formatting character
statement terminator
statement terminator

label terminator

in colum 1 indicates comment
null operand field indicator
field terminator

field terminator

precedes a hexadecimal constant
current location counter

arithmetic addition operator, or
autoincrement (indirect register mode)

arithmetic subtraction operator, or
autodecrement (indirect register mode)

indirect register mode
ASCII string delimiter

no present function,reserved for
macro facility,

no present function,reserved for
system use.

J——

SECTION B

THE SIMULATOR

Chapter ONE

INDEX OF HEADINGS

The ALPS Simulator

1.1 Introduction

1.2 Configuration of the Simulated System
1.3 Facilities available with the Simulator
1.4 Program representation and simulation
1.5 Instruction Tracing

1.6 Enput and Output

1.7 Operating Procedure

1.8 Interpretation of Output Listing

1.1

1.2

GhaEEer One

The ALPS Simulator

Introduction

The Simulator is a computer program which executes, under controlled
conditions, a program written for the ALPS microprocessor. The
simulator is written largely in FORTRAN IV, with a few small routines
written in Assembly Language. It is designed to be used with the

CROSS~ASSEMBLER .

Configuration of the Simulated System

The hardware of the simulated ALPS system is represented by software

and is in a fixed configuration. The configuration represented by

the current version of the simulator cannot be altered except by

major program changes.

The configuration is:

one processor (LP)

4K of eight bit word Program memory (PM) occupying module addresses 0-15
one module (128 words) of Data Storage (I8), module address 16

eight indirectly accessed peripheral channels, module addresses 48-55

eight directly accessed peripheral channels, module addresses 56-03

See Figure 1.2.1

Facilities available with the Simulator

The simulator provides program debugging facilities such as instruction
tracing, error traps and software generated input signals. The

latter facility is an important prerequesite of repeatability of
results. Out of bound addresses, illegal instruction words and
attempted execution in data areas are some of the errors that can be

trapped by the simulator,

1.4

1.5

Program Representation and Simulation

The program to be simulated is held in a software representation of
two program memory chips, i.e. as a 4K array. The array is generated
by the Cross-Assembler and is passed to the Simulator as the simulator
file. The Cross-Assembler assembles the instructions of the source
program into eight bit words which it stores in the array. The
simulator accesses the elements of the array via a software program
counter and stack, and decodes the instruction op code. It then
"executes" the instruction by making appropriate changes to the
variables that represent the hardware. The simulator contains
assembly language routines, which access data areas set up by the
FORTRAN routines, it is thus very important that both the assembler

and simulator are compiled to produce one word (16 bit) integers.

Instruction Tracing

The trace: system used in the simulator allows the user to "mark"™ areas
of code that he wishes to have traced. When the simulator is
simulating these areas the states of the accumulator, registers and
flags are listed on the line printer before each instruction is
simulated. The user can override the trace marks, inhibiting

tracing only, by setting switch O on the switch register to one.
Returning the switbh to zero, restarts tracing.

A special lineprinter driver, written in assembly language, is used
to increase the listing speed. The current version (VO01A) of the
simulator simulates at one thousand'th of the real ALPS processing
speed, and at a significantly lower speed when tracing. The areas

to be traced are defined before start of simulation when the simulator
reads the trace file, which is on logical input/output channel

number seven on the host computer. The format of the input is:

TRACE XXX YYY

Where XXX and YYY are hexadecimal addresses marking the start and
end of trace areas, Single instructions can be traced by making
XXX equal to YYY. When an "end-trace" marker is found, the
simulator traces the instruction and thenprints the contents of the
processor registers 17-48, Thus the contents of all the registers
can be determined at any place in the program by switching the trace
off and immediately back on again, i.e. TRACE XXX YYY

TRACE YYY ZZZ
will cause tracing from XXX to ZII with all RAM registers listed at
YYY.
Any number of trace cards can appear in the trace file, the /* being
treated as an end-of-file marker.
The start and end of trace addresses must lie within the 4K program
area and must not contain data items. When a "start trace" marker
is found the trace system will be switched on and will remain on until
an "end trace" marker is found (and vice versa). Thus leaving the
middle of a traced area will not switch off the trace nor will entering
the middle of a traced area switch it back on.
To reduce the amount of instruction decoding needed to generate the
trace listing the cross-assembler packs a six bit pointer with the 8
bit instruction word into an array element. This pointer points to
an element of the instruction mnemonic table. It is removed from

the array element in preparation for listing.

Input and Output

Input signals to the pragram can be handled by a special subroutine
PERIF, which takes as arguments the module mumber of the I/0 channel
and an integer constant, and returns a value to the accumulator,
PERTF can also be used for output and the integer constant decides

whether the operation is input or output.

1.7

PERIF must be specially prepared by the user to simulate the input/
output characteristics of the peripheral devices attached to the
channels. It is called by the simulator whenever a direct (LAM, SAM)
or an indirect (LIX, SIX, LIY) input/output instruction is encountered.
The format of the call is:
CALL PERIF (IPER, IDATA, IO, CLOCK)
where IPER is the module number (address of I/0 port)

IDATA is the data

10 is the input output switch (=f for output

=1 for input)
CLOCK is the value of the simulator cycle counter upon entry

to PERIF (used for I/0 timing)

IPER, IDATA and IO are integer variables, and CLOCK is a real number.

Operating Procedure

The simulator must be supplied with a simulator file and a trace file.
The simulator file is read from logical channel number three and the
trace file from channel number seven., The simulator idemtifies
itself on the teletype, reads the files and immediately starts
simulating, It is thus important to ensure that switch zero on the
switch register is set to szero before rumning the simulator.

When the simulator finds a HALT instruction it terminates tracing,
prints the contents of the CPU registers and then stops, printing
the message "END OF SIMULATION", If there is no HALT at the end of
the program the simulator will fetch the next instruction which will
be a return from subroutine (code 00000000) since the assembler
zero's all locations before assembly. Thus the simulator will "pop"
the subroutine stack causing a jump to some probably undefined
address, It is therefore a wise precaution to end a program with a

HALT instruction or a "jump to self",

1.8

Interpretation of Output Listing

Before each traced instruction is simulated the simulator lists the
state of the accumulators, registers and flags upon the lineprinter.
First in the line is the address of the instruction being simulated -
this is given as a single hexadecimal digit (the module number),

a space and then two hexadecimal digits representing the intra-

module address., Next the simulator prints the instruction mmemonic
and operand in symbolic form., The contents of the accumulator are
printed next as an eight character string of O's and 1's representing
the state of each bit. This is the state of the accumulator before
commencement of simulation of the instruction. Similarly the states
of the cycle counter, flags, registers and peripheral channels are
printed before instruction simulation. After the accumlator
contents, the contents of registers T and § are printed. The three
flags carry (C), zero (Z) and positive (P) are printed followed by the
cycle counter. Next the contents of registers (-15 are printed, each
one being printed as two hexadecimal digits. Finally the eight
directly accessible peripheral channels (56-63) are listed, again as

two hexadecimal characters. See Figure 1.8.1.

SECTION C

USING THE ALPS CROSS — ASSEMBLER

ON CYBERNET TIMESHARING LIMITED

USING THE ALPS CROSS-ASSEMBLER

ON CYBERNET TIMESHARING LIMITED

In order to use the cross-assembler avallable from Cybernet Timesharing
users require a terminal (like a typewriter) and access to a standard
telephone line. To connect to the computer an account code Is required,

this being available from Cybernet at the address shown below. By

dialling one of the telephone numbers supplied by Cybernet, users connect
directly with the computers, and after supplying their correct account code they

obtain an exclamation mark '] ' prompt,

CRC INFORMATION SYSTEMS

14/01/76 10135 Note that all output

LINE 03/48 from the computer is

LOGIN: UN+ACCOUNTPASSWORD underlined.

ID=. SIGMA A COSMOS 1.2/38 UN = User name,

ACCOUNT = Account

i name.

r PASSWORD is not
normally
printed.

Upon recelving the prompt '] ! users may enter their assembly programs
' by BUILDIing a file, Programs may be typed in directly or entered from

a previously prepared paper tape,

See example over,

Having entered the programi(s) in this way the cross-assembler is

activated by typing :=
JCALL ALPS

ALPS then asks for the name of the file which contains the program by

prompting :=

FILENAME ?

Here the user types the name of the file specified when bullding.

CYBERNET TIVIE SHARING LIMITED

B3 Caerkenwell Aoad London ECT1A SHP Telephone 01-242 0747 Telax 26117

{BUILD ALPDEM
1.000 MODE:EQU 1

2.000 TIME:EQU 2 ALPIEM is the name of the disc

3.000 CHAN :EOU 3 file to be crested.
4.000 RC1:EQU &

5.000 RC2:EQL S

6.000 RCIEQU 4

7.000 COPY:EQY 7

8.000 RESET:LAL 128

?.000 SAM =
10.000 GOS LDOK 40.000 UNZ X
11.000 LAR COPY 61.000 TOOK:LAM 7
12.000 SAR MODE 42.000 JIZ TOOK
13.000 LAL &4 43.000 GOS W10
14.000 SAM 5 464,000 LAM 7
15,000 GOS LODK 85,000 JIZ TOOK
16.000 LAR COPY 64.000 ALL 1
17.000 SAR TIME 47.000 JIZ TOOK
18.000 LAL 32 68.000 JMF REP
19.000 SaM 5 69.000 FIN:LAS 1
20.000 COS LOOK 70.000 SaM 4
21,000 LAR COPY 71.000 JMP FIN
22.000 ALA 12 72.000 LOOJ:LAM 7
73.000 SAR CHAN 73.000 J1Z LDOK
24,000 LAL 16 74.000 GOS W10
25.000 SAM 5 75.000 LAM 7
36.000 START:LAM 7 76.000 JIZ LDOK
27.000 JIZ START 77.000 SAR COPY
28.000 GOS W10 78.000 LAS 0
29.000 LAM 7 79.000 S58M S
30.000 ALL 1 80.000 NOT:LAM 7
31.000 JIZ START 81.000 JNZ NOT
32.000 LAS 0 82.000 RET

33,000 sam S 83.000 W10:LAL 255
34.000 LAR MODE B4.000 SAR RC1
35.000 EOL /FF 85.000 LOOP: DEC RC1
36.000 JIP ONCE 86.000 UNZ LDOP
37.000 LsSA 87.000 RET

38.000 JIP TEN 88.000 TIM:GOS COUNT
39.000 LSA 89.000 LAR CHAN
40.000 JIP REP 90.000 SaM 4
41,000 JMP RESET 91.000 GOS COUNT
42,000 ONCE:GOS TIM §2.000 KAS 0
43,000 JMP FIN 93.000 SaM 4
44.000 TEN:LAS 10 94.000 RET

45.000 SAR MODE 95.000 COUNT:LAR TIME
46.000 ROUIGOS TIM 6,000 SaR RC3
47.000 DEC MODE 97.000 2ND:LAL 255
48.000 JNZ ROU 98.000 SAR RC2
49.000 JMP FIM 99.000 1ST:DEC RC2
§0.000 REP:G0S TIM 100.000 JUNZ 1ST
S1.000 LAM 7 101.000 DEC RC3
§2.000 JIZ REP 102.000 JNZ 2ND
53.000 6OS W10 103. 000 RET

54,000 LAM 7 104,000 END

55.000 ALL ?

56.000 J17 REP

57.000 X:LAS

48,000 SAM 4

) LAM 7

Next the program prompts for options :-

OPTIONS?

If no options are required then a carriage return causes ALPS to
complile the assembly program using standard defaults. (See below.)
If the user wishes to know what optlons are available then a question
mark should be typed In response to the OPTIONS? request,

e.g. ICALL ALPS
GIN LTD ALPS CROSS-ASSEMBLER UCRC002 14/ 1/74
FILENAME : ALFDEM
OPTIONS:?
OPTIONS ARE,

P1 (BATCH DEFAULT) PASS 1 LISTING STARTING
FLIN) AT STATEMENT NO. N
M1 (T/S DEFAULT) NO PASS 1 LISTING

P2 (BATCH DEFAULT) PASS 2 LISTING
N2 (T/5 DEFAULT) ND PASS 2 LISTING

CR (BATCH DEFAULT) CROSS REFERENCE L1STING
NCR (T/S DEFAULT) N0 CROSS REFERENCE LISTING

sY SYMBOL TABLE
51 HEMORY DUMP FOR SIMULATOR VIA. Fil

LOS(FILE) (T/S DEFAULT TD LOTEMP(IDW)
LOADER TAPE IN MODIFIED HEX TD "FILE"

LOL(FILE) LDADER TAPE IN STANDARD HEX 10 “FILE"
NL (BATCH DEFAULTY MO LOADER TAFE
OPTIONS:CRET])

003 7800 10 0S8 LDOK
ERROR ON LINE 10

"UNDEF INED_OPERAND

004 7800 15 GOS LDOK
ERROR ON LINME 15

UNDEFINED DPERAND

011 00 20 cos LOOK
ERROR ON LINE 20

UNDEFINED OFPERATOR
ERROR ON LINE 20

UNDEFINED OFERAND

043 4800 73 JIZ LDOK
ERROR_ON_LINE 73

LN I

048 4B0OO 76 JIZ LOOK

N 2

IUNDEF INED OPERAND

O7E 00 92 KAS 0
ERROR DN LINE 92

UNDEFINED OPERATOR

7 ERRORS DETECTED IN PASS TWO

#EX]T#

MN.B. Options should be entered on one line, separated by commas,

The assembler performs two passes through the assembly program
checking first for syntax errors and then for references to labels and |
jump Instructions, No listings of the program are produced in either
pass 1 or pass 2 unless requested by specifying the options P1 or P2
(this saves time In |listing at users terminal), Diagnostic error
messages are supplied along with an indication of the line on which the
error has occured, If no errors are detected then a loader tape file is
produced and this may be punched at the user!s termmal If required.

Errors may be corrected by editing the assembly program file :=

IEDIT ALPDEM

£TY10 Type line 10.000
10.000 6OS LOOK

#TY15 Type line 15.000
15.000 GOS LDOK

*TY20 Pype line 20.000
20,000 COS LOOK

#U20 Overwrite line 20,000
20.000 GOS LOOK

®TY73

73.000 JIZ LOOK

#TY76

76.000 JIZ

#TY92

§2.000 KAS O

V52

92.000 LAS O

wTY72

” 72,000 LOOJILAN 7
w72

" 72.000 LOOKILAM 7
i X - leave the editor.

ICALL ALPS
GIM LTD ALPS 4
F TAL

OPTIONS!CRET)

%% NO ERRORS FLAGGED IN ABOUE ASSEMBLY *x
LDADER T IN FILE:~-
SEX]TH

IPUNCH LOTEMPL
PLEASE TURN ON
04 B0 35 78

gl

Note that the tape 1is
produced in modified
Hexadecimal, For stan-
dard Hexadecimal see
option LOL.

a
3
&

2
Se8EN8S
N2z3CS
28383828
8FLJILERT
dgayvygag=
JadNsNEReR
88Y2§=28s8
3533868
FRL2EIENI
SRIEEEFED
PES2RLHC
BAKRELSUIER
BYsNEFNR
882%¥LNI

=8

As may be seen from the above example, to edit a file the user must

type 'EDIT filename! after a '] ' prompt,

1EDIT filename
: Asterisk is the edit subsystem prompt.

Note that when editing an asterisk ' *! prompt Is obtained, There are
numerous commands available within the editor but only four are
reguired for most operations relating to ALPS, These are :=

TYn Type the line number n
DEn Delete |line number n
INn Insert line number n
ovn Overwrite line number n

To leave the editor users simply type X [FET] In response to the ' *1
prompt,

When users have obtained a correct assembly program they may obtain
a pass one and pass two listing by running the ALPS program in a batch
mode where the printout Is obtained on a line printer and the loader
tape is produced on a high speed paper tape punch. To perform this
operation all that Is required Is to type :

1CALL FROM ALPF

This results In a serles of questions which will Iinstigate the job. If
an explanation of any question asked is required a '?! reply will provide

this.

wiernd Office
Aatn S et
WCIN 2

wtered office
John Soreet

WCIN 7ERB Tal O71.798 G087 Tal: OE1-B738 O3 Siough Buck inghamshire

Note / may be used in place of 'CALL'

1 /FROM ALPF A gquestion mark response produces an
MAME OF PROGRAM FILE:? explanation.

ENTER HERE THE NAME OF THE FILE WHICH CONTAINS THE

MNEMONIC ASSEMBLY PROGRAM FOR THE LPB00O

NAME OF PROGRAM FILESALPDEM
! JOBU JOBQ produces information about the
12121 CURRENT JOB (ID=1065) 34 MINS (LIMIT=200 MINg) BATCH queue.

1 AT PRIOHITY C
3 AT PRIORITY 7

12 AT PRIORITY @
6 AT PRICRITY O

WHICH BATCH PRIORITY IS REQUIREDZ?
BATCH PRIORITIES ARE?~-

C_FOR IMMEDIATE RUN @ 5.30 PER C.U.
B FOR HIGH PRIORITY ® 3.50 PER Cels
A FOR STD. PRIORITY ® 2.90 PER CeU.
7 FOR_LOW PRIORITY @ 2.50 PER CeU.
5 FOR O'NT PRIORITY @ 2.10 PER C.U.

USERS SHOULD CHOOSE PRIORITIES IN THIS RANGE
WHICH BATCH PRIORITY IS REQUIRED?7 Priority 7 is low priority.
TIME LIMIT:7
THE TIME LIMIT REQUIRED IS FOR THE RUNNING OF THE JOB
THIS WILL DEPEND ON THE SIZE OF THE PROGRAM BUT A
JUDICI0US VALUE WOULD BE 10 MINUTES.
TIME LIMIT:10
TAFPE FILE NAME17?7
THIS 1S5 THE NAME OF THE FILE THAT THE PROGRAM WILL
CREATE AND PUNCH WHICH CONTAINS THE ASSEMBLED PROGRAMs
LOADER TAFE FILE NAME:ALPDTAPE
NAME & ADDRESS1: 7
THIS IS THE NAME AND ADDRESS TO WHICH THE OUTPUT AND
PAPER TAPE 1S TO BE SENT.
TERMINATE THE ENTRY BY TYPING A CARRIAGE RETURN
I«E« A BLANHK LINE_
NAME & ADDRESS: :10/P TO COLIN HAVERCROFT
183 CLERKENWEEL =+~LL RD.
i LONDON EC1T

]
lﬁSEﬁT JOB 7Y Y or YES may be given.
O3 INSERTED.ID=1079

TAPE IN FILE ALPDTAPE

wOB IN FILE SOTEMPa

EXAMPLE SHOWING NORMAL USAGE WITHOUT THE
QUESTION NARK RESFONSE.

1 /FROM ALPF
NAME OF PROGRAM FILEIALPDEM
1 JOBQ
12125 CURRENT JOB (ID=1072) 2 MINS (LIMIT=45 MINS)
6 AT PRICRITY 7
16 AT PRIORITY 2
6 AT PRIORITY O

WHICH BATCH PRIORITY 1S REQUIREDZ?7

TIME LIMIT:10
LOADER TAPE FILE NAMEIALPDTAPE

NAME & ADDRESS: $10/P TO C.HAVERCROFT AT 83 PLEASE.
!

INSEAT JOB7N

JOB_IN FILE SOTEMP4
i

141 Gt Charies Street | Brazennos Street BAD Yeovil Road 20 Blythswood Square gﬁ;mﬁl ?M"':l

lssgow G2 44R
Birmingham B3 LG Manchester M2 SEH Slough Trading Evtate % m,%. 2458 Suffolk 1P33 PR

mmr . rFrF. "L o1

Additional Features of Cybernet ALPS

Direct program entry

If it is required to enter small programs or to test assembler
instructions to discover their equivalent hexadecimal code, the
facility exists for typing assembler instructions directly into
the ALPS program. The disadvantage of this method Is that
no permanent record of the entered statements is created |, e.
the statements entered are deleted when leaving ALPS, and
are not stored on disc file as when using BUILD.

s 9.

JCALL ALFE

GIM LTD ALFS CROSS—-ASSEMBLER UCRCOO2 14/ 1/74
FILENAME:CFRET]
OPTINNS:F2

TYPE IN FROGRA&M NOW
JASCIT *THE RUICK BROW'

PEMD
“GIM LTD ALFS CROSS-ASSEMBLER INSTRUCTION LISTING 14/ 1/76 PAGE
ADR CODE ARG ST-NR STATENENT

000 S4 rTY 1 ASCII 'THE QUICK BROW'
001 4g *HY

002 45 d

003 20 ror

na 3 | e

205 ' ryr

004 49 8 &

007 a3 e

s AR o

009 20 v i

Q08 42 'Rt

MR 52 R*

000 AF o’

o0 57 W'

2 END

== NO ERRURS FLAGGED IN ABOVE ASSEMBLY =

LOADER TAFE IM FILE:- LOTEMPL
sEX]Ta

LOS and LOL

The options LLOS and LOL allow the user to specify whether the
loader tape hexadecimal notatlon produced is in modified or in
standard format. By default (i. e. If no option is specified) the
program will produce modified hexadecimal as required by the
General Instruments LPB000 proto<type kit. If standard
hexadecimal is required the LOL option should be specified.

When ALPS is required to generate a specific loader tape file (and
not the default file LOTEMP) users should specify either :-

LOS (fllename) - for modified hexadecimal
LOL (filename) - for standard hexadecimal

LOADER TAPE SHOMWN HERE IN MODIFIED HEXADECIMAL

40 35 78 43 B7 92 04
10 35 27 48 14 78 72
DD S8 33 1L 58 37 1L
F1 78 79 M1 SO I9 40
05 02 48 a0 02 34 27
51 05 01 48 51 a0 a0
27 48 43 97 0O 35 27
00 78 82 83 34 78 g2
50 B Mg S0 848 00

D4 B8O 35 78 43 B? 91
315 78 43 B7 ON OL 93
05 01 a8 1J 00 35 81
40 40 00 78 79 40 SO
78 79 27 A8 40 78 72
4. 27 48 51 78 72 27
34 40 S50 27 a8 43 78
&4 00 04 0O 94 MA 50
34 00 B2 95 04 00 95
TOSKEN

GAdNENERER
83238V PNUT

LOADER TAPE SHOWN HERE IN STANDARD HEXADECIMAL

04 B0 35 78 43 87 91 04 40 35 78 41 87 92 04 20
35 78 43 87 0E OC 93 04 10 35 27 48 1A 78 72 27
05 01 a8 1A FO 35 21 OC FF 58 33 1C 58 37 1C 58
40 40 00 78 79 AQ SF FA 1 73 79 In 50 37 40 S5F
78 79 27 4B A0 78 72 27 05 02 AB 40 F2 24 27 S0
aC 27 4B 51 78 72 27 48 51 05 01 48 51 a0 40 Fi
Ia 40 SF 27 4B A3 78 72 27 48 A3 97 FO 15 27 50
GE OO O4 FF 94 D4 50 ¥S 00 78 B2 83 34 78 B2 FO
Ta 00 B2 94 04 FF 95 1S S0 B7 D& S0 84 00

MOSRE

EOT

The assembly instruction. EOT (end of tape) has been modified
to allow users to break up their programs into several smaller
files. Each of these Indlvidual files may be compiled separately
and should have EOT as the last assembly instruction in place
of the END statement.

When ALPS encounters the EOT Instruction it issues the message :-

END OF FILE X000 FOUND
PLEASE ENTER MEXT FILENAME
FILENAME:

where XXAXXX s the filename

The next file should be specified and the pass 1 assembly will
continue. If it is required to terminate the first pass a carriage
return should be given in response to the FILENAME: request

and this will allow entry of either further lines of assembler

typed directly at the terminal or to supply an END instruction which
will cause AL PS to proceed to the pass 2 assembly.

2. g.
BUILD TIM IBUILD COUNT
1,000 TIM:GOS COUNT 1.000 COUNT:LAR TIME
2: 000 LAR CHAN 2.000 SAR RC3
3,000 SAM A 3. 000 2ND:LAL 255
4, 000 GOS COUNT 4,000 Sar RC2
E 000 KAS O 5. 000 1ST:DEC RC2
5,000 SAM 4 4,000 INZ 15T
7.000 RET 7,000 NEC RC3
000 EOT g, 000 _INZ 2ND
2.000 CRET] ?.000 RET
L 10. 000 EDT
11.000 [RET]

The two subroutines shown above have been bulilt into separate
flles, they have been extracted from the example shown previously,

ICALL ALPS
(GIM LTD ALFS CROSS-ASSEMBLER UCRCNO0212/ 1/74
FILENAREZTIM 2

FTIONSETRET]
END OF FILE TINM FOUND
PLEASE ENTER MEXT FTILENAME

EMARE UM
END F FILE CIHINT FOUND
EASE ENTER MEYXYT FILENAME
FEILENAME STRET]

—

M THE PFROGEAM NOW

0} i 2 LAK CHAN
EREDR ON LINE o 1
UNDEE TNED DFERAND
i (M 5 KAS 0
ERROR OM LINE S 1
UNTIEF TNETY DFERATDR
Y =T, =] COUNT LAR TIME

EWROR OM LINE 9 _T

UNDEF INED OFERAND

W TATe] N 10 SAR RC3
ERRDR ON LINE 10 _T

UNLEF INED NPERAND

oob 0 12 SAR HC2

ERRUR ON LINE 12 I

UNDEF INEDl OPERAND

DOE) 13 18T DEC RC2
ERROR ON LINE 13

UNDEF INED DFERAND

011 TH 19 DeC RC

—

ERFEUR ON LINE 15
IWNDEF INED 1_“‘5:“‘#!”[1
ERKOFS DETECTED IN PASS TWO

sEXITw
——

Most of the above errors are due to references to labels which
are defined in the main program., These routines are assembled
with the remainder of the program, which has also been broken
down Into the main program and separate subroutines, (after
corrections to the incorrect syntax on line 5 have been made). The

resultant assembly Is shown below and a cross reference table is

also shown,

ICALL ALPS
“GIM LTD ALPS CROSS-ASSEMBLER VCRC002 12/ 1/76
FILENAME :HATIN
OFTIDNS:CR
END OF FILE MAIN FOUND
FLEASE ENTER NEXT FILENAME
FILENAME : LOOK
ENLII OF FILE LOOK F
FLEASE ENTER NEXT FILENAME
FILENAME SW10
END OF FILE W10 FOUND
PLEASE ENTER NEXT FILENAME
FILENAME:TIM
END OF FILE TIM FOUND
PLEASE ENTER NEXT FILENAME
FILENAME : COUNT
END OF FILE COUNT FOUND
PLEASE ENTER NEXT FILENAME
FILENAME:CRET]

TYPE IN THE FROGRAM NOW

PEND
“GIM LTD ALPS CRODSS-ASSEMBLER CROSS REFERENCE LIST 12/ 1/74 PAGE 2
ST-NR NAME REFERENCED IN STATEMENT(S)
3 CHaN %1 23
7 COPY 77 21 16 11
78 COUNT 93 0
&9 FIN 49 43
72 LDOK 76 73 20 i5 10
a4 LOOF ¥
1 MODE 47 45 34 12
a0 MOT g1
432 INCE 36
4 RC1 B4 BS
5 RC2 102 101
& RC3 104 99
50 REF 48 56 52 40
R RESET 41
4 RO 48
256 START 31 27
.4 TEN 8
0 TIM 50 &8 42
2 TIME 78 17
A1 TDOK &7 &5 &2
A4 Wio 74 &3 53 28
LT X &0
102 15T 103
100 ZND 105

%% NO ERRORS FLAGGED IN ABOVE ASSEMELY ##
LOADER TAPE IN FILE:- LOTEMPI
EXIT*
|

SECTION D

PR.GRAMMING EXAMPLES

1.0 Simple Imput-Output

2.0 Zeroing Reglisters and RAM

3.0 Moving Data between Registers

4.0 BCD Addition

5.0 BCD Subtraction

6.0 Changing Pages/Table Jumps

7.0 A Keyboard Input and Seven Segment Display Conversion Program
8.0 Second Keyloard Program

9.0 Standard Routines

10.0 CGenerating Waveforms

(See also section 4.3, page 42, of Hardware Manual)

1.0 Simple Input-Output

The I/0 ports of the ALPS system are 5 bit wide and contain output latches,
which means that when data is sent to them it remains on the output pins
until it is overwritten with new data. The same ports can be used to

input data but it must be remembered that the input pins are shared with

the output pins and so any data read into the processer will Le the wire-OR
of the current data on the output latches and the current input data. If
aportis only used to read in data then it must have its output latches
cleared before being used for input, this is done automatically by the power-

on-reset circuitry.

DIRECT ADDRESSED 1/0
The LAM (Load Accumulator from Module) and SAM (Store Accumulator in Module)
instructions can be used to transfer data between the LPS000 accumulator and
the 1/0 ports at module addresses 56 to 63 at the top end of the memory
address range. As the LAM and SAM instructions only have 3 bits available
to describe the module address of the data port to be used the j3 bit code
has 56 added to it by the processor to form the actual module address thus
LAM @ addresses 1/0 port 56
LAM 7 addresses 1/0 port 63
The I/0 ports can be on LP6000 ROMs, LP1010 I/0 Buffers or the LPS000 CPU
chip, the latter port being exceptional in that:
1.1 it always has address 63
1.2 all 8 bits can be used for input but
1.3 only the uppermost four bits can be used for output.
A simple output program could be
1.4 LAL DATA
1.5 SAM IOPORT
where 1.4 sets the accumulator up with the required 8 bit data and 1.5 outputs
the data to the IOPORT, IOPORT being a variable in the range 0 to 7 to specify
a module address in tlie range 56 to 63.
A simple input program could be:
1.6 LAM TOPORT

1.7 SAR REG
where 1.6 inputs the wire-OR of any previous output and the new input from
data port IOPORT, IOPORT being a variable in the range D to 7 as In 1.5 above.

INDIRECT ADDRESSING
In the unlikely event that 8 I/0 ports will not provide enough I/0 for a
system the I/0 can bLe extended by indirect addressing. Any of the 64

module addresses can be used as I/0 port addresses however it is a convention
that I/0 addresses start at the top of memory and grow downwards whereas
program memory starts at the bottom of memory and grows upwards. The ALPS
prototyping system allows the user to access 15 1/0 ports with module addresses
in the range 49-63.

A simple input or output program might be:

1.8 LAL ICADDR

1.0 SAX

1.10 SIX or LIX

where 1.8 sets the accumulator to the module address of the I/0 port required,
1.9 then stores this value in the X register and 2.0 either stores or loads
data bLetween the accumulator and 1/0 port. Note that once the X register

is set up any number of LIX and SIX instructions can be used, the X register
only needs to be set up when a different I/0 port is required.

Indirect addressed input-output provides more addresses for I/0 ports (up to
64) but takes more program and takes a longer time for the instructions to
execute and therefore direct addressng should be used whenever possible.

2.0 Zeroing Registers and RAM

Sometimes it is desirable to start running a program knowing that the CPU
registers and main memory RAM are cleared of any data.

A program to do this for CPU registers could be:

LSs 7 SET UP 'S' REGISTER

LTS N SET UP PAGE OF CPU MEMORY TO BE CLEARED

LAS ¢ CLEAR ACCUMULATOR
LOOP: SAR @ - STORE @ IN RAM (S,T), 8 =S - 1

JRS LOOP IF § # 7 GO TO "LOOP"

LTS NEXT SET UP NEXT PAGE TO BE CLEARED

NOTE THAT S = 7 FROM PREVIOUS LOOP

LOOP2: SAR @ - STORE # IN RAM (8,T), =58 -1

JRS LOORZ . IF 8 # 7 GO TO "LOOP2M

: ETC. EIC.

In the above program N and NEXT hold the 'T' value of the CPU register page
to be cleared. The value of S is decremented from 7 to @ in each loop, norw that

®S"rolls over" from @ to 7 when decremented again.

Clearing 256 words of RAM in main memory can be dome as follows:

LAL MODULE SET UP MODULE ADDRESS OF 256 WORD BLOCK TO BE CLEARED
SAX , STORE MODULE ADDRESS IN X
LAS ¢ ; SET UP STARTING VALUE OF LOWER
SAR REG B BITS OF ADDRESS

LOOP: LAR REG GET B BIT ADDRESS IN ACCIM
SZX , SWREMHAHDRESEINZHH}ISTERUFMPW

AS MODULE 'X'
LAS # CLEAR ACCUMULATOR
SIX , STORE § IN RAM
DEC REG DECREMENT RAM ADDRESS
JNZ LOOP ALL CLEARED ?
In this program the RAM locations are cleared in the order g, 255 -~-~--1, a

CPU register called REG being used to hold the value of the next RAM address
to be cleared. Note that advantage is taken of the fact that the DEC decrement

instruction changes a value of @ to a value 255.

3.0 Moving Data Between Registers

DIRECT ADDRESSING
The simplest and quickest way to move data between registers is by:
LAR REG 1
SAR REG 2
which copies the data in REC 1 into REC 2 assuming REG 1 and REC 2 are directly
addressed, this infers that only register 0-11 and V, W, X and Y can be used

in this way.

INDIRECT ADDRESSING
By using indirect addressing it is possible to transfer data from one page of

8 register to another:

LSS 7 SET UP 8 = 7

LOOP: LTS TVALUE SET UP 'T!' VALUE
LAR @ GET DATA
LTS @ ALTER CPU REGISTER PAGE TO T = §§
SAR @- NOTE THE AUTO DECREMENT OF S
JRS LOOP ALL DONE ?

The above program copies the 8 registers in CPU page TVALUE into page 0 of
the CPU registers. It would be quite easy to alter the above program so that
the registers could be copied 'upside down' or copied out to external RAM etc.

Further program examples are given in the Standard Routines Section D, item 0.0.

4.0 BCD Addition

The ALPS microprocessor is particularly well suited to BCD arithmetic
operations and manipulations and a number of routines are given in the

Standard Routines of Section D paragraph 0.0,

The basic method for BCD addition is as follows:

Problem: REG 3 = REG 3] + DATA

4.1 LAL DATA

4.2 ALA /66

4.3 ADR REG 3

The program works as follows:

Statement 4.1 puts the data value in the accumulator,

Statement 4.2 corrects this number ready for BCD addition, and

Statement 4.3 adds the contents of the accumulator to REG 3 and corrects for
BCD carries.

The BCD add instruction adds two BCD numbers in the accumulator to two BCD
numbers in a register. Any carry from the first two numbers is added in
with the higher significant numbers, any carry resulting from that addition
sets the processor carry flag and can be used for testing by conditional jump

instructions.

5.0 BCD Subtraction

The BCD subtraction method is very similar to BCD addition as described in
the previous paragraph. The basic program is shown below, a more
comprehensive example is given in paragraph 9.0, Standard Routines.
Problem REG 3 = REG 3 - DATA

LSA SET CARRY = 1

LAR DATA GET DATA

EOL /FF ONES COMPLEMENT IT
ADR REGC 3 ADD IT TO REG 3

The main differences between addition and subtraction are:
A. the carry flip flop should be set to a 1 before subtraction
0 before addition
. the data is inverted for subtriaction
C. the data does not need a correcting number /66 added to it for subtraction.

6.0 ing Pages/Table Jumps

The ALPS microprocessor memory splits naturally into 8 x 2K word pages, jump
and subroutine instructions having an eleven bit addressing capability to
operate within a 2K page. If there is a requirement to jump from one 2K
page to another (e.g. when a program is larger than 2K words) then the
following programming technique can be used:

6.1 LAL PAGMOD LOAD PAGE AND MODULE ADDRESS

6.2 SAX STORE IN X REG

6.3 LAL WORD LOAD WORD ADDRESS WITHIN MODULE

6-4 SQX STORE 11 BIT MODULE/WORD ADDRESS IN Q (PAGE)
6.5 LAX GET PACE AND MODULE ADDRESS

6.0 SAY STORE IN Y REGISTER TO SELECT CHIP

6.7 SAY DUMMY INSTRUCTION FOR OVERLAP

In the above program the instructions function as follows:

0.1 the value of PAGMOD is put into the accumulator,

PAGMOD bits 4, 5, 6 specify the new page required

PAGMOD bits 1, 2, 3 specify the module within the new page.

6.2 the value of PAGMOD, the module address part of the new address, is
stored in the X register.

0.3 the WORD part (bottom 8 bits) of the new address is put into the
accumulator. Note that if this value were @, as in the case of setting up
the start address of a new ROM, then LAS @ could be used instead of LAL WORD
thus saving one instruction word.

6.4 the SQX instruction stores the contents of the accumulator (WORD) and
the lower three bits of the X register contents in the 11 bit Q register of
the memory device which has a page address equal to the value of bits 4, 5, 6
of the X register.

6.5 this instruction retrieves the value in the X register and puts it in
the accumulator,

6.6 the new memory is now chip selected by storing the new page address
(PAGMOD) in the Y register.

6.7 this is a dummy instruction to compensate for the fact that instructions
are fetched from memory whilst the previous inmstruction is being obeyed,
("overlapped fetch"). It has no programming function as such.

7.0 A Keyboard Input and Seven Segment Display Routine

In order to understand this demonstration program it will be necessary to
study this explanation in conjunction with flowchart and program listing.

The overall function of the program is to continuously examine a 16 key
keyboard to check if a key is pressed, if any key is pressed then the program
converts the key code to BCD and displays it on 4 LEDs and then converts the
BCD code to seven segment code and displays it on a seven segment display.
The electrical circuitry required between the keyboard, LEDs and displays is

very simple and is shown in the circuit diagram.

The program assumes the keyboard is connected to I/0 module 62, the seven
segment display is connected to I/0 module 61 and the LEDs are connected to
[/0 module 63 (on the CPU chip). The program functions as follows:

7.1 At label INKB: registers 1 and 2 are set up as counters with an initial
value of 4, these counters are used later in the program to help convert the
keyboard code to BCD.

7.2 A code of 0000 1111 is then output to the keyboard matrix (see circuit
diagram for connections) and then the output of the keyboard matrix is read
back in and the top 4 bits checked for a non zero result. If the result is
zero no key was pressed so the displays are cleared at NOKB: and the program
restarts.

7.3 If the result was non-gero then the newly input keyboard code is sent
back out to the keyboard on the top 4 bits of 1062. These 4 bits are shifted
to the top end of the accumulator and then the result checked, if the result
is zero then no key is pressed or rather the key depression previously detected
must have disappeared so the displays are cleared at NOKB: and the program
restarted.

7.4 If a key is still pressed then the two co-ordinates X and Y, of the key
are now stored in the top and bottom four bits of the keyboard interface
(remember the I/0 interface consists of latches). The X and Y codes (1 or 4)
are now converted to numbers in the range 0-3 by counting down the registers

1 and 2, which have previously been reset to 4, until the relevent key has been
accounted for.

- !
R 5.-'

7.5 The codes are then converted to BCD by shifting the one in REGA

left 2 places (to multiply it by 4) and then adding it to the other in REGB.
This code is then shifted to the top 4 bits of the accumulator and displayed
on the CPU I/0 register 63 (remember this only has output devices on its
top 4 bits).

7.6 The BCD code is restored to the bottom 4 bits of the accumulator and
then at label BCD7: it is .added to the start address of a table of the 7
segment equivalents of BCD (rather hexadecimal) numbers. This new address
is the address of the data defining the 7 segment equivalent of the BCD

number.
7.7 This address is now stored in the Z register of the same module as the

program (SZY) and then the appropriate 7 segment code is read in from the
program ROM via the Z register (LIY). The table of 7 segment codes is
defined as part of the program at label SEG 7:, note that these binary
codes are never executed as program because of the |MP INKB instruction
preceeding them and the fact that the label SEG 7: is never used as the

destination of a jump instruction.

A flowchart describing this program is shown in figure 7.8 and some notes on

the electrical circuit required is fiven in figure 7.9.

ALPS-LPS000 KEYBOARD-DISPLAY PROGRAM EXAMPLE

(" START)
_Pi0.R.

INKB: -

T
SET UP
COUNTERS

QUTPUT 4
1's to

_ KEYBOARD

" READ IN
4 RETURN
_LINES

NOKB:

L

__*..-u—? —_ —

; CLEAR
LEDs and [~

|
| REFLECT | BACK: ¥ |
| BACK HIT CONVERT |
L GODE r !{Em‘ﬁhﬁﬂj
Lol BCD CODE
READ IN '
REFLECTED DISPLAY
¥ — ON LEDs
. P — -—_— |
AREDN | BCD 7: E
< st) LOOK UP IV |
PRESSED~" 7 SEGMENT j
TABLE
ﬂ-h\" SE3 i ik |
DISPLAT
sl 7 SEGMENT
KEY CODE

EETNRR
Note: INKD, NOKI, BACK, DCD 7 refer to labels in the program text.

Figure 7.8

f ALFP5-LPB0U00 DEMONSTRATION PHROGRAM
#THIS PROGHRAM DEMUNSTRATES 1~ '
SCANNING A 16 UHAHACTER KEYBOARD
LUNVEATING SCAN CODE TO BCD
fLUNVERTING H5CLD COUE TO SEVEN SEGMENT CODE
fULSPLAYING HeX KEYBOARD CODE IN 7 SEGMENT
#BHK 27 APHR 75
#SET UF HEGISTER AND [/70 NAMES
AeEGA: EdU |
HEGB: WU 2
LiISF: EWU 5
hneYs: EWdU 6
LELbS: ewlU 7
FRUOUTINE Tu SCAN A KEYBOARD
STAHT HUUTINE=-SET UP COUNTERS
IWKsdt LAS 4

S5AH HEGA

SAH HeEUH
fLUOUK FUH ANY KEY

LAS 15

SAM KEYH =000}

LAM KEYb wTTT7LIL)

HSN & =0u0orr??
#ANY KeY PRESSEDT?

Jil& NOKS
#YeES5=wnlCH UNE?

LS5N =7T7TT70000

SAM HEYn =77770000

LAaM KEYH =TTTTL1L]

L5N » =!1110000
¢ KEY DISAPPEARED DURING TEST?
1L NUKB

e NU-LONVERT KEY CODES TOo BLD
SJACK: DEC nEGe
L5A
JNL BACGK
#GET OIHER | OF 4 BIT COLE
LaM KEYH =777
KSN » =CLEAHR BOTTOM
LSN . =4 HITS
r LUNVEART IT FrUOM | OF 4 TO 0=-3
MUnk: UEL HEUBA
L5A
UNé MOHE
COMBInNE THE TWU CULES TO GET s8CL
LAR HEGA =GET 1ST CODE
LoA X
LSA
HAL HEGH
HEXAUEUIMAL HESULT IN ACCUMULATOR

"
FLULSPLAY CHAH ON LEL LAMPS
FUn Tuk 4 dgITS OF HUDULE b3
L.ain
SAaM LeEuS
HaN
"
Fie GUNVERT gL T 7 SEGMENT
fUalwi: A LUHIAUFP [AdLE
BLUT: ALK SeET sLALL ALLURESS IN TaABLE
SLY » *5TURE ALUHRESS IN £
LIY » =LET 7 SeiG CObLE
#fNUw UISFLAY THr CUOUE UN DISPLAY
SAR DI1SP
* LU oALK 1Tu STAnl OF PrROGRAM
fFLUOUK FUM ANUTHER KEY
JHF [pKo
fUELFINE THE SeEveEN SEGMENT COuks &=
rolll2 SeEGMENTS ARE CONNECTED TO

o 2 170 m0bULE &1

o h g Skl | TO =17 1

r TT7

o J 33 2. TU plT 2 ETCs
#5 4

#4444

akfaly DL F4F =uullilllld
UL Aue =0UuUdullu
b 28 mulullull
D ZaF =Uludullil
UL Ffob =Julluullu
U Jobu =ujilullul
U S0 =ulltlilul
DG /07 =uUlUOLYL 7
Lwe FTF sulllillill B
UG /a7 =ulluulll v
THESE LUUE AReE FOH 7 Sk HEXADEC IMAL
Uu Ar7 o=1111ulll A
e JFLC =l1111100 B
L. 7y =jOllluul G
bl Jue =] I011110 D
E
¥

Uk —C

U /Fw =1 L111001

Ut /Fl =ill11uuul
eFRMaAe LOMES HEHE LF NO KEY PRESSED
WURBT LAS U sLLEAH LISPLAYS

SAM LeEUS

Sk Ul Se

i Loing sHESTARI]

ELECTRICAL DETAILS Keyboard/7 Segment Display

124 13 14 15

51
=
=7

150K —12v

A S T M A

on each output

I0 62 Keyboard
| - 1
E
T EEAT=
-12V
| ?l 1K gﬂ é:
B = prorte=-3

“§ ”‘\4» 1:;\ s ZS

]13456?3‘ 0 T B
10 61 7 Segment Display 10 63 LEDS

(common cathode to -12V)

8.0 A Second Keyboard Program

The keyboard routine described here is more sophisticated than the one used in
paragraph 5.0, It can detect when one or more keys are depressed simultaneously
and will only accept key inputs if one key is depressed at a time. The program
is illustrated and expbained in Figure 8.1 and should be simple to follow once

the example in paragraph 5.0 has been understood.

The only other keyboard facility that would be particularly desirable that is
not included in Figure 5.1 is that of anti-contact bounce logic for the
keyboard switches. This facility can easily be added by programming a short
timer (5mS) using a loop of instructions and then using the keyboard routine
again. If the keyboard routine detects the same key twice then it can be
assumed that the key contact is not bouncing. For this reason (using the
keyboard routine twice) it is usual to program the keyboard routine as a

subroutine that is called from the main program.

ALTERNATIVE KEYBOARD SERVICE ROUTINE

LAL STRTAB g SETTING UP TABLE MODULE X
SAX ADDRESS FOR LATER ACCESS
LAS 15 % SET UP 1111 on ¥
SAM X y
LAM ¥ READ IN ON ¥
J1Z NOKEY
SAM Y ECHO BACK ON Y
Las o ; CLEAR PORT X
SAM X
LAM X READ IN ON X
ALA STRTAB ADDING INDEX OBTAINED FROM X TO START
ADDRESS OF TABLE
SZX SENDING OUT START ADDRESS Contained in
Table E-EE—!
LIX READ IN X DECODE FROM TABLE s
JIP OKX 0 0004
0010
JMP ERROR See next :page A !
=1 0011
i z 0100
OKX: SAR (INDEX) STORE DECODE OF X IN ONE
— Vi
OF THE MACHINE REGISTERS : Vies
— ¥
LAM ¥) i 0110
ALA STRTAB { -1 011l
s | USING TABLE TO FIND 3 1000
 *DECODE OF Y W o
LIX }
JIP OKY . '
1
JMP ERROR See next page ;
1 1
OKY: LSA % SETTING Y DECODE TO 1 :
LSA CORRECT POSITION
BAD (INDEX) BINARY ADDING Y DECODE
AND X DECODE
ALA OPRTAB ADDING KEYBOARD DECODE TO
SZX START OF OPERATING TABLE
LIX READING FROM OPERATING TABLE

(COULD BE START ADDRESS OF
MULTIPLY ROUTINE, OR ASCII
CODE OF CHARACTER ETC.)

Figure 8.1

ERROR:

OPRTAB:

lote:

SEVERAL ALTERNATIVES ARE AVAILABLE

THE MACHINE HAS DETECTED MORE THAN

ONE KEY DEPRESSED AND YOU MAY WISH

TO SIGNAL THE ERROR OR TO IGNORE

THE KEYBOARD COMPLETELY.

ADDRESS OF ROUTINE IF KEY @ WAS PRESSED
ADDRESS OF ROUTINE IF KEY 1 WAS PRESSED

OPRTAB is a list of addresses which the program starting at UKY uses
to convert a key depression into a call to a particular program,

for example, on a calculator the + - x + keys might be pressed and
the addresses in OPRTAB would be a list of the addresses of the ADD,

SUBTRACT, MULTIPLY and DIVIDE routines.

Figure 8.1 (continued)

9,0 Standard Routines

This paragraph contains a variety of standarised rnﬁtines which can be very
useful for manipulating data stored in the 48 RAM registers on the LPS00O
processor. The routines deal mainly with BCD numbers and it is assumed that
two ,BCD digits are stored in each 8 bit register.

The main application areas for these routines are
(i) any application requiring BCD arithmetic
(ii) any application requiring bytes of data to be moved around between
CPU registers or to and from main memory
(iii) any application requiring 4 bit data manipulation, e.g. telephone numbers,

security, codes, data acquision etc.

These routines are provided to serve as a source of ideas which can be adapted e

suit the particular user application.

ROUTINE INDEX

LW
n.

u

1

0

e |

Y

-10

BCD ADD - UPTO 14 DIGIT NUMBERS

BCD SUBTRACT "

BCD COMPLEMENT R

CLEAR PAGE OF RECISTERS

BCD LEFT SHIFT 14 DIGITS

BCD RICHT SHIFT 14 DICITS

BCD CIRCULAR RIGHT SHIFT 14 DIGITS

BCD CIRCULAR LEFT SHIFT 14 DIGITS

TRANSFER DATA BETWEEN REGISTER PAGES

PARAMETERISED VERSION OF 9.0

GIM LTD ALPS CROSS-ASSEMBLER INSTRUCTION LISTING 15/ 1/76 PAGE 1
ADR CODE ARG ST-MR STATEMENT

$ROUTINE AD14

#14 DIGIT UNSIGNED ALD
$A=A+B WHERE

84 IS T REG=2+3+4 OR 5
B IS ALNAYS T=0

#70 CALL AD14

¢ GOS ADll4

¢IF DVERFLOW OCCURS
$CARRY FLAG 1S SET DN RETURN
-

$BRK 15 JAN 746

Bagt—lhﬁn——ﬂuu-—u
OO NS R =O 000U e -

B
000 2E -] AD14 LSS L] SET UP 'S
001 1D RSA SET CARRY=0
002 38 LTS 0 SET up *7?
003 8C c LAR] GET 'A' DIGITS
004 O0E&6 b6 ALA /66 ADD HEX 46
006 3B 3 LTS 3 SET UP "BTADR
007 ED D ADR o- BCD ADD,DEC 'S
008 4002 2 JRS AD1442 S NOT 7 ?
00A 00 RET END OF AD14
s
23 SEND OF ROUTINE AD14
24 &

ROUTINE TO ADD TWO 14 DIGIT BCD NUMBERS

SET UP
151 :

VALUE T0 6

SET INITIAL HROUTINE AD |4

CARRY = ¢ |, #14 DIGIT UNSIGNED ADO

\ #A=A+B WHERE
NSNS < #A 1S T REG=2,3.4 OR 5

T #B IS ALWAYS T=@

ffL.L:PUFT ATD CALL ADI4

[FIRST _PAGE W O0a A

#|F OVERFLOW OCLCURS
#CARRY FLAG 1S SET ON RETURN

L4
#ERK 23 JAN 75

REGISTER (S,T)
T0

ACCUMULATOR A\ w
5 \\\' ARI4: LS55 é SET LP 'S’

L \"— RSA , SET CARRY=D
e T,
JOFFSETS N - — AR € GET 'R’ P
TO ACOUM | S ALA .ra% ADD HEX &é

— LTS 3 SET UP 'B8'ADR

ST 0P 7T oz _ADR @- BCD ADD;,DEC 'S’
ET 1 T
Sﬂu-{; mTr 7T JRS ADI4K2 'S’ NOT 7

/ #END OF ROUTINE ADI4
app AccM |/ ¥
TO REC (S,T)|/
WITH BCD
CORRECTION

| DECREMENT 'S
SET UP CARRY

GIM LTD ALPS CROSS-ASSEMBLER

ADR CODE ARG ST-NR

BATHTANR2TEYRGATHBEEYRYR

00B icC
00C 29 1
00D 38
00E 8C c
00F OCFF FF
011 3c A
012 ED D
013 400D U
015 00

=83

INSTRUCTION LISTING 15/ 1/76 PAGE

STATEMENT

$ROUTINE SB14
$SUBTRACTS TWO 14 DIGIT
$NUMBERS

$A=A-B WHERE

®A IS T REG 2+3+4+5
¢F IS ALNAYS T=0
70 CALL USE

$60S SB14

¢IF OVERFLOW IS
$SET ON RETURN
SCOMPLEMENT RESULT
L

$BRK 15 JAN 74

L

SB14 LA SET CARRY
LSS 1 SET S=1
LTS 0 SET T=0
LAR L] GET DATA
EDL /FF 1'S COMP
LTS] SET T=4
ADR A= abDh 1T
JRS SB14+2 ALL DOMNE?
RET YES-GO BACK

*
#END OF FROUTINE SB14
v

GIM LTD ALPS CROSS-ASSEMBLER INSTRUCTION LISTING 15/ 1/76 FAGE
ADR CODE ARG ST-NR STATEMENT

53 SROUTINE CM14

54 SCOMPLEMENTS A 14
55 &DIGIT NUMBER

56 SA=COMP(A)

57 %4 1S TREG=2+3+4,5+0
S8 #7170 CALL USE

S &GOS CM14

60 &

41 #BRK 15 JAN 76

&2 %
016 1C 43 CH14 LSA SET CARRY
017 29 1 b4 LSS 1 SET S5=1
018 3C 4 &5 LTS 4 SET T=4
oy 8C C &é LAR i GET DATA
01A OCFF FF &7 EOL /FF 17S COMF
01C vC c 468 SAR n STORE BACK
01D FO 469 LAS 0 ACC=0
01E ED D 70 ADR 2- abb o
0O1F &019 19 71 JRS CH14+3 ALL DONE?
| 00 72 RET YES-GO BACK

FE I

74 $END OF ROUTINE CH14
75 %

GIM LTD ALPS CROSS-ASSEMBLER INSTRUCTION LISTING 15/ 1/76 PAGE
ADR CODE ARG ST-NR

024
025
027

F

60

28383

a8233BIREAR2BISY

STATEMENT

$ROUTINE ZR14

#16 DIGIT CLEAR ROUTINE
$CLEARS 8 WORDS OF RAM
SADDRESSED VIA 'S’ AND 'T'

470 CALL ZR16

¢T CAN BE 0 TD &

v

$BRK 15 JaN 74

T

IR16 LSS 7 SET UP 'S?
LAS 0 ACC=0
SAR - CLEAR B ST
JRS IR16+2 LOOP TILL S=7
RET ALL DONE

B

$END OF ROUTINE ZR1é4

3

4

GIM LTD ALPS CROSS-ASSEMBLER INSTRUCTION LISTING 15/ 1/76 PAGE
ADR CODE ARG ST-NR STATEMENT

95 SROUTINE SL14

76 #14 DIGIT SHIFT

97 WLEFT ONE DIGIT

8 &

99 SSTORE T VALUE BEFORE ENTRY
100 &7 CAN BE 0-5

101 $BEWARE T=1

102 #

103 &NO TEMP STORE USED

104 ¢

105 &BRK 15 JaN 74

106 #
0z2e 28 107 SL14 LSS 0 ®5=0)
029 8C C 108 LAR n #GE1 WORD
024 1E 109 LSN #SHIFY + BITS L
o2k YE E 110 Sak o+ #STORE IN NEXT
02C &02F 2F 111 JRS 43 sall DONE?
02 00 112 RET #END OF ROUTIMNE
02F 8D D 113 LAR e- #GET WORD,DEC S
030 1F 114 RSN #SHIFT 4 BITS R
031 cc € 115 EOR (] *COMBINE RESUL)
032 YE E 116 5aR G+ #STORE ACC
033 4029 2y 117 JHP SL14+1

118 #

119 SEND OF SL14
120 #

GIM LTD ALPS CROSS-ASSEMBLER INSTRUCTION LISTING 15/ 1/76 PAGE
ADR CODE ARG ST-NR 1S

EGREREI8TRE

Bﬁﬁigﬁéﬁﬁﬁ

9D
4034

m 8o

gﬂﬂ

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

STATEMENT

$ROUTINE SR14 53
14 DIGIT SHIFY A
SRIGHT ONE DIGIT

v

$STORE T VALUE BEFDRE ENTRY

T CAN BE 0-5

B

$NO TEMP STORE USED

¢

SBRK 15 JAN 74

SR14 LSS b #SET UP S
LAR e #GET WORD
RSN #SHIFT 4 BITS R
Sak 0~ #STORE »DEC'S?
JRS "3 #ALL DONE?
RET =ALL DONE
LAR B+ #GET WORD
LSN #SHIFT 4 BITS L
EDR @ #COMBINE
SAR e- #*STORE BACK
JHP SR14+1 #NEXT WORD

:

$END OF SR14

%

GIM LTD ALFS CROSS-ASSEMBLER INSTRUCTION LISTING 15/ 1/74 PAGE
ADR CODE ARG ST-NR

051
052

054

1E

83

IF

8

45050

R888281

1E
ce
9D
4045

m oo » gn o> Lo I 5

oo

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
1469
170
171
172
173
174
175
174
177
178
179

STATEMEMT

SROUTINE CR14

S$CIRCULAR RIGHY SHIFY

$ONE EBCD DLIBIT

*

®STORE "T7' VALUE BEFORE ENTRY
#'T" CAN BE 05

SBEWARE T=1

=

SUSES TEMP REGISTER 10

]

SBRK 15 JaN 74

]

CR14 LSS & #SET UP 'S’
LAR i #GET LEAST
LSN #516 DIGIT
SAR 10 #STORE TEWP
LAR i #STANDARD
RSN #RIGHT
Sak a ¥SHIFT
JRS 7 #ROUTINE
LSS 4] w#CIRCULAR
LAR 10 ¥SHIFT
EOR n *COMBINE
SAR (] #STORE
RET #END CR14
LAR i+ ®REET OF
LSN #*STaNDARD
EOR i HSHIFT
Sak fi- #ROUTINE
JMp CR14+4

]

$END OF CR14

H

GIM LTD ALPS CROSS-ASSEMBLER INSTRUCTION LISTING 15/ 1/746 PAGE

ADR CODE ARG ST-NR

3333 LR AL

$43°28338RE828258

oD

nnl&-tm

gl'l'lﬁ L~

181
182
183
184
185
186
187
1e8
189
170
in
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
a3
214

STATEMENT

$ROUTINE CL14
$CIRCULAR LEFT SHIFT
$ONE BCD DIGIT

E

$STORE 'T' VALUE BEFORE ENTRY
¢'T* CAN BE 0-5

$BUT BEWARE T=1

¢

B

$USES TEMP REGISTER 10
s

$BRK 15 JAN 74

E

CL14 LSS 0 ®GET HOST
LAR i) #SIG DIGIT
RSN *STORE T
SAR 10 #IN TEMP
LAR o =NOW DO
LSN aSTANDARD
SAR M+ #LEF"
JRS 7 #SHIF
LSS & wNOW FILN
LAR i0 #MSD
EDR o #*INTD THE
SAR L} ¥LSD
RET #END CL14
LAR n- ¥THIS 1S
RSN ¥REST OF
EOR ® #SHIFT
SAR i+ #ROUT INE
JHP CL14+4

B

SEND OF CL14

)

GIM LTD ALPS CRDSS-ASSEMBLER INSTRUCTION LISTING 15/ 1/74 PAGE 9
ADR CODE ARG ST-NR STATEMENT

216 SROUTINE TR14

217 #14 DIGIT TRANSFER

218 $FROM ONE 'T7" REGISTER

219 470 '"7'=0 REGISTER

220 &#'T" VALUE IS IN 'V' REGISTER
221 SCALL MNITH

222 #60S TR1é

223 #'T"CANBE1TDS

224 SBEWARE 'T'=1

25 #

226 SBRK 15 JAN 75

27 ¢
0&A oF 7 228 TR1é LSS 7 SET Up 'S*
06b 08 229 LAV GET V
06 o1 230 SAT STORE IN 'T’
04D 8C cC 23A LAR a GET NUMBEFR
0&E 38 232 LTS 0 SET "1'=0
0&F D D 233 SAR n- STORE NUMBER
070 &04B 6B 234 JRS TR16+1 ALL DONE?
072 00 235 RET FINISHED

236 &

237 SEND OF ROUTINE TR14

238 &

e ————— e ——— e
GIM LTD ALPS CROSS-ASSEMBLER INSTRUCTIOM LISTING 15/ 1/76 PAGE 10
ADR CODE ARG ST-NR STATEMENT

240 SROUTIMNE PT14

241 #16 DIGIT TRANSFER

242 SFROM ANY 'T' REGISTER
243 $70 ANY 'T* REGISTER

244 L]

245 &'T" VALUES ARE IN

245 4V REG BITS 1+203-516+7
247 #W REG USED FOR TEMF STORE
248 #CALL NITH

249 §60S PT14

250 $'"T" CAN BE O 7D 5

251 $BEWARE "1'=1

252 $TRANSFER IS FROM V123 70
233 $REGS TD VS47 1 REGS
254 $

255 SBRK 15 JAN 74

256 ¢
257
258
259
260

073 2F 7 PT16 LSS 7 SE1 UP *S?
074 08 LAY GEY "1' §
075 0] sa1 SET P "11°
076 B8C C LAR n GET DaATA
077 19 261 SAlW TEMP STORE
078 08 262 LAY GET *T" S
079 iF 2463 RSN SHIFT 4 BITS R
074 | 264 SaT SET Up r12?
078 o9 265 LAMW GET TEMP
07C S0 D 264 SAR n- STORE DATA
07D &074 74 267 JRS PT14+1 ALL DONE?
07F 00 248 RET FINISHED

269 %

270 SEND OF ROUTINE PT14

2N &

272 END

#% ND ERRORS FLAGGED IN ABOVE ASSEMELY %
LOADER TAPE IN FILE:- LOTEWP2

10.0 Generating Output Waveforms

10.1 LEVEL CHANGE
LOAD ®1" IN ACCUMULATOR LAS 1
SEND ACCUMULATOR TO OUTPUT PORT SAM OUTPUT 0 ——

10.2 PULSE
LOAD (1) IN ACCUMULATOR LAS 1
SEND ACCUMULATOR TO OUTPUT PORT SAM OUTPUT 1
GO TO TIMER SUBROUTINE GOS TIMER \
LOAD (0) IN ACCUMULATOR LAS @

10.3 STROBE SEQUENCE(Display, Keyboard, etc.)
START: LAS 1
STROBE: SAR @

SAM OUTPUT

PROCEED WITH REST OF PROGRAM mmnw_

T2

GOS TIMER

LAR ¢

LSA

J1Z START

JHP STROBE
TIMER: LAL TIME

SAR 1
TZ
LOOP: DEC 1 = e

T2

JNZ LoOP
RETURN

Note: 'TIME' sets Multiplex Interval

SECTION E

THE GLOSSARY

CLOSSARY

ABSOLUTE Mumerical addresses and data that will remain unchanged
during a loading process. A program that contains such
numbers.,

ABSOLUTE LOADER A loader which will load into the computer memory a
file containing absolute addresses and absolute data
(as opposed to a file containing symbolic addresses or
data - see RELOCATING LOADER).

ACCUMULATOR A register in which numbers are totalled, manipulated,
or temporarily stored for transfers to and from memory
or external devices.

ADD Binary (two's - complement) addition of two numbers
involving the accumulator. Cenerally, an arithmetic
operation.

ADDRESS A number which identifies one location in memory. To
direct the computer to access a particular memory location
or register.

ALPHANUMERIC The character set that contains only letters (upper and
lower case) and numerals.

AND A logical operation in which the result is true if all
inputs are true and false if at least one input is false.
In connection with the processor accumulator - a bit by
bit logical operation in which each bit is set if both
inputs are set and cleared if either or both inputs are
clear,

ANSI Abbreviation for American National Standards Institute.

ANST FORTRAN IV The standard subset of all FORTRAN languages,

ARGUMENT That part of a machine code instruction which is operated
on or used by the processor in executing the operation
designated by the operation code (see OPERATION CODE).

ARRAY/

ARRAY A list of elements (onme dimensional array), a set of
lists of elements (two dimensional), a set of sets of
lists of elements (three dimensional) etc. Elements
are identified in row (one dimension), by row and
column (two dimensional) and by row, column and plane
(three dimensional).

ASCIT Abbreviation for American Standard Code for Information
Interchange. A character set and 8 bit code
representation.

ASSEMBLE To translate from a symbolic program to a binary
(machine—code) program by substituting binmary operation
codes for symbolic operation codes (mnemonics) and
absolute or relocatable addresses for symbolic
addresses.

ASSEMBLER A computer program which assembles a symbolic source
program to binary machine language.

ASSEMBLER DIRECTIVE A statement included in a symbolic source program.
When the program is assembled the directive is not
translated into machine language but it instructs the
Assembler to perform some particular operation (some-
times called pseudo operations or instructions).

ASSEMBLY LANGUAGE The source language used as input to an Assembler and
translated by it into machine language.

AUTODECREMENT A processor facility whereby whenever an indirect
access is made the value of the pointer is decreased
by one after the access (postdecrement) or before the
access (predecrement).

AUTO INCREMENT A processor facility whereby whenever an indirect
access is made the value of the pointer is increased
by one after the access (postincrement) or before the
access (preincrement).

BINARY The number system based on the radix two. Binary

digits are restricted to 0 and 1.

BINARY CODED DECIMAL A subset of the hexadecimal number system, in which

- BCD

BCD ADD

BIT

BOOTSTRAP

BOOTSTRAP LOADER

CARRY

CENTRAL PROCESSOR

CHARACTER SET

CHECKS UM/

the first ten characters are valid (decimal digits 0-0)
and the upper six (hexadecimal A-F) are illegal. A
binary coded decimal is a decimal number stored in
four bits (weighted 8-4-2-1), with redundancy of six
of the sixteen arrangements of four bits.

An addition operation which accounts for the redundancy
of the BCD number system and generates correct carry
signals and legal BCD results.

A single digit in a binary number, or in the recorded
representation of such a number, The digit can have
one of two values O or 1.

A self-starting procedure which achieves a particular
desired state as a result of its own action. The
start of a possibly cumulative procedure.

A loader routine consisting of a few instructions
which are sufficient to bring the rest of the loader
into the memory from the input device. (Lifting
itself up by its bootstraps).

A flag or signal which becomes set or reset (true or
false) as a result of an arithmetic operation generating
a number greater than the base of the number system.
The part of a computer system which interprets and
executes the instructions of a program.

A set which includes some of all the symbols such as
alphabetic letters, numerals, punctuation marks,

mathematical operators etc.

CHECKSUM

CODE

COMMENT FIELD

COMPILER

CONDITTONAL JUMP

CONS TANT

CONTENTS

CORE MEMORY/

A variable given, usually at the end, of a list of
items, which are to be transmitted from one device,
system or program to another. The value of the
variable is obtained from a (repeatable) mathematical
operation upon the items in the list. The recipient
can check the validity of the list by repeating the
mathematical operation. The representation of the
variable will depend upon the representation used in
the list.

To set to zero, to erase the contents of something by
filling it with zeros.

A system of symbols which have meaning to a computer
processor, an assembler, a compiler or some other
language interpreter.

A string of symbols, usually delimited by special
symbols, contained in code,which is completely

ignored by the processor or language interpreter which
receives and acts upon the code. For the benefit of
the user to describe and clarify the action of the
program.

A computer program which translates the statements of
a high-level language, such as FORTRAN, into machine
code instructions or some intermediate form.

An instruction which may break the sequential execution
of a program, depending upon some state, flag or
logical quantity. If the state is false the sequential
execution is unbroken, If the state is true the
instruction directs the computer to continue execution
at a specified location anywhere within the memory.
Numeric data used but, generally, not changed by a
program.

The information stored in a register or memory location.

CORE MEMORY

CROSS ~ASSEMBLER

CURRENT LOCATION
COUNTER

DATA ADDRESS
REGISTER

DATA WORD

DEBUG

DECTMAL

DELIMITER /

Memory system consisting of small ferrite cores, which
can be bi-directionally magnetised. Generally arranged
in a three-dimensional array (a set of sets of lists) -
the list represents a word and the set of sets represents
the array of words. Address decoders decode the row
and plane to select the addressed word.

An assembler written in a language other than the
assembly language for running on a computer other than
the computer that the assembly language program is
intended for., GCenerally the Cross-Assembler is written
in a high-level language, and is used to create the

HOS T-ASSEMBLER.

During assembly, a counter kept by the assembly to
specify the address assigned to an instruction being
assembled.

A register, usually mounted with the memory (or in the
same chip), which is the input to the address decoding
logic of the memory system. The contents of the
register are decoded to access one word of the memory.
To read or write a location the Data Address Register
must be loaded with the address of the location.

Also called memory address register.

A.uurd, in the computer, which is interpreted by the
program as containing a number, a fact (a logical
quantity) or any other information.

To fault-find an erroneous program and prepare
corrections.

The number system based on the radix 10, using the
digits 0-0,

To decrease the contents of a register or memory word

by some number, usually one.

DIRECT RECISTER MODE

EXCLUS IVE-OR

EXTENSION REGISTER

FIELD

FILE

FIRMWARE

FORMAT/

A symbol or string of symbols or other information
which can be recognised by a processor or program as
the start or end of some quantity.

When the argument of a register accesss instruction is
decoded by the processor as being the address of the
register to be accessed.

A logical operation in which the output is true if one
input is true and the other false (and vice versa) but
false if both inputs are true or false. In connection
with the processor accumulator, it is a bit by bit
Exclusive—or whose output is returned to the
appropriate bit of the accumulator,

To perform a specific operation until its completion.
As with an instruction or a program.

‘Address extension register. A register used to extend
the addressing range of a progcessor. The contents of
the register are appended to the most significant end
of the address sent out by the processor and the whole
interpreted as the memory address. The processor can
change the extension by an instruction thus changing
the area of addressing.

An area of code bounded by delimiters. TIts position
relative to other fields or the delimiters identify
the contents of the field for the processor or program.
A collection of items of information arranged in a
meaningful order. Basically a paper tape or deck of
punched cards.

Software that is stored permanently in Read Only Memory.
A single binary digit which can take values of 0 or 1
(representing logical false and logical true) depending

upon the condition that the flag is said to represent.

FORMAT The arrangement of bits, words, characters or strings,
in a predefined way, into a statement,

Fixed format - a rigorously defined arrangement, in
which the absolute position within a
statement is important,

Free format - a loosely defined arrangement, in
which the position of an item relative
to other items is more meaningful than
absolute position,

FORMFEED A character of the ASCIT character set whose code is
recognised by lineprinters and causes them to move the
paper to the top of a new page. On the teletype the
form feed shifts the paper by 10 new lines.

FORTRAN A high level language which allows programs to be
written in English-like statements and algebraic
equations, instead of instruction by instruction.

FORWARD REFERENCING The facility of allowing labels and symbols to be
referenced before they have been defined. Can
extend to many levels (with statements referencing
symbols which are equated to other symbols which have
yet to be defined). Most assemblers allow only one
or two levels of forward referencing.

HEXADECTIMAL The number system based on the radix 16. Hexadecimal
digits include the decimal digits 0-9 and the letters
A (representing 10) to F (representing 15). The
hexadecimal number system fully utilizes the 16
arrangements of four bits (cf. BCD) and because of this
is often used in computer systems where the word length
is an integer multiple of four bits.

HOS T-ASSEMBLER An assembler written in a machine language or a machines
assembly language for running on that machine to assemble
a4 source program. The Host-Assembler would probably be

assembled on a Cross Assembler.

iire S

IMAGE A direct copy of an item, a list, a register or a
memory location differing only in its physical
location and means of storage.

INCREMENT To increase the contents of a register of memory
location by a fixed amount, usually one.

INDIRECT ACCESS An access of a memory location or register made by
looking at the contents of another memory location
or register (pointer) and using them as the address
of the data to be accessed.

INDIRECT JUMP A jump where the destination is not stated explicitly
but is held in some storage area and fetched by
referencing that storage area.

INDIRECT REGISTER When the argument of a register access instruction is

o decoded by the processor as being, not the address of
a register but, an argument to a logical network for
decoding to a register address - using, maybe, fixed
registers or pointers.

INPUT/OUTPUT (I/0) The transmission of information into and out of the
computer system. The interface machinery for the
transmission.

INTERFACE The logic network that translates signals from the
computer into some (meaningful) form for the external
world and its devices.

INTER MODULE ADDRESS The address of a location in memory expressed as a
module number, This number defines the module in
which the location occurs but not the location itself.
(see INTRAMODULE ADDRESS)

INTRAMODULE ADDRESS The address of a location in memory reduced to lie in
the range of one module. This address specifies the
position of a location within a module but not which

module, Used with the INTERMODULE ADDRESS to generate

the full address.

Jump/

Jump An instruction which breaks the sequential execution
of a program and causes the computer to continue
execution at another specified location anywhere
within the memory but within the program.

K One thousand and twenty four. Thus 3K is 3072.

LABEL Symbolic string of characters (usually alphanumeric)
used instead of abselute addresses in computer programs.
The label is assigned an absolute address by an
assembler or compiler.

LTBRARY A collection of standard routines, accessible by the
user.,

LITERAL A constant or a self-defined symbol.

LOADER A program which will read an input file, decode it,

and set up in a computer's memory an image of it.
The loader is used to load other programs into the
computer, in order to execute them.

LOCATION A group of storage elements in a computer memory,
identified by a numerical address and able to store
one computer word.

MACHTNE CODE The strings of binary digits O's and 1's that the
processor can interpret and execute. More rigorously,
only those strings of bits that represent legal
instructions.

MACRO-FACILITY A facility of an assembler which allows each occurrence
of a repeated piece of code to be replaced, in the source
program, by a symbolic name — the macro name. The
assembler will insert the appropriate machine code at
each occurrence of the macroname.

MEMORY A collection of storage elements organised into groups
(locations), each of which can be addressed by the
location number. Each location can hold one computer
word. Each storage element can hold one binary digit.

MEMORY MODULE /

MEMORY MODULE

MICROPROGRAMMING

MNEMONIC

MODIFIED HEXADECIMAL

MODULE

MONITOR

NULL OPERATOR

OCTAL

OPERAND

R b el - L

An area of memory, which is a complete entity seperate
from all other areas. A segment of memory with a
defined number of locations, which is usually the
largest number of locations addressible by the computer
word.

A method of realising logical contrel functions by
storing the required states of signals as sequences of
words in a memory.

Symbolic name for an instruction. It is recognised
by the assembler and converted to the appropriate
machine code.

Based on the radix 16, modified hexadecimal is a
variant of the standard hexadecimal. The hexadecimal
digits A-F (representing 10 to 15) are replaced by the
letters J-0. In ASCIT code the bottom four bits of
the modified hexadecimal are identical to the fourbit
coding of the hexadecimal number. Thus it is only
necessary to strip off bit 5 upwards to generate the
correct four bitcode.

A conceptual building -~ block for a computer system.
In memory, a module is the largest block of memory
that can be addressed by the computer word. Thus
with an eight-bit word a module is 256 locations long.
A supervisory program maintaining the operating
environment of the computer.

A zero or blank operator, used where no operator

is needed but where to omit one could cause confusion
to a program or user,

The number system based on the radix 8. Legal octal
digits are 0-7.

The item of information that is manipulated or used in
an instruction. The address or symbolic nmame in an

assembly language statement.

OPERATION CODE That part of a machine-code instruction that specifies
the operation to be performed by the instruction.

OPERATOR In an assembly language statement it is the symbolic
name for an instruction (the mmemonic). In algebra
and highlevel languages it is a symbol which represents
a particular mathematical function.

OR A logical operation in which the output is false if
neither of the two inputs is true, and true otherwise.
In connection with the accumulator - a bit by bit
logical operation in which each bit is cleared if
neither of the corresponding bits of the inputs are
set, If both or just one of the input bits is set
the output bit is set also.

ORIGIN The start of a program code. Not necessarily the start
of a program but the lowest numbered location occupied
by the program code.

At assembly time the origin can be reset and the
definition becomes:-

the lowest numbered location occupied by the part of
the program currently being assembled.

PACKED When more than one piece of information is held in one
unit of storage (word), e.g. two four bit BCD numbers
can be packed into eme 8 bit word.

PAGE The largest area of memory that can be addressed by
the computers addressing scheme. It is not
necessarily the same size as a module because of

Extension Registers.

PASS A complete scanning of the input data presented to a
program.
PLANE Used in connection with a memory or register array to

represent variations in a third dimension.

POINTER/

POINTER

PROGRAM

PROGRAM AREA

PROGRAM COUNTER

PUNCHED CARIS
and
PAPER TAPE

PUSH -
PUSH DOWN LIST

RADIX

READ ONLY MEMORY/

A register or memory location containing the address
of the register or location to be accessed.

To remove the last entry from a push down stack or
list.

A sequence of computer instructions that will solve

a particular problem or perform a certain series of
operations.

The area of memory in which the program is held, as
opposed to the data area, where information is held.

A special register which acts as a pointer to the next
instruction to be executed. It points to a location
in memory and is incremented after the instruction in
that location has been executed. Thus sequential
execution of the program is ensured.

Inexpensive media for data storage. Binary information
is represented by punched holes. The data can be
changed easily by replacing cards or splicing in new
pieces of tape., Card are usually 80 columns long
with 12 bits per card. Paper tape can be five, six
or eight bit wide and is of (virtually) unlimited
length.

To add a new item to a pushdown list or stack.

A list of items of information in which the latest
arrival is on top of the list and the oldest at the
bottom. Usually operated in a LIFO manner (Last In
First OQut) so that items are put onto and removed from
the top of the list, (0ften called a Stack.

The base of a number system. The largest digit of a
number system is one less than the radix, thus the
number’ of symbols needed to represent the digits is the

radix.

READ ONLY MEMORY A memory in which binary data is stored by means of
hardwiring. Thus a wire connected to ground may
represent a zero and a wire comnected to supply a one.
The data stored in a read only memory cannot therefore
be changed by a program.

REALTIME The time in which a program executes,

REGISTER A collection of a fixed number of binary storage
devices, treated as complete entity rather than as
grouping for the temporary storage of information.

The arrangement of the connection of the devices can
allow greater manipulation of the information
(especially at bit level) than is allowed in a memory
location.

RELOCATING LOADER A loader which will load into the computer memory a file
containing absolute, symbolic and relative addresses
converting them, as necessary, to absolute addresses.
The conversion procedure may be varied to account for
parts of the program already loaded.

RESET To make equal to binary zero (cf. SET). To return to
the original condition, as in the case of Power On Reset
which clears registers and program counters and resets

status flags.

ROUTINE A piece of self-sufficient code that can be called
from a program with arguments and will perform some
operation without affecting the main program, if

neecessary changing only the arguments.

RUNTIME The time in which a program is executed.
SEPARATING Characters which are given special significance in
CHARACTERS

certain circumstances and act as end of field marks
for a program., Any character which is not itself

data but appears in the data as a warning to the

program processing the data.

SET/

SET

SHIFT

5 IMULATOR

SOFTWARE

SOURCE PROGRAM

STACK

S TATEMENT

STORE

STRING

SUBROUTINE/

(i) To make equal to binary one

(ii) A group of items with or without any special

grouping relationship. A collection of pieces

of information.
To move by a fixed amount in a recognised direction.
For example, to shift left is to move to the left, to
shift down is to move downwards - both by fixed amounts.
In connection with the accumulator shift means to move
the bit-pattern to the left or to the right by a number
of bits.,
A computer program which simulates under contralled
conditions the operation of a system, a program or a
processor. When simulating a program executing on a
processor it is usual for the simulator program to be
run on a larger machine using the values of variables
to represent the hardward functions. The simulator
will generally run slower than the system it represents.
The computer program as opposed to the computer it
controls or the memory it occupies.
The program prepared by the user written in a symbolic
assembly language or in a high-level language.
A list of items in which items are entered onto and
removed from the top of the list. A hardware
representation of such a list.
A string of characters terminated by a special
character such as line-feed. Treated as a group of
fields by an assembler,
To put data (information) into a register or memory
location, overwriting the old contents, for the
purpose of retrieving the data later.

A collection of items regarded as a whole.

SYMBOLIC
SYSTEM ROUTINE

TABLE

TWO'S COMPLEMENT

UNCONDITIONAL
USER
USER ASSIGNMENT

USER DEFINED

A routine which can be entered from anywhere in
a program and from which control is passed to the
next sequential instruction in the main program.
A meaningful string of characters.

That which is a symbol or contains symbols,

A standaxd routine or subroutine not included in,
but called by a user program., Held in the MONITOR
library.

An ordered or unordered collection of items of
information saved for reference purposes,

A representation of negative numbers so that
addition and subtraction are performed aimilarly.
The two's complement of a number is obtained by
complementing and incrementing the mumber,
Without regard for any prevailing conditions.
The person who programs and operates the computer.
Of symbols, when a symbol takes a value assigned by
the user rather than an assembler or compiler. A
symbol assigned in the program by a direct assignment
s tatement,

A symbol that is introduced into a program by the
uper, as distinet from a permanent symbol such as
an instruction mnemonic,

A fixed length string of bits.

To store data in memory (usually)., To output
information,

UNITED STATES:
GEWERAL INSTRUMENT CORPORATION

HEADQUARTERS 800 Wast John Strest.

i Mew York 11002
Tel- 816-T33-3107, TWX: $10-221-1866
NOATHEAST. ‘Difeon Park, Swite 1L
Arwryede Massachusatts 027103
Tei: 817-BU6-8800, TWK: T10-324-0767
SOUTHEAST—IT1 Behil Cirele,
s W A 2T
Ted: B0V 210, TWX: T10-582-8054
CENTRAL-=3101 West Prat! Boulewnrd.

T T BNE-T31-T478
WESTERN—1100 Chasil Siraat, Suste 174,
Califormen S2680

ﬂ:ﬂ:m
Tl: TT-823-9400, TWX: B10-585-1730

CANADA
INSTRUMENT OF CAMADA LTOD.
Ll Stresl. Toronin WEM 4.5
Tt 418 133, TWE: 810-81-117
ASIA
DENERAL
IMTERANATIONAL CORP.
Fukida Building
(T Fubide-cho, Minslo-kw, Tokyo 105
Tl (D2p237-0287-8, Teles: 2E5TH

T,
ET 61 Marlimer Siresd, London WK TTD
Tl 0 - EME-2022, Talex: 23273
CEMTRAL EUROPEAN SALES OFFICE:
GEMERAL INSTALUMENT
DEUTECHLAMD GmbH
(MO Rroduksg I
1A, Manchen &0
Tal (NS 40.37, Tolan: 520054

SOUTH AMERICA

GENERAL INSTRUMENT Tcu-
A Faria Lima 17§, Sso Plulo CEF 07452
Tal: 2105508

¥

CGENERAL INSTRUMENT

MICROELECTRONICS

L e T R e e

	SCAN0009
	SCAN0010
	SCAN0011
	SCAN0012
	SCAN0013
	SCAN0014
	SCAN0015
	SCAN0016
	SCAN0017
	SCAN0018
	SCAN0019
	SCAN0020
	SCAN0021
	SCAN0022
	SCAN0023
	SCAN0024
	SCAN0025
	SCAN0026
	SCAN0027
	SCAN0028
	SCAN0029
	SCAN0030
	SCAN0031
	SCAN0032
	SCAN0033
	SCAN0034
	SCAN0035
	SCAN0036
	SCAN0037
	SCAN0038
	SCAN0039
	SCAN0040
	SCAN0041
	SCAN0042
	SCAN0043
	SCAN0044
	SCAN0045
	SCAN0046
	SCAN0047
	SCAN0048
	SCAN0049
	SCAN0050
	SCAN0051
	SCAN0052
	SCAN0053
	SCAN0054
	SCAN0055
	SCAN0056
	SCAN0057
	SCAN0058
	SCAN0059
	SCAN0060
	SCAN0061
	SCAN0062
	SCAN0063
	SCAN0064
	SCAN0065
	SCAN0066
	SCAN0067
	SCAN0068
	SCAN0069
	SCAN0070
	SCAN0071
	SCAN0072
	SCAN0073
	SCAN0074
	SCAN0075
	SCAN0076
	SCAN0077
	SCAN0078
	SCAN0079
	SCAN0080
	SCAN0081
	SCAN0083
	SCAN0084
	SCAN0085
	SCAN0086
	SCAN0087
	SCAN0088
	SCAN0089
	SCAN0090
	SCAN0091
	SCAN0092
	SCAN0093
	SCAN0143
	SCAN0144
	SCAN0145
	SCAN0146
	SCAN0147
	SCAN0148
	SCAN0149
	SCAN0150
	SCAN0151
	SCAN0152
	SCAN0153
	SCAN0154
	SCAN0155
	SCAN0156
	SCAN0157
	SCAN0158
	SCAN0159
	SCAN0160
	SCAN0161
	SCAN0162
	SCAN0163
	SCAN0164
	SCAN0165
	SCAN0166
	SCAN0167
	SCAN0168
	SCAN0169
	SCAN0170
	SCAN0171
	SCAN0172
	SCAN0173
	SCAN0174
	SCAN0175
	SCAN0176
	SCAN0177
	SCAN0178
	SCAN0179
	SCAN0180
	SCAN0181
	SCAN0182
	SCAN0183
	SCAN0184
	SCAN0185
	SCAN0186
	SCAN0187
	SCAN0188
	SCAN0189
	SCAN0190
	SCAN0191
	SCAN0192
	SCAN0193
	SCAN0194
	SCAN0195
	SCAN0196
	SCAN0197
	SCAN0198
	SCAN0199
	SCAN0200
	SCAN0201
	SCAN0202
	SCAN0203
	SCAN0204
	SCAN0205
	SCAN0206
	SCAN0207
	SCAN0208
	SCAN0209
	SCAN0210
	SCAN0211
	SCAN0212
	SCAN0213
	SCAN0214
	SCAN0216
	SCAN0217
	SCAN0218
	SCAN0219
	SCAN0220
	SCAN0221
	SCAN0222
	SCAN0223
	SCAN0224
	SCAN0225
	SCAN0226
	SCAN0227
	SCAN0228
	SCAN0229
	SCAN0230
	SCAN0231
	SCAN0232
	SCAN0233
	SCAN0234
	SCAN0235
	SCAN0236
	SCAN0237
	SCAN0238
	SCAN0239
	SCAN0240
	SCAN0241
	SCAN0242
	SCAN0243
	SCAN0244
	SCAN0245
	SCAN0246
	SCAN0247
	SCAN0248
	SCAN0249
	SCAN0250
	SCAN0251
	SCAN0252
	SCAN0253
	SCAN0254
	SCAN0255
	SCAN0256
	SCAN0257
	SCAN0258
	SCAN0259
	SCAN0260
	SCAN0261
	SCAN0262
	SCAN0263
	SCAN0264
	SCAN0265
	SCAN0266
	SCAN0267
	SCAN0268
	SCAN0269
	SCAN0270
	SCAN0271
	SCAN0272
	SCAN0273
	SCAN0274
	SCAN0275
	SCAN0276
	SCAN0277
	SCAN0278
	SCAN0279
	SCAN0280
	SCAN0281
	SCAN0282
	SCAN0283
	SCAN0284
	SCAN0285
	SCAN0286
	SCAN0287
	SCAN0288

