TAMAYA
 DIGITAL NAVIGATION COMPUTER
 NB-77

INSTRUCTION
MANUAL

5-8, 3- Chome, Ginza
Chuo-ku, Tokyo 104 Japan

S.D. Sun \bigcirc			
Jan	1 - Feb	2	16:3
Feb	3 - Mar	4	16.2
Mar	5 - Mar	28	16.1
Mar	29 - Apr	18	16.0
Apr	19 - May	12	15.9
May	13 - Aug	25	15.8
Aug	26 - Sep	18	15.9
Sep	$19-$ Oct	12	16.0
Oct	13 - Nov	2	16.1
Nov	3 - Dec	2	16.2
Dec	3 - Dec	31	16.3
H.P. Venus ${ }^{\text {¢ }}$			
Jan	1 - Jul	23	0.1
Jul	24 - Sep	10	0.2
Sep	11 - Oct	3	0.3
Oct	4 - Oct	19	0.4
Oct	20 - Nov	29	0.5
Nov	$30-$ Dec	14	0.4
Dec	15 - Dec	31	0.3
H.P. Mars ठ'			
Jan	1 - Mar	19	0.2
Mar	20 - Dec	31	0.1

CAUTION

It is imperative that nautical almanac, sight reduction tables and other conventional navigational aids be kept aboard along with the NC-77 computer as insurance against computer failure or battery discharge.
Keep NC-77 away from water, moisture or extreme heat or low temperature. Use the storage case as protection against vibration and shock.
CONTENTS
INTRODUCTION 4
EXTERNAL FEATURES 5

DIALOGUE SYMBOLS AND THE MEANING | 6 |
| :--- |
| 8 |

MEMORY CAPABILITIES 12
NOTE ON DECIMAL POINT 12
AND PILOTING 13

1. MERCATOR SÄLILING AOND GREAT CIRCLE SABULING 13
2. Dead Reckoning by Mercator Sailing 13
3. Course and Distance 13
II. PLANE SAILING 17
4. Finding the Course and Speed Made Good through a cur- rent. 17
. Finding the Course to steer and Speed to use 17
5. Finding the Course to steer at a given speed to make good a given course through a current 18
6. Traverse Sailing 18
7. Finding the Direction and Speed of True Wind 19
III. TIDE AND STREAM (Tidal Current) 19
8. Finding the Height of Tide. 20
IV. SPEED, TIME, DISTANCE 20
CELESTIAL NAVIGATIÖN PROGRAMS 21
22
I. NAUTICAL ALMA 22
II. PROPORTIONAL PARTS (Interpolator) 23
III. LINE OF POSITION AND IDENTIFIC
UNKNOWN STAR (Altitude and Azimuth) 23
IV. FIX BY TWO LOP's 27
V. LATITUDE AND LONGITUD 28
VI. STANDARD SEXTANT ALTITUDE CORRECTIONS 29
VII. VARIABLE SEXTANT ALTITUDE CORRECTIONS 31
NORMAL CALCULATIONS 32
CORRECTION OF MISTAKES 34
OVERFLOW ERROR 34
BLOCKING OF INCORRECT DATA ENTRY 35
SPECIFICATIONS 36

INTRODUCTION

The new TAMAYA NC-77 DIGITAL NAVIGATION COMPUTER is specifically designed to solve all major navigation problems with its internally built-in programs. The operation is very easy. There are no complicated rules to memorize or programming knowledge to learn to use this handy instrument. Simply follow the dialogue instruction display which tells you at each step what data to feed in. The principle of operation can be learned without extended study by just looking at one example for each problem comprehensively illustrated in this instruction manual.

EXTERNAL FEATURES

MODE SELECTORS AND KEYS

NORMAL CALCULATION MODE KEY
N key clears the programmed navigation mode and sets the normal calculation mode.

DUAL FUNCTION KEY

key pressed before each dual function mode key sets the 2nd mode i.e. $\sin ^{-1}, \cos ^{-1}, \tan ^{-1}$, P.P.,FIX, CD, RM1, RM2, etc.

SCIENTIFIC FUNCTION KEYS

$\sin \cos \tan :$ Trigonometric function keys
$\sin ^{-1} \cos ^{-1} \tan ^{-1}$: Inverse trigonometric function keys
$\sqrt{\square}$: Square root computation key

NAVIGATION MODE KEYS

mode key computes the GHA ARIES, DEC SUN, GHA SUN and Equation of Time at any moment through the year 1999.
mode key makes the computation of proportional parts. It is applied in pin-pointing the GHA and DEC of the Moon and planets without using the INCREMENTS AND CORRECTIONS table of Nautical Almanac. It is also used as LORAN LOP interpolator
mode key computes the Altitude and the true Azimuth of the Sun, Moon, planets and the navigational stars to obtain a Line of Position in celestial navigation.
mode key computes the latitude and longitude of fix by two Lines of Position.
mode key computes the Dead Reckoning Position by Mercator Sailing or Parallel Sailing.
mode key computes the Course and Distance by Mercator Sailing or Parallel Sailing.
mode key computes the Great Circle Distance and the Initial Course. The program continues to compute Latitude and Longitude of the Vertex, and the Latitude at any selected Longitude on the Great Circle track.
mode key computes the True Wind Direction and True Wind Speed.
mode key computes the Course and Speed Made Good through a current. This key is also used for the solution of Traverse Sailing.
mode key computes the Course to Steer and the Speed to Use to make good a given course and speed through a current.
mode key computes the Course to Steer at a given speed to make good a given course through a current.
mode key computes the Height of Tide at any selected time.
mode key computes the Velocity of Stream (Tidal Current) at any selected time.mode computes the True Altitude by the standard sextant altitude corrections at $10^{\circ} \mathrm{C}, 1013.25 \mathrm{mb}\left(50^{\circ} \mathrm{F}, 29.92\right.$ in.).
VAC mode computes the True Altitude at variable temperature and atmospheric pressure. Both 5 SAC and VAC compute the True Altitude for the Sun, Moon, planets and the stars.
These keys are used in connection with SAC and to specify the celestial body, the Sun, Moon, Venus or Mars in making the sextant altitude corrections.
\bar{O} (n $S A C$ and $V A C$ mode O (d means the sighting of the lower limb and $\overline{\mathrm{O}(}$ means the sighting of the upper limb of the Sun or Moon.
MPS mode key computes the Latitude and Longitude by noon sight (Sun's meridian passage).
mode key computes the Distance to an Object by the vertically measured angle.
key sets the computation in degrees, minutes and $1 / 10$ minute.
This key also converts hours, minutes, seconds into degrees, minutes and $1 / 10$ minute.
key sets the computation in hours, minutes and seconds. This key also converts degrees, minutes, $1 / 10$ minute into hours, minutes and seconds.
(ARC to TIME or TIME to ARC conversion is made by the above two keys.)
key converts hours, minutes and seconds into hours, 1/10 hour and $1 / 100$ hour.
key converts hours, $1 / 10$ hour, $1 / 100$ hour into hours, minutes and seconds.
The above two keys are used in Speed, Time and Distance computations.
key designates North in latitude and East in longitude. key designates South in latitude and West in longitude.

MEMORY KEYSM2 Memory keys2 Recall memory

OTHER KEYS

Clears all the computation registers, error, etc. Resumes the beginning of the program in the navigation programs.CE Clears only displayed register.
0 - 9 Numeral keys to enter a number.

- Designates the decimal point of a set number.
$\times \div$
- Sets the order of each function.Completes the addition, subtraction, multiplication, division functions.
(7-) Changes the sign of a displayed number.
(0) Enters a number, starts the programmed computation or recalls the programmed memory.

POWER SWITČH

on \qquad When the power switch is in "ON" position the computer is powered, automatically cleared and ready for operation in normal calculation mode.

METRIC/FEET SELECTION SWITCH

m.

In $S A C$ and $V A C$ mode the switch selects the input by Cel. meters, Celsius (temperature) and millibars (pressure), or
m.b. feet, Fahrenhiet and inches of mercury. In DTO mode it selects the input by meters or feet.
ft.
Fah.
inch

DIALOGUE SYMBOLS AND THE MEANING

Dialogue system makes the operation very easy by telling you at each step what data to feed in. The answers are also accompanied by the symbols which specify the meaning.

- sign after L indicates South latitude - sign after $1 /$ indicates West longitude
E : overflow error symbol
-: minus symbol

NC-77 DIALOGUE SYMBOLS

L	Lat.
11	Long.
c	Course
d	Distance
Lu	Vertex Lat.
iiv	Vertex Long.
'1' ${ }^{\prime}$	Selected Long.
L^{\prime}	Corres. Lat.

P.P.

h	Time (1)
σ^{\prime}	Corres. Arc
h	Time (2)
σ^{\prime}	Corres. Arc
h^{\prime}	Selected Time
σ^{\prime}	Corres. Arc

FIX

L	Lat.
$\prime \prime$	Long.
d	Intercept
Z	Azimuth

$\left\lvert\,$MPS h Time of Mer. Pass. Ro True Alt. σ^{\prime} Dec. $L o$ Eqn. of Time L Lat. $i i$ Long.\right.

SAC VAC

$R \quad$,	Sextant Alt.
$h L$	Height of Eye
$R r$	Dip Corrected Alt.
L	Temperature
ρ	Pressure
$R \cap$	Refract. Corrected Alt
$5 \sigma^{\prime}$	Semidiameter
$h a$	Horizontal Parallax
R_{0}	True Alt.

TIDE

h	Time of Low
d^{\prime}	Ht. of Low Tide
h	Time of High
d^{\prime}	Ht. of High Tide
h^{\prime}	Selected Time
d^{\prime}	Corres. Ht.

STRM

h	(1) Time of Slack
h	(2) Time of Max.
d^{\prime}	Vel. at Max.
h^{\prime}	Selected Time
d^{\prime}	Corres. Vel.

DTO

R,	Sextant Alt.
$h L$	(1) Height of Eye
$h L$	(2) Height of Object
d^{\prime}	Dist. to Object

- TIME - ARC - h.ms

h	Hour. Minute Second
d	Degree. Minute $1 / 10$ Minute

CU1	
c Course to Steer d Speed Thru Water c Set (Toward) d Drift c Course Made Good d Speed Made Good	

$\|$CU2 c Course to Make Good d^{\prime} Speed to Make Good s Set (Toward) d^{\prime} Drift c^{\prime} Course to Steer d^{\prime} Speed Thru Water

\mid CU3
c Course to Make Good d^{\prime} Speed Thru Water σ^{\prime} Set (Toward) d^{\prime} Drift C^{\prime} Course to Steer σ^{\prime} Speed Made Good

WDS

c	Ship Course
d^{\prime}	Ship Speed
σ^{\prime}	Ship Co. \pm Appar. W.D. (From)*
d^{\prime}	Appar. Wind Speed
C^{\prime}	True Wind Direction
d^{\prime}	True Wind Speed

> * + Starboard
> - Port Side

$$
\begin{aligned}
& \text { Speed (Knot) : d } \div \mathrm{t} \text { - h.hn }= \\
& \text { Time (h.ms) : d } \div \mathrm{s} \equiv \text { n.ms } \\
& \text { Distance (n.m.) : s } x \mathrm{t} \text { - }=
\end{aligned}
$$

MEMORY CAPABILITIES

NC-77 has two user-accessible memories, M1 M2 and RM1 RM2, to greatly increase the flexibility of computations. Use of the memory keys does not affect the displayed number or computation in progress, so they can be used at any point in a computation. They can save you key strokes by storing long numbers that are to be used several times.

Key	display
5 F	2.236067977
M1	2.236067977
$\pm 10 \mathrm{~F}$ ¢ $=$	5.398345637
F RM1	2.236067977
X4 $=$	8.944271908
C	0
F RM1	2.236067977

Besides M1, M2 and RM1, RM2 two extra memories are provided internally for the output of ALM, FIX, LOP, CD, DR, WDS, CU1, 2, 3, and MPS, where there are two answers to be recalled alternatively.

NOTE ON DECIMAL POINT

In NC-77 TIME is always expressed as Hours, Minutes, Seconds, and ARC as Degrees, Minutes, $1 / 10$ minute to follow conventional navigation practice. The decimal point should be entered as follows,

- The same rule applies to the reading of the displayed outputs.

TIME	$12^{\text {h }}$	15 m	33^{s}	Enter	12.1533
		15	33		.1533
		5	33		.0533
			33		.0033
			3		.0003
ARC	$180^{\circ} \mathbf{2 5} \cdot 5$		Enter	180.255	
	$25!5$.255	
		$5!5$.055
		$0!5$.005

Input/output of trigonometric and inverse trigonometric computation follows the same rule as ARC.
$0.8 \underset{\mathrm{~F}}{\mathrm{sin}}{ }^{-1} \rightarrow 53.078$ is read as $53^{\circ} 07.8$
In ALM (Almanac) mode the year, month and day are entered as follows.
12 ALM
January 2nd, 1978
Enter 78.0102
$12^{\mathrm{h}} 06 \mathrm{~m} 08^{s}$
12.0608

BASIC NAVIGATION PROGRAMS FOR DEAD RECKONING AND PILOTING

I MERCATOR SAILING AND GREAT CIRCLE SAILING

1. Dead Reckoning by Mercator Sailing

DR Dead Reckoning mode computes the latitude and longitude of the point of arrival.

Problem 1		Key	Display	Answer	
Departure Point Lat.	$32^{\circ} 30: 6 \mathrm{~N}$	[0a	10.	$\begin{aligned} & \text { D.R. Lat. } \\ & \text { D.R. Long. } \end{aligned}$	$\begin{array}{r} 30^{\circ} 34: 2 \mathrm{~N} \\ 123^{\circ} 34: 6 \mathrm{~W} \end{array}$
Departure Point Long.	$118^{\circ} 36$: 2 W		L 32.306		
Course	$245^{\circ} 30^{\prime}$	(0)	110.		
Distance	280.8 miles	118.362 䍖	If - 118.362		
		0	c 0 .		
		245.3	c 245.3		
		0	d 0 .		
		280.8	d 280.8		
		(0)	L 30.342		
		(0)	If - 123.346		
		(0) Rep	t and $!$		

2. Course and Distance by Mercator Sailing

CD Course and Distance mode computes the course and distance from the departure point to the arrival point.

Note on Accuracy: The principle of $D \mathrm{DA}$ and CD computation is Mercator Sailing. The oblate spheroid characteristics of earth (flattened at the poles and bulged at the equator) is taken into consideration in the programming. The most up-todate WGS-72, World Geodetic System 1972 spheroid (Eccentricity $=0.08182$), is being used to guarantee the utmost accuracy. When the course is exactly 090° or 270° the program automatically switches to Parallel Sailing. In this case the earth is considered as a sphere.

3. Great Circle Sailing

GC
Great Circle Sailing mode computes the great circle distance between two points and also the initial course from the departure point. The program continues to compute the latitude and longitude of the vertex, and the latitude at any selected longitude on the great circle track.

Note: In computing the great circle distance the earth is considered as a sphere. The vertex is computed between the departure and the arrival point. If there is no vertex to be found between them the next vertex on the same great circle track beyond the arrival point is computed.

Mercator Sailing and Great Circle Sailing:

The course obtained by Mercator Sailing is a rhumb line, appearing as a straight line on the Mercator chart. It makes the same angle with all meridians it crosses, and maintains constant true direction. The Great Circle track is the shortest distance between any two points on the earth. On the Mercator chart a great circle appears as a sine curve extending equal distances each side of the equator. The comparison of rhumb line and great circle track is shown in the illustration.

MERCATOR CHART

Vertex:

Every great circle lies half in the northern hemisphere and half in the southern hemisphere. Any two points 180° apart on a great circle have the same latitude numerically, but contrary names, and are 180° apart in longitude. The point of greatest latitude is called the vertex.

Vertex $48^{\circ} 19 \prime 0 \mathrm{OS}, 11^{\circ} 21!2 \mathrm{E}$
Great Circle and Vertex

Point to point planning:

Since a great circle is continuously changing direction as one proceeds along it, no attempt is customarily made to follow it exactly. Rather, a number of points are selected along the great circle, and rhumb lines are followed from point to point, taking advantage of the fact that for short distances a great circle and a rhumb line almost coincide. These points are selected every 5° of longitude for convenience (the number of points to use is a matter of personal preference), and the corresponding latitudes are computed by 15 NC-77 as in problem 3.

Composite Sailing:

When the great circle would carry a vessel to a higher latitude than desired, a modification of great circle sailing called composite sailing, may be used to good advantage. The composite track consists of a great circle from the point of departure and tangent to the limiting parallel, a course line along the parallel, and a great circle tangent to the limiting parallel and through the destination. If such a course is desired, it can be computed by NC-77 with the equations and key sequence shown in the example below.
Problem: Between San Francisco, $37^{\circ} 50.8 \mathrm{~N}, 122^{\circ} 25.5 \mathrm{~W}$ and Yokohama $34^{\circ} 52^{\prime}$. $\mathrm{ON}, 139^{\circ} 42$: OE , find the composite track with the maximum limiting latitude of $45^{\circ} \mathrm{N}$.

Equations:

$$
\text { DLov1 }=\cos ^{-1}\left(\frac{\tan L_{1}}{\tan L_{\max }}\right) \quad \text { DLov2 }=\cos ^{-1}\left(\frac{\tan L_{2}}{\tan L_{\max }}\right)
$$

Key sequence:

Answer: V1: The longitude at which the limiting parallel is reached is $39^{\circ} 00.9$ west of the departure point, which is $161^{\circ} 26.4 \mathrm{~W}$.
V2: The longitude at which the limiting parallel should be left is $45^{\circ} 50^{\prime} 0$ east of the arrival point, which is $174^{\circ} 28^{\prime}$. WW.

II PLANE SAILING AND NAVIGATION THROUGH CURRENT AND WIND

1. Finding the Course and Speed Made Good through a current
cu 1 Current 1 mode computes the course made good and speed made good when the course to steer and speed through water are given, and set and drift are known.

2. Finding the Course to steer and Speed to use (through water) to make good a given course and speed through a current.
Cu 2
Current 2 mode computes the course to steer and speed through water when the course to make good and speed to make good are given, and set and drift are known. Cu 1 and Cu 2 programs are common, but the drift is entered with the reversed sign in the latter.

*1. Always reverse the sign of "drift" input in solving the CU ? problem.
3. Finding the Course to steer at a given speed to make good a given course through a current
Cu3 Current 3 mode computes the course to steer and speed made good when the course to make good and speed through water are given, and set and drift are known.

Problem 3	Key	Displa		Answer
Course to Make Good 095 ${ }^{\circ}$	[F] [003)	0.	Course to Steer $83^{\circ} 23: 5$ Speed Made Good 12.4 knots
Speed through Water 12 knots	95	c	95.	
Set (toward) 170°	(0)	d	0.	
Drift $\quad 2.5$ knots	12	d	12.	
	(0)	c		
	170	c	170.	
	(0)	d	0.	
	2.5	d	2.5	
	(0)	c	83.235	
	(0)			
		Repeat 6	and d	

Note: The desired course (course to make good) cannot be made when ship's speed is not sufficient to overcome the drift. In such a case the output becomes E.
4. Traverse SailingCurrent 1 mode is also used for the solution of Traverse Sailing. A traverse is a series of courses, or a track consisting of a number of course lines, as might result from a sailing vessel beating into the wind. Traverse Sailing is the finding of a single equivalent course and distance.

Problem 4		Key	Display	Answer
Course	Distance	[001-2]	c 0 .	Single Equivalent Course and Distance
		158	c 158.	161 ${ }^{\circ} 29: 7$ Eat
$158{ }^{\circ}$	15.5	(0)	d 0 .	43.5 nm.
135°	33.7	15.5	d 15.5	
259°	16.1	(0)	c 0 .	15.5/158 ${ }^{\circ}$
		135	c 135.	
		(0)	d 0 .	
		33.7	d 33.7	
		(0)	c 142.118	33.7/135 ${ }^{\circ}$
		(0)	d 48.3	
		(M1)	d 48.3	
		0	c 142.118	
		Cur	c 142.118	
		(0)	d 0 .	16.1/259 ${ }^{\circ}$
		[F] nm	d 48.3	
		(0)	c 0 .	
		259	c 259.	
		(0)	d 0 .	
		16.1	d 16.1	
		(0)	c 161.297	
		(0)	d 43.5	

More courses may be added by repeating the same process.
5. Finding the Direction and Speed of True Wind
wos
Wind Direction and Speed mode computes the True Wind Direction and True Wind Speed when a ship is taking a certain course at a certain speed.

*2. Ship course \pm Apparent Wind Direction should be entered here. Use $(+)$ when the apparent wind is blowing from starboard and $(-)$ for port side.
Note: NC-77 solves the current and wind problems by Plane Sailing.
III. TIDE AND STREAM (TIDAL CURRENT)

1. Finding the Height of Tide

TIIDE
Tide mode computes the height of tide at any selected time.

Problem 1	Key		play	Answer
Time of Low Tide 01445m	noid	h	0.	Height of Tide at 07h35m 10.8 ft
Height of Low Tide 0.6ft.	1.45	h	1.45	
Time of High Tide 09ho6m	-	d		
Height of High Tide 11.9ft.	0.6	d	0.6	
Selected Time $07{ }^{\text {h }} 35 \mathrm{~m}$	(0)	h	0.	
	9.06	h	9.06	
(Seartile, Wash. Dec. 1, 1977)	-	d		
	${ }^{11.9}$		11.9	
	(0)			
	$\begin{aligned} & 7.35 \\ & 0 \\ & \hline 0 \end{aligned}$			
	(0)			
			Continue	

2. Finding the Velocity of Stream (Tidal Current)

Stream Mode computes the velocity of stream (tidal current) at any selected time.

Problem 2	Key	Display		Answer
Time of Slack 01742m	(F) sTRM	h	0.	Velocity at 03h30m
Time of Max. $044^{\text {h }} \mathbf{4 3} \mathrm{m}$	1.42	h	1.42	3.7 knots toward $245{ }^{\circ} \mathrm{T}$
Velocity at Max. 4.6 knots	0	h	0.	
$245{ }^{\circ} \mathrm{T}$	4.43	h	4.43	
Selected Time $03{ }^{\text {h30m* }}$ "	(0)	d	0.	
	4.6	d	4.6	
(San Francisco Bay Entrance	(0)	h^{\prime}	0.	
Aug 16, 1977)	3.3	h '	3.3	
	(0)	d^{\prime}	3.7	
	(0)	h^{\prime}	0.	
	-		Continue	

*1. If the selected time is between the Max. and Slack time, for example Max $5^{h} 00^{m}$, Slack $10^{h} 00^{m}$ and the selected time $8^{h} 00^{m}$, input $10^{h} 00^{m}$ first, and then $5^{h} 00^{m}$ and its velocity. Then enter $8^{h} 00^{m}$ to obtain the corresponding stream.

Note: The local information on TIDE and STREAM is given in TIDE TABLES and TIDAL CURRENT TABLES by the U.S. Department of Commerce or the equivalent authorities of the other countries.

IV SPEED, TIME, DISTANCE

Speed, Time and Distance are computed by the following key sequence, selecting N mode in the beginning

Problem 1. A ship travels 35.2 nautical miles in 1 hour and 35 minutes.
What is the ship speed?
$35.2 \div 1.35$-n.nh \equiv Answer: 22.2 knots
Problem 2. How long will it take to travel 125 nautical miles at ship speed of 21.5 knots?
$125 \div 21.5$ F \quad H.ms Answer: 5 h48m50s
Problem 3. A ship travels at a speed of 18.3 knots for 5 hours and 45 minutes.
What is the distance traveled?
18.3×5.45 Answer: 105.2 n.m.

v TIME AND ARC

TIME and ARC Computations

Time mode makes hours, minutes, seconds computation; ARC mode makes degrees, minutes, and $1 / 10$ minute computation. TAMAYA NC-77 follows the customary navigation rule of expressing seconds in terms of $1 / 10$ of a minute in arc mode.

Problem 1	Key	Display		Problem 2	Key	Display	
$114{ }^{\text {h59 m } 23}$!	[c]Frno	h	0.0000	138 ${ }^{\circ} 99$ \%	(c) [ama	d	0.000
+ 15horm59s)	14.5923	h	14.5923	+ $\left.39^{\circ} 48: 8\right)$	38.298	d	38.298
$\div 2=15{ }^{\text {hoom4 }} 1^{\text {s }}$	+	h	14.5923	$\div 2=39^{\circ} 09: 3$	\pm	d	38.298
	15.0159	h	15.0159		39.488	d	39.488
		h	30.0122			d	78.186
	2	h	2.		2	d	2.
	因	h	15.0041		G	d	39.093

ARC \rightleftarrows TIME Conversion

- ARC mode converts hours, minutes, and seconds into degrees, minutes and $1 / 10$ minute.
- TIME mode converts degrees, minutes, and $1 / 10$ minute into hours, minutes and seconds.

Problem 3	Key	Display
$\begin{gathered} \text { Arc } 35^{\circ} 41: 8 \\ \downarrow \\ 2^{\mathrm{h}} 22^{\mathrm{m} 47 \mathrm{~s}} \end{gathered}$	$\begin{aligned} & 35.418 \\ & F F-T I M E \end{aligned}$	$\begin{array}{r} 35.418 \\ h \quad 2.2247 \end{array}$
Problem 3 (b)	Key	Display
	$\begin{aligned} & 3.5103 \\ & \triangle A R C \end{aligned}$	$\begin{array}{r} 3.5103 \\ d \quad 57.457 \end{array}$

CELESTIAL NAVIGATION PROGRAMS

I NAUTICAL ALMANAC（GHA ARIES，DEC SUN，GHA

 SUN，Eqn．of Time）Almanac mode computes the GHA ARIES， DECLINATION SUN，GHA SUN，and EQUATION OF TIME at any given time of the year through the year 1999.
Problem 1．Find the．GHA ARIES，GHA SUN，DEC SUN and Eqn． of Time at GMT $15^{h} 07 \mathrm{mO}^{s}$ on the 2 nd ．of January 1978.

Key	Display	Answer
ALM	30.	
78.0102	$〕 78.0102$	
0	$h \quad 0$.	
15.0703	$h \quad 15.0703$	
\bigcirc	Ho 328.396	GHA ARIES $328{ }^{\circ} 39.6{ }^{*} 1$
（）	d－22．546	DEC SUN \quad S22 ${ }^{\circ} 54.6$
（）	H 45.453	GHA SUN $45^{\circ} 45.3$
（0）	とロ－0．0402	Eqn．of Time $4 \mathrm{mO}^{\text {c }}$
（0）	Repeat d and H	

＊1 GHA ARIES，DEC SUN and GHA SUN are used as entry data to obtain Line of Position in LOP mode．EQUATION OF TIME is used in MPS mode to find the Latitude and Longitude by observation of the Sun＇s highest altitude（Meridian Passage）．
Note 1.
Accuracy：This program has been checked against the master pro－ gram of the Hydrographic Institute of Japan from Jan． 1， 1977 to Dec．31，1999．The sporadic deviation found at any moment during this period is within ± 0.3 at the maximum for the GHA＇s，DEC and Eqn．of Time． Virtually，in most cases the deviation is nil or within $\pm 0!1$ and the answers accordingly agree with the figures found in the Nautical Almanac．
Note 2.
Validity：
The year is entered as 77,78 \qquad 98，99 until 1999.

II PROPORTIONAL PARTS（Interpolator）

Proportional Parts is used to find the exact GHA and DEC of a celestial body without using the INCRE－ MENTS AND CORRECTIONS pages of the Nautical Almanac．It may be used as an interpolator in finding a LORAN LOP，or for other general purposes．

Problem 1．Find the GHA and DEC of Venus at GMT $10^{\text {h }} 57 \mathrm{~m} 28^{s}$ on May 6， 1978 when the following information is found in the Nautical Almanac．

This interpolator may be used in the same manner for the Sun， Moon，planets and Aries．

III LINE OF POSITION AND IDENTIFICATION OF UNKNOWN STAR（Altitude and Azimuth）

Line of Position mode computes the altitude and the true azimuth of a celestial body．These factors are used to plot a Line of Position．| Problem 1 | Key | | Display | Answe | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Greenwich Hour Angle（GHA） | ［08 | | 0. | Computed altitude of the Sun | |
| of the Sun $45^{\circ} 45!3$ | 45.453 | | 45.453 | | $34^{\circ} 58: 1$ |
| | ＋ 60.213 图 | LH | －60．213 | | |
| | E | LH | －14．360＊1 | | |
| Declination of the Sun | （0） | d | 0. | Azimuth of the Sun | |
| S22 ${ }^{\circ} 54$ ： 6 | 22.546 ［\％］ | d | -22.546 | | |
| DR Latitude of the ship | ［0］ | L | 0. | $(\mathrm{Zn}) \quad 163^{\circ} 32: 4 \mathrm{~T}$ | |
| $30^{\circ} 18{ }^{\prime} 3 \mathrm{~N}$ | 30.183 娄 | L | 30.183 | | |
| | （0） | 8 | 34.581 | | |
| DR Longitude of the ship | （0） | $\underline{\square}$ | 163.324 | | |
| $60^{\circ} 21: 3 \mathrm{~W}$ | （0）Repea | and $\#$ | | | | January 2000 is entered as the thirteenth（13）month of the year 1999．In this manner，practically，the Almanac can be automatically computed by NC－77 until February 29， 2000 （14th month of 1999）．After this date the leap year and the number of days in each month must be taken into consideration when entering the day and month．

Note 1. GHA and LHA:
When continuing directly to LOP mode from ALM mode do not confuse H and LH. H stands for Greenwich Hour Angle (GHA) and LH for Local Hour Angle (LHA). LHA = GHA \pm DR Longitude. This computation may be made in either, ALM or LOP mode, but the dialogue symbol does not change from H to LH until LOP mode key is pressed. See NC-77 LOP COMPUTATION CHART. (TABLE 2).

Note 2. GHA and DEC Data Source:
Sun's GHA and DEC are computed by NC-77, or found in the Nautical Almanac.
Star's GHA is obtained by adding GHA Aries and SHA of the star (GHA star = GHA Aries + SHA of the star).
In this case GHA Aries is computed by NC-77 or found in the Nautical Almanac, but SHA star must be found in the Nautical Almanac. Star's DEC is also found in the Nautical Almanac.
GHA and DEC of Moon and planets are found in the Nautical Almanac.
*1 Some navigators are accustomed to expressing LHA always as a positive value by applying 360° : LHA $=360^{\circ}-14^{\circ} 36.1=$ $345^{\circ} 23.9$
In such a case you may enter LHA $345^{\circ} 23^{\prime} 9$ instead of - $\quad-14^{\circ} 36.1$. The end result is the same.

NC-77 LOP COMPUTATION CHART

Plot Line of Position or Compute Fix by NC-77 with data (1)(2)(3)(4)
TABLE 2

Using the data (1) (2) (3) (4) in TABLE 2 a Line of Position is plotted on a chart.

Identification of Unknown Star

If we know the altitude and bearing of a star, and want to find out what star it is,mode is used in the following manner.

Problem 2: At GMT19h32 ${ }^{\mathrm{m}} 16^{\mathrm{s}}$ on Jan. 1, 1978 an unknown star is observed at altitude $62^{\circ} 36.3$ and approximate azimuth $72^{\circ} \mathrm{T}$. The ship's DR position is $12^{\circ} 40^{\prime} \mathrm{N}$ $152^{\circ} 22^{\prime}$ E

Then compute the following in ARC mode.
Local hour angle of star (LHA) $332^{\circ} 20.6$
Subtract DR longitude of ship - 152 22.0E *1
Greenwich hour angle of star (GHA) 17958.6
Subtract GHA Aries for $19 \mathrm{~h} 32^{\mathrm{m}} 16^{5}$ (GHA)
Jan. 1, 1978................ . 3409.6
Sidereal hour angle of star (SHA) $\frac{14549.0 * 2}{}$
Entering STAR table on Pages 268-273 of the Nautical Almanac with SHA $145^{\circ} 49^{\prime} 0$ and DEC N19 ${ }^{\circ} 28^{\prime} 6$, the star with the closest values is found to be α Bootis (SHA $146^{\circ} 20 \cdot 2$ DEC N19 ${ }^{\circ} 17!$) , another name of which is Arcturus, star No. 37. In the event that a reasonably close match of the computed SHA and DEC values cannot be found in the STARS table, it is possible that the body observed was actually a planet, and the SHA values of the four navigational planets at the bottom of the STARS table of the daily pages also should be checked
*1 Add if longitude is west.
*2 If the answer becomes negative, add 360° to get SHA
If the answer is greater than 360°, subtract 360°

IV FIX BY TWO LOP's

Fix mode computes the latitude and longitude of the fix obtained by two Lines of Position.

Problem 1	Key	Display		Answer	
DR Lat. $30^{\circ} 12 \cdot 1 \mathrm{~N}$	F F [Fl	i	0.		
Long. $60^{\circ} 01: 7 \mathrm{~W}$	30.121 图	L	30.121		
LOP1 Intercept 3.2 Toward	(0)	11	0.		
Azimuth $163^{\circ} 32,4$	60.017 [9]	\\|	-60.017		
LOP2 Intercept 1:7 Away	(0)	d	0.		
Azimuth $219^{\circ} 29: 7$	3.2	d	3.2		
	(0)	z	0.		
	163.324	\equiv	163.324		
	(0)		0.		
	1.7 (2)		-1.7*1		
	0		0.		
	219.297	$三$	219.297		
	(0)	i	30.102	Fix Lat. $30^{\circ} 10{ }^{\prime} \mathbf{2 N}$	
	(0)	!	-59.560	Long. $59{ }^{\circ} 56$: 0 W	
	(0) Repeat i and $\\|$				

*1 Intercept is entered as (-) if it is away, (+) if toward.

For running fix use the Intercept and Azimuth of LOP1 and LOP2 in combination with the DR of the latter.
In this example D.R. position has been moved along the ship course, 18 miles on course 110°, from $30^{\circ} 18: 3 \mathrm{~N}, 60^{\circ} 21: 3 \mathrm{~W}$, which is used in TABLE 2.

V LATITUDE AND LONGITUDE BY SUN'S MERIDIAN ALTITUDE (MERIDIAN PASSAGE)Meridian Passage mode computes the latitude and longitude of the ship at the moment when the sun has reached its highest point (the meridian passage).

*1 Whether the Meridian Altitude is sighted bearing South $5 / \mathrm{w}$ or North [/]/ should be keyed as in the above example.

Note: Meridian altitude is observed by a Marine sextant. Sextant altitude correction by [SAC or VAC mode should be applied to the direct sextant reading to obtain the true meridian altitude. Time of meridian passage can best be determined by plotting on cross-section paper a series of observed altitudes versus times (GMT) of observations, commencing several minutes before estimated local apparent noon (based on the DR longitude) and continuing until several minutes after meridian passage. From a curve faired through the plotted points, the time of maximum altitude can be established. DEC Sun and Eqn. of Time are derived by NC-77 ALM mode or taken from the Nautical Almanac.

VI STANDARD SEXTANT ALTITUDE CORRECTIONS
mode computes the True Altitude by Standard Sextant Altitude Correction at $10^{\circ} \mathrm{C}, 1013.25 \mathrm{mb}$. ($50^{\circ} \mathrm{F}, 29.92$ in.).

Problem 1. Standard Altitude Corrections: Sun

Problem 1	Koy	Display	Answer
SUN $0^{\text {a }}$			
Sextant Altitude (lower limb) Saccer R, 0.			
$34^{\circ} 50: 8$	34.508	R, 34.508	
S.D. 16:3 (Jan. 2, 1978).	6.5*1	he 6.5	
	(0)	Ar 34.463	Dip corrected alt. $34^{\circ} \mathbf{4 6} / 3$
	(0)	Rn 34.449	Refraction corrected alt. $34^{\circ} 44 ; 9$
	(0)	Sod 0.	
	0.163 @	Sd 0.163	
		Ro 35.013	True altitude $\quad 35^{\circ} 01: 3$

* Make sure whether computation is made in Meters or Feet.

Problem 2. Standard Altitude Corrections: Moon

Problem 2	Koy	Display	Answer
Moon $\mathbb{1}$			
Sextant Altitude (upper limb)			
	18.465	R, 18.465	
Height of Eye 6.5 meter (21.3ft)	O	he 0 .	
H.P. 58:9 (Jan. 25, 1978)	6.5	he 6.5	
	(0)	Rr 18.420	
	(0)	R $n 18.391$	
	\square	$h \mathrm{p} 0$.	
	$0.589 \text { व }$	hP $\mathrm{h}^{\text {- }} 0.589$	
	0	Ro 19.189	True altitude $19^{\circ} 18.9$

Sun and Moon: Select meters or feet by the side selector switch. Choose upper or lower limb by $\overline{\mathrm{O}(\mathbb{d}}$ or O key depending on which side was sighted. The Sun's S.D. and Moon's H.P. are given in the Nautical Almanac (The summerized data of Sun's S.D. for 1978 are given in TABLE 1 on the inside of the front cover of this booklet. Moon's H.P. at every hour of the day is found in the Nautical Almanac). If S.D. or H.P. is entered with a wrong decimal point position, for instance, 16.3 instead of 0.163 in the above case, the program blocks it and asks the re-entry of the correct information without having to go back to the very beginning.

Problem 3	Key	Display	Answer	
VENUS ${ }_{\text {\% }}$				
Sextant Altitude $34^{\circ} \mathbf{2 0} 5$	[sac	R, 0.		
Height of Eye 6.5 meters (21.3 ft)	34.205	R, 34.205		
H.P. 0'3 (Sep. 15, 1978)	(0)	he 0 .		
	6.5	ht 6.5		
	0	Rr 34.160		
	(0)	R $n 34.146$		
	[F] ${ }^{\text {a }}$	$h P 0$.		
	0.003 (0)	$\begin{array}{ll} \text { hp } & 0.003 \\ \text { Ro } & 34.148 \end{array}$	True altitude	34 ${ }^{\circ} 14: 8$

H.P. (Horizontal Parallax) applies only to Venus 와 and Mars 저 (See TABLE 1 for H.P. data). There is no H.P. for the other navigational planets, Jupiter and Saturn. Altitude corrections for these two planets are, therefore, made as for the stars, which have no H.P.

Problem 4. Standard Altitude Corrections: Stars

Problem 4	Kay	Display	Answer	
ARCTURUS				
Sextant Altitude $58{ }^{\circ} \mathbf{2 7} 9$	Sac]	R, 0.		
Height of Eye 6.5 meters (21.3ft.)	58.279	R, 58.279		
	0	he 0.		
	6.5	ht 6.5		
	(0)	Rr 58.234		
	(0)	Rn 58.228	True altitude	$58^{\circ} 22: 8$

Since there is no H.P. for the stars, the refraction corrected altitude $R n$ is the true altitude.

8. Sextant Altitude

Rr Dip Corrected
R \cap Refraction Corrected
Ro True Altitude
ht Height of eve
50 Sun's Semidiameter

VII VARIABLE SEXTANT ALTITUDE CORRECTIONSmode computes the True Altitude by Variable Sextant Altitude Corrections when the use of varying temperature and atmospheric pressure is desired.

Problem 1	Key	Display	Answer
Sextant Altitude (Sun's upper limb) 5° 20:2			
	[F] ${ }^{\text {vac }}$	R, 0 .	Dip corrected al . $5^{\circ} 15: 7$
Height of Eye 6.5 meters (21.3 ft .)	5.202	A, 5.202	
Temperature $-3^{\circ} \mathrm{C}\left(26.6^{\circ} \mathrm{F}\right)$	(0)	he 0 .	
Pressure 986mb (29.12 in.)	6.5	he 6.5	
S.D. 16:2	(0)	Br 5.157	
	(0)	を 0 .	
	13 안	$\varepsilon-3$.	
	10	$p \quad 0 . \quad 1$	
	1986	p 986.	
	O	8 05.059	Refraction corrected alt.
	(0)	50.	$5^{\circ} 05^{\prime} 9$
	0.162 ত人	5 d-0.162	
	0	Ro 4.499	True alt. $\mathbf{4}^{\circ} 49: 9$

The key sequence for VAC until Refraction Correction is uniform for all Sun, Moon, planets and stars.
In the case of Jupiter, Saturn and Stars Rn equals the True Altitude since there is no Horizontal Parallax or Semidiameter to be taken into consideration.
Accuracy: Correction for dip $=-1: 776 \sqrt{\text { height of eye in meters }}$ $=-0.98 \sqrt{\text { height of eye in feet }}$ is used based on F.W. Bessel's terrestrial refraction theory.

For astronomical refraction R. Radau's mean refraction table is simulated by the program. There is no significant difference in accuracy between the various refraction theories.
Irradiation factor is not considered in the program.

VIII DISTANCE TO OBJECT

Distance to Object mode computes the Distance to an object when the vertical angle was measured by sextant.| Problem 1 | Kay | Display | Answer |
| :---: | :---: | :---: | :---: |
| Sextant Altitude $0^{\circ} 35: 2$ | F ${ }_{\text {F }}$ | R, 0. | |
| Height of Eye 15 meters (49.2 ft.) | 0.352 | R, 0.352 | |
| Height of Object 1000 meters (3281 ft.) | (0) | ht 0 . | |
| | 15 | he 15. | |
| | (0) | he 0 . | |
| | 1000 | he 1000 . | 40.3 nm |

[^0] The answer is always given in nautical miles.

NORMAL CALCULATIONS（N－MODE）

1 four rules of arithmetic calculation

Problem 1	Key		Display	Note
123－45．6＋789＝	（N］	$\begin{aligned} & 123 母 \\ & 45.6 \square \\ & 789 \square \end{aligned}$	$\begin{aligned} & \hline 123 . \\ & 77.4 \\ & 866.4 \end{aligned}$	$\begin{aligned} & 123-45.6 \\ & \text { answer } \\ & \hline \end{aligned}$
$365 \times(-1.15) \div 0.5=$		$\begin{array}{l:l} 365 & \boxed{x} \\ 1.15 & \\ .5 & -1 \end{array}$	$\begin{aligned} & 365 . \\ & -419.75 \\ & -839.5 \end{aligned}$	$\begin{aligned} & 365 \times(-1.15) \\ & \text { answer } \end{aligned}$

To enter negative number，depress the key after the number．

2 constant calculation

Problem 2，	Key	Display	Note
$\begin{array}{lr}\text { constant addition } & 5+3= \\ & 10+3= \\ 15+3= \\ & \end{array}$		8. 13. 18.	$\begin{aligned} & 10+3 \\ & 15+3 \end{aligned}$
$\begin{aligned} & \text { constant subtraction } \\ & \\ & \\ & \\ & 5-3 \\ & 10-3\end{aligned}=$		2. 7. 12.	$\begin{aligned} & 10-3 \\ & 15-3 \end{aligned}$
$\begin{array}{r} 295 \times 8= \\ 295 \times 6= \\ 295 \times(-12)= \end{array}$	［（N） 295 区 8 目	$\begin{array}{r} 2360 . \\ 1770 . \\ -3540 . \end{array}$	$\begin{aligned} & 295 \times 6 \\ & 295 \times(-12) \end{aligned}$
constant division $32 \div 2=$ （divisors will be constant） $24 \div 2=$ $(-16) \div 2=$	（N） 32 苗 24 目	$\begin{array}{r} 16 . \\ 12 . \\ -8 . \end{array}$	$\begin{aligned} & 24 \div 2 \\ & (-16) \div 2 \end{aligned}$

3 chain multiplication and division

Problem 3	Koy			Display	Note
$5 \times 3 \div 9=$	（N	$\begin{aligned} & 5 \\ & 3 \\ & 9 \end{aligned}$	x $\dot{\square}$ -1	5. 15. 1.666666666	5×3 answer

4 square and power calculation

5 reciprocal calculation

6 mixed calculation

7 trigonometric calculation

Problem 7	Koy		Display	Note
$\begin{aligned} & \sin 63^{\circ}= \\ & \tan 23^{\circ} 45^{\prime} .5= \end{aligned}$	（1）	63 sin 23.455 tan	$\begin{aligned} & 0.891006524 \\ & 0.440184145 \end{aligned}$	answer answer

8 inverse trigonometric calculation

Problem 8	Koy	Display	Note
$\cos ^{-1} 0.5=$	［（1） 5 ［F］［0009	60.000	answer $60^{\circ} 00^{\prime} .0$
$\sin ^{-1} 0.2=$	． 2 F sin^{-1}	11.322	answer $11^{\circ} 32^{\prime} .2$

Note：
The input／output of trigonometric and inverse trigonometric func－ tion calculations is given as follows．
$11 \rightarrow$ degrees $32 \rightarrow$ minutes $\quad 2 \rightarrow 1 / 10$ minutes
9 square root calculation

Problem 9	Key	Display	Note
$\sqrt{5}+\sqrt{3}=$		$\begin{aligned} & 2.236067977 \\ & 3.968118784 \end{aligned}$	$\underset{\substack{\sqrt{5} \\ \text { answer }}}{ }$

10 trigonometric and square root calculation

CORRECTION OF MISTAKES

When a false number is entered during calculation, press the CE Key; then, only the false number is cleared.

Key			Display	
123	+	455	455.	Note
		CE	0.	False number 455
	456	\square	579.	is cleared
			Answer $123+456$	

If the arithmetic calculation keys ($x \div \pm-$) are operated by mistake, press the correct key successively; then, the correct instruction replaces the preceding instruction.

Key			Display	Note
7	\boxed{x}	7.	False instruction	
	\div	7.	correction of the instruction	
8			0.875	Answer $7 \div 8$

OVERFLOW ERROR

An overflow error will occur in the following cases. When an overflow error is detected, all keys electronically are interlocked except the c key.
Overflow error is cleared by pressing the \quad C key.

1. When the integer portion of sum, difference, product or quotient exceeds 10 digits.
2. When a number is divided by zero.
3. When x value in the function calculation is in the following

4. In \rightarrow ARC mode when an entered number exceeds 666666666
5. In DR mode when I D.R. Lat $\mid>90^{\circ}$
6. In FIX mode when| Fix Lat $\mid>90^{\circ}$ |Fix Long $\mid>360^{\circ}$
7. In Vertex of GC mode when Departing Lat. $=$ Arriving Lat. $=0^{\circ}$ or Departing Long $=$ Arriving Long.
8. In Navigation mode when any one of the conditions stated in above 1, 2 or 3 occurs.
(Note) In all the cases 1 to 8, the memory retains the contents before the overflow error is detected

BLOCKING OF INCORRECT DATA ENTRY

In the following cases if obviously wrong data is attempted to be entered, the program blocks it, and asks the re-entry of correct data without having to go back to the very beginning.

In SAC and VAC mode when Sun's S.D. >1, Moon's H.P. >2, planets' HP >0.1

HOW TO INSERT AND REPLACE BATTERIES

1. Turn off the power switch and remove the battery compartment cover by pushing gently in the direction indicated by the arrow (fig. 1).
2. Insert four type SUM-3E batteries or Ni-Cd battery pack EA-19B) (fig. 1, fig. 2)
At this time set them to the spring side ("-" side) first while noting their polarities.
3. Slide the battery compartment cover into the main body after setting the pawls on the right and left sides of the former to the grooves in the latter
4. When display begins fading, it means that batteries are exhausted. Therefore, replace the batteries with new ones (in the case of $\mathrm{Ni}-\mathrm{Cd}$ battery recharge it).

- When replacing the batteries with new ones, replace all of four batteries at the same time.
- When inserting or pulling the plug of AC adaptor into or from NC-77, be sure to turn off the power switch of the computer.

SPECIFICATIONS

Power Source:	AC: with Adaptor/Charger EA-14A (Option) for $100,110,220 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ DC: $6 \mathrm{~V} 1.5 \mathrm{~V} \times 4$ SUM 3E (Standard) 3.6V Rechargeable Ni-Cd battery EA-19B (Option) DC: 12V-24V DC Adaptor (Option)
Operating Hours:	10 hours by SUM 3E battery 6 hours by EA-19B Ni-Cd battery (charge 15
Display Method:	hours) Fluorescent (Itron) display with zero suppression
Display Capacity:	14 digits: 2 digits Symbol Sign, 1 digit space, 1 digit minus sign, 10 digits input/ output.
Decimal Point: Calculations:	Fully floating decimal point four arithmetic calculations, constant calculations, chain multiplication \& division, square and power calculation, reciprocal calculation, mixed calculation, memory calculation
Scientific Functions:	$\sin x, \cos x, \tan x, \sin ^{-1} x, \cos ^{-1} x, \tan ^{-1} x, \sqrt{-}$
Programmed Navigation	Nautical Almanac, Proportional Parts, Altitude and Azimuth for celestial Line of Position, Fix,
Functions:	Dead Reckoning/Course and Distance by Mercator Sailing or Parallel Sailing, Course and
	Distance by Great Circle Sailing, Vertex, Latitude on Great Circle Track, True Wind Direction and Speed, Navigation Through a Current
	1.2 and 3, Traverse Sailing, Height of Tide,
	Velocity of Stream, Standard and Variable Sextant Altitude Corrections, Lat. and Long. by
	Sun's Meridian Passage, Distance to Object, h.ms \rightleftarrows h.hh conversion for Speed, Time and
	h.ms \rightleftarrows h.hh conversion for Speed, Time and Distance Computation.
	Hours, minutes, seconds calculation, degrees, minutes, $1 / 10$ minute calculation, degrees
	minutes, $1 / 10$ minute \rightleftarrows hours, minutes seconds conversion.
Memory:	2 user accessible memories, and 2 extra memories for the output of ALM, FIX, LOP, CD, DR, WDS, CU1, 2, 3, and MPS.
Components:	LSI, etc.
Operating	
Temperature:	$0-40^{\circ} \mathrm{C}\left(32-104^{\circ} \mathrm{F}\right)$
Power	
Consumption:	DC: 0.8W
Dimensions:	82 (W) $\times 27^{\circ}(\mathrm{H}) \times 150$ (D)mm, $3-1 / 4^{\prime \prime}(W) \times 1-1 / 8^{\prime \prime}(H) \times 5-1 / 2^{\prime \prime}(D)$
Weight:	250 grams (0.55 lbs.$)$
Protection case:	Hand-made felt-lined wooden box.

[^0]: Select meters or feet by the selector switch before entering the data.

