The __Machines for people.
Rockwell 900 People for productivity.
series programmable Productivity for profit.
calculators...

Programming
Guide

‘L‘ Rockwell







ROCKWELL 900 SERI'E:S
PROﬁRJ\m‘ING GUIDE

INTRODUCTIUN_
INTRODUS - ==
as been developed to aid you in learning

tion manual h
1 900 Series CalculatoT.

This instruc
Rockwel

how to program your
write some Drograms which

you may
would be happy t©

I1f so, we

After completion of this manual,
hear

to share with us.

you may want
programs toe:

m you. Please mail your
Sumlock Anita/Rockwell International
Anita House, Rockingham Road
xbridge, Middlese England
UBB 2XL

eould already be con-
Since this listing
a program

required

rary Listing.
u have that requires
future. In either case,

ation yo
the near
see if what you want is available.

review a copy with you.

PROGRAMMING

occasions when you want to have software
application. If this is the case,
tinuing to establish, a network

te on a local, on-site basis. Our Soft-

ritten specifically for your

has initiated an

ining a staff of programmers for this
arges for is service are nominal. Consult

for details concerning this service.

Form 604







Introduction to Flowcharting

pefinition of Symbols --
Decision Making --
Label Connectors
Jumping
Subroutines -
a Basic
Basic Programming

Decisions

Memory
Identifier

routines

a Metric Conversion Subroutine
Conditional Subroutines
sted Subroutines ---
rrection Subroutines
rary Programs

Custom Programmi







tasks and puts them in coherent

Notice how this outlines the major
rrange the
fore visiting cadillac),
(You ecouldn't decide which car

tasks somewhat (i.€., by

It is possible to re-a
but the basic

order.
visiting the Dodge showroom be
gic flow cannot be changed .
at least one showroom) .

lo to
puy before visiting

DEFINITION OF SYMBOLS

previous flowchart used three cymbols that will be applied through-

this book.

follows:

rate operatic
a rectangle called

show where a progr i
w where a program begins and ends.




4 will find that the solutien
d. You could make that deci
ylem so that a computer could

If you study the previous flowchart, Yo
to which car teo buy

put how could we break

as was not considere
down the prob

sion,

make the dec isioen?

First, we must establish criterid which you would decide which
car to buy. One logical s would be based on the price of the
car. Our flowc rt could be d co that it compares the price
of each car wi ount of [ vou have to spend, and then

selects the

The flowchart
on the next page.







The previous flowc

piamond'.

The Decision

chart (or

a question

hart introduced 2

ew symbel called a "Decision

on must be made. For a flow-

decision must

r no, or true

pointing

the question

owchart will

be turned into
or false. A
out the path

is yes (or true)
follow if the

FROM A




because of the
y direction
An arrow

s incomvenient,

s are used when it i
to show @ length

Label connector
layout oT complexity of a flowchart,
arrow between two points that are lo
bel connector Shows where 2

hows where the pro

ector S
inside the connect

gically connected.

flowchart is te continue

entering a l1a
An arrow exiting from a conn gram is to

The letters oT numbers or give a

continue from.
name, or label, to the connecter.

on two or more pages. As a

o a place on the page you
two different shapes

be written
send you t
As a result,

Sometimes, a flowchart may

result, a label connector may
are reading or to another page.
label connectoTs

OFF-PAGE LABEL CONNECTOR




we can usé them to

een explained,
in the flowchart in Figure B the

pel connectors have b

Note that
ain almost
"Buy

be gener

Now that 1a
improve our flowchart.
three aperation symbols cont
"Buy cadillac", another si
These can all

jdentical operations. One
Dodge" and the last says

alized to "Buy Car". This
decision making process, since

says
"Buy Volkswagen".
is all the information necessary
you are already showrocom when the
is made. We can to shorten the flowchart

Here is how the new

for the
in the proper decision to "Buy C

ar"
thus use label connectors

flowchart




illustrates the technique of njumping”

1owchart and wish to

The flowchart in Figure D alse
¢ at one point of a f

d go directly to another operation.

Jumps are used when you ar
skip over several operations an
When writing programs, you will find that jumps are used in the

decision making process.

The continuing flowchart might look as follows:

FIGURE D

KEEP RIDING
THE BUS




o showrooms,

takes you T

Because of the order in which the flowchart

4t forces you t° puy the most expensive car that you can afford.

Realistically, puying 8 €ar pecause of the price tag js not a very
essarily the most expensive one,

not nec
consideration should

The best caT i
seating capacity,

e that best sul
mileage,

needs .
per formance,
information, you

good idea.
it 4s the on

ts your
safety,

be given to: styling,
trade-in-value, etc. After you've found out this
would then buy the most expensive €aT you could afford that bes
suits your needs. The Fflowchart SN j1d then be re-written to in-
clude these considerations.

1 1low W writing the flowchart.

First, let's list 2

order of expected

of the car.
Wroom.

other criteria.

next showroom.

ar.

price, from

the most

ice a new symbol:







FIGURE G
b




SUBROUT

This flowchart has neroduced an ent irely new concept, subroutines

A subroutine is a small flowehart (or pre m) that is part of a

larger flowchart (or program) . The subroutine shown here

to determine if a car met the criteria other than price.
did, the subroutine directed you to purchase the car. If it didn't,

the subroutine directed you to return to the point from which you
left the i g Th 1yeturn' feature is what distinguishes
outine from a jump. A jump takes e program from point A
subroutine takes the program from point A to peint
G and then at some pre-dete nined time takes the program back te
peint As illustr flowchart, the prog m can go to

1 different parts of a pro-
rom which it left. When 2

ucti subroutine, it records

should ret result, a program can

several times and always return to the place




executed
ritten by

£ instrucl.mn::

A program js a series ©
computing device. The instructions are W
To write 3 program, analyz€ the best way to solve the
wally, them execute the problem once, def ssing each
order in which the problen would be solve £,

hree numbers and execute

o enter

you had t
rk to enterl

manuallys
tions, @ program will

on the same key.

reduce your

y

For ex

solve

to

able

automatically by a

to run the problem

the programmer.

problem man=
key in the

thirty instruc-

ng three numbers

a program te

ou want to be

have a program

the product

like a pro-

problem manually.




eralize the solution, letters (oT vnriahleq) were substituted

To gen
4 and 5.

for the numbers 2, 3,
AxBxC

ritten to compute

Now, how would a program be w
in the solution €

above,

olumn.

basic solution was given

A X

. are additional steps to take in order to enter this program
the calculator. However, the logic of how it works is complete.
wwer these additional steps required for entering a program.
are four places where a variable is
rogram cannot be entered touching

jables will constantly change.
jon that will tell the machine to
the next vari The instruction that

is logically called [STOP] and should be

in our program.
as follows:
EXP ATTON
STOP enter A

o

L enter B

enter D
compute E




that the last Step say neompute , not “compute and print E".
ute anything unless it is 'ip(.‘l:jfically in-
will not print anything un-

it
print the answer

Notice
A program will mever exec

structed what ta do. In this case,
it to print. Obviouslys

want to print

jess you instruct you must
doubtedly well. The

looks like this

the entries as

and you will un

Program Coding Form

complete program

CULATOR MODEL HO.

| eroGRAM TITLE
ROGRAMMER




steps

The last four 3

am has




Now we're ready to run the program-

variables 1n order ,

! v Then enter
First, touch the [RUN] ke¥ g vou're finished, the

touching the [RUN] key after ©
¢ automatically:

answer will prin

You

You should get

see what the

nd run your first

Togram.

the previous

way to solve it

CTIONS.

you have carefully studied

irst, choose a method of solving

your probler

set of variables. Next, write

down the

a minimum number of key depres-

LR




ries and answer, and insert the imstruc-

print the ent
set apart

as desired to

entries from answers

sions. Finally,
tion [SPACE] as often
and to separate diffe

rent problems

how thes steps

are followed. A very Comr u problem is one called Per
pwmh-<u|mnu the difference

centage Incre and Decre T 3
: anple, if 1260/ UMAEE

Let's write @ short sample progr illustrate

and percent of € etween
150( February then there has been

the amount of change

the centage of
change.

D [JUMP] INSTRUCTIONS

follows.




program Coding Form

PROGRAM TITLE

CALCULATOR MODEL HO.
PAGE oF

JAL G i

e ——
Ol| sTop | Enter current period
e PRINL.

03| + | Add current

04! grop | Enter previous period

05 PRINT

¢ference the dividend

‘ b of data -

0

2 o
HE

SELECT MEMORY ) °
p 3-20- 4 g
5 3
© T
8 9

# Useapa i mam, ng ax . ary
Paper ciip to
/ indicat
© the memory being addressed. M,
r love as necessa
i




JUMPS_AND DE

UMY A

uted in :mquentia] order.

program are exec
ntial order changes.

In general, the steps of a
is sequel

When a [JUMP] instruction
The program may go from the 52nd step t
the 94th step to the 281st step, or fro
The steps in between
e new address.

is executed, th
o the 165th step, oF from

m the 392nd step to the
are ignored. The program

gth step, and so on
simply starts executing from th

Any program step within the memory size of the calculator can be

d by a Jump instructien.
inte two categories, C jitional and unconditional. Un-
take a program from one address to am
instruction. For example, if the
g, "Jump to Step
nally. Conditional
step 28 to 48 only if some
onal jumps are used when

decisions. All con-

we call this number X,

Negative
[JuMP] [-]
if Zero
[JuMP] [=]
Jump if No Entry
[JUMP] [AX]




1f the st
gﬁ t

To see hov
than zero,

First analy

In each caseé,
atcmen
o the next step-

true, the PTo

is
ram will P

tatement

if the 5
the proE

¢ is false

am to

ite a pT

jumps are used, ¥ P
less than zero, OT equal to0 zeT0.

If X is BT ater than
If X is less than s PT X and
67890.

then

1f X equals €

ze the problem :

test

gram will jump.
through and

if

99999 .

PRINT

345

is greater

1t X and then print 12345
| then print a megative




an write the program

we C
conditional

instructions.
decision diamonds.

t we have written the flowchart,

[PRINT] and [SPACE]
ted to replace the

Now tha
and insert [STOP] .
jumps will be inser

)
x

PRINT
7890

FIGURE I




program Coding Form

pROGRAM TITLE

CALCULATOR MOBEL NO.-
PROGRAMMER
s %
Rout ine us
1 ‘whcn x> | Ll
] 510
; 2
1 > ;
Jump if X i
O pager| >0 e .
80




used two labels, label 01 and
For more

in the Ad vanced

This program
simply a symbolic address.
the explanation of [LABEL]
Manual.

This problem involved tests and jumps.
quire that data be process d before
in which a number

it can
write a program
ual

If X 1i:

print

to 500, the program will multiply
.reater than 500, the

the

PTOgTam

In eith
back

result.
will
alue.

go

ecall X from the memory

TE DOWN THE SOLUTION

lations; 1

to write the

information,

HOoWever

X is entered.

program

ent,

label 0Z. A label is
please refer to

operation Instruction

most programs Te-
sted. For example,
1f X is less than
print the re-
will X by
after printing the

be te

X by 2 and

divi

st step and PT

sic steps to

to solve it

00 to determine
divide X

operation.

or

we will destroy

n a memory while per-

been made, we can

ly process it.

ogram invelves both

is best to construct

S solutions te the two routines
e either 2 times X or X divided by

25




DIVIDE X BY
2) PRINT
RESULT




To determine

the relative

size of X




Program Coding Form

ROGRAM TITLE

CALCULATGR MODEL NO-
mﬂlﬂﬂ-ﬂ,_
i pace =
*——*——’—‘[*"‘*“*__ T
.
3 st .
08| STOP | pnter X g
04; PRINT
\
1] 19
. :
8 9

&
Use 2 - -28-
40 3 BApEY clip 1 indicate the memor
\emory baing



f\r,qw-\L] 4

w complete. > T i
s [MANUAL [RUN] .

This pregram is no
[PROG] » [CLEAR], enter the pro
then enter the val

ues

USIN




rate of 5.85%
After a

As of this writing,
of annual &
incomé

arnin
security is

person's
no longer deducte

Let's write 3 progr

The program =
gross earnings
to-date €arm
progr

an




other. 'D's'
rnings up
actly $13,

the oppoesite of each
bring the ycar-to—datc ea
e year-to-date was ex
gs were added.

'

earnin

When writing & program, C
ceivable combination of circumstanc
program to properly process each
Manually problems is

D,

solving

we mul

do nothing
ial

amount of whiel

arefully consider
potential pT
ekly earnings

zero)

security

y earnings will
ctly $13,200-
eekly

weekl
to exa
200 before the w

every €on-
pare the

oblem.

es and pre

*A" and
X

we first

easy. For

5.85% For

i,
must be deducted

gs from §13,200),

For

lems can be solved

YTD=amount
to pay
curity.

¥

social se

No Deduction




yroper S© lution

the |
for placing

direction f
date earnings

pr.

prngr:mn to choos®
art will
e calling
st recent

zetting the
give us

As you can see,
a flowch

year-to
pay period

is necessary. prawing
decisions. Remember © the

1y-T-p' and the amount garne

hat we aT
d in the




Take 2 second 0 100
Note

decision diamond.
2007,

YTD greater than 13,
greater than zero?".
the 900 Series.
mind.

You should also noté the way

decision diamond is phrase

than 13,2007".

allow for

her

k at the qucstian insid
that ano
is to ask,
This is

programs must

e the first
ther way of asking. nis
wis (YTD- 3,200)
tests are made by
n with this in

the way

bhe writte

the question 1n the second
asks, "I (YTD+P) greater
.-|wc|n.;nll7' phrased to

se weekly earnings

1f the




Program Coding Form

pROGRAM TITLE

oy T O
_ Memory 8306 - | 20
— YTy, the amt
on wh

il -

Bls |y

1 e 8
89

T




There are many

progral
number of steps gvailable in your
4 ?mrr:csi reason for

ice




s that

ee separate routine
of

jting thr
i ack te the beginning

handled by WT
ap b

They have been
tuation and th

handle each si

program.
parts of the Toutines, i

one rToutine.

en ]

We can save pumber of ste

and letting s

ome imstructions

t explains

Here is a simple example. It Jus b
that prints

At label

the concept.
are:

& secu

ro when 70 S

10, °t ;L I




Step Number Key Depres

045 (1]
046 JuMp
047 0
048 3
049 5

This will have no effect on the answers that print. The program
had been printing zerc at step 045. Now it will primt zerc at

step 035. In either case, after printing the answer it will

to step 000.

this philosophy, we can shorten the rest of the program.




Program Coding Form

CALCULATOR MODEL NO. PROGRAM TITLE

PROGRAMMER

e - i s, R PAGE OF
[og0[ CLEAR| Al P 0 |7 ‘ |
01| stor 'iﬁﬁﬁia“ﬁ'fil".',‘.p % 2 | Aot T 1
02 | PRINT \‘vr" d U] M- 52 4 f
03{me 8 1 ABEI 3 78_
pifsTop [ERteT YT 0 54 M
1 05 pprn 3 2 55 80
. . 56 I 81 1
5 e | 1
58 &
59 84
85
| b 7 SEV 3
| 62 &
63 88
; 64 % 1
- 6 % 1
66 91 ]
b7 ) 1
Bl o 53 % 2
IS Recall P) LABEL| ri,' i‘mﬁrﬁ‘ 69 | 94 I B )
J + 0 | 70 7 S].'} kT =
a4 1 yTeP-13200 a5l 1 5 e
| 2we Lo L 505 |9 o perocoprine [ | | .
o| 2| g;glﬁgcflfmc Bup | |l ] it
3 | 98|
; £ Wi;:d ;ﬁ ;grtt’go H g N. o gg. § G
SELECT MEMORY WT'

Use & paper clip to indicate the memory being addressed, Move as necessary.,




This program uses the same basic logic as the previous one. If
please refer to the explanation of the

you have any questions,
earlier program.

Qur 67 step program has been t down to 52 steps by making some
It's obviously valuable to save
significant. Theoretically

simple changes. 15 steps, but the

percentage savings, 22%, is even more

the same techniques could help you cut a program that first took

steps down to 448 steps.
ring the rest of this manual we will discuss many other techniques
will help you save steps. However, it is literally impossible

all techniques so the best thing te d s to consta

horten srams while writing them.

will build a mental library of step-saving
1 find your

thought to be




LOOF

A common problem in business statistics is finding the standard

deviation of ungrouped data. The formula for the standard de-

viation (SD) is:

is the sum of the squares

variables.

of

it is to write

ogram for standard deviation

to enter each X-value just

made, the program should
IX, then accumulate EX? and n.

ly to accept the next

jump to a routine that

the answer.

will have

fferent numbers of variables.
allow entry of an

any values as

o the part of the program that processes

last variable has been entered.

2. WRITE DOWN THE SOLUT ION. Fol lowing is a flowchart of a
Program that will allow entry of any number of variables

and then process the dccumulations.




This flowchart is a diagram of a simple procedure called

B eioon:. A loop is used when a part of a program is teo

be repeated several times before the program goes forward.

for example, in a 100-step PTof am in which steps 25-50
are to be repeated several times, the program should be
written so that each time it reaches step 050 it would
automatically loop back to step 02 and start again.

After some pre-deter ined signal, it should jump out of
the 1 carry out steps 041-099. Depending on how

written, a loop can be repeated as many

[JuMP] TNST RUCTIONS.

AND
TATION




Program Coding Form

CALCULATOR MODEL NO. PROGRAM TITLE R

PROGRAMMER _
DATE PAGE OF E
| T T
ICLEAR [Beginning of 50 75
m|N,L \data_entry - ——
Olfsyop |1 51 76
Cinee ‘ 52 b
03/ax |53 i
o o XE - ‘ 54 79

2 B

Use a i Eas
PAPSN &lp to indicate the memory boing addressed. Move s necessary.

e




as many X-values as we like.

This program will allow us to enter
is touched, the program

Each time a variable is entered and [RUN]
X, IX? and n, then loop pack to step 000. After
[RUN] is touched, the operatoT merely

will accumulate I
the last entry is made and
rouches [RUN] without making an entry.
ro break out of the loop and jump to step 014, where

This will cause the program
it will process

the stored data.

USING THE INDIRECT MEMORY
¢ commen caleulating problem is one called 'Percentage Distri-
Several numbers are added together, then each individual
divided by the sum of all the numbers to determine what

s gach is of the total amount.

cce how this problem would be solved without using
ume that we have three numbers,
We would 1 to write a program that will accum-
total and then print the percentage that each
to the total. We have analyzed the problem in
are ready to write down the solution.

Entry 1 Explanation

To clear all registers
To add the numbers
To store for later use
To add the numbers
To store for later
To add the numbers

*M/IN To store for later




«M/OU 01 Recall first entry
: Establishes the total as
a constant divisor

B. Routine to
process vari-
ables. I

] First percentag
+«M/OUT 02 Recall second entry

Second percentage

Recall third entry '
[ Third percentage
AX Total of percentages
N Number of entries

sroach, so we could now write the
] and [SPACE

rogram unless there are exactly three

However, if we do,

ous problem, to handle

ables. cally, this loop should store the first

1 e cond entry in memory 2 and so on. Such a

ber of entries, up to the

it f ach er should be added to the
1 g as [ mory. After the last
] 11d automatically leave the loop that

enter another loop that recalls the
by the total to find the percentages.

ing the last variable, the program must

cond loop, go back to step 000 and prepare

set of data.

method.




UTINE THAT
SSES DATA

v

9

FIGURE M







On two separate occasions, the program must automatically leave a

loop. It will be simple to design the program so that leaves
the first loop after the last entry is made. A 'Jump If No Entry' will
work perfectly, as it did in the pro m for standard deviation
We will have a problem with the second loop. The enti loop is

automatic

nd so a 'Jump If No Entry' 11 not work. Teo do this we

will have to comstruct an item counter.

The §00 Series has two separate, automatic counters. [If you have

ied the calculator, you will understand why an item counter
M-count) is used. In the first loop, our program will auto-
-ally count the number of entries as we add sach entry to the

achine. All we must do in the second loop is "reverse"

-ounter, count backwards from the number of entries to zero
eaches zero.

leave the loop when the "reverse count"

1lowing program uses the indirect register, the reverse counter,

other techniques that have been discussed.




Program Coding Form

CALCULATOR MODEL NO. FROGRAM TITLE
PROGRAMMER
DATE

| CLEAR] Clear all Tl Print number 5 T
DI]'a’\l.l. | memories Bl N lof entries o
01 spac| % print 51 Juwp |
Beginning of 7 3
02 LABEL| data entry |2 s | G
loop | - Print total T 1
03 28 PRINT| of entries. | 53 LABEL 78
I | Establ i I
o 2 e 7
< |SELECT Increment | constant divi- [ :
| 05 M | pointer |3 | sor. sl | sl
ok < e Processing
A L ‘ 9 SPACE completed
07 Enter an ] v I 1
| 07 stoe | 'm.,].hw SPACE 57 8
| Initialize A b E
| 03] 0 3 ik et ‘ 58/ SPACE 8
AX B4
| Accumalated E
B u\r. percentages 8
TP (proof) 8%
0 87
‘ 0 88
0 89
‘ 90
ELECT Increment |
TUMP M | pointer ‘ 1 82
| + 93
| 19 sturmn to | A - | k T
(19 o ginning of | M “WOUT Recall entry |69 9
this loop. | Compuite o I [ R
2 15/ INDIR entry's per- | 1t 9%
R ; centage of N [
ABEL 6l 3 tota 7l 9%
Beginning of |, | of
0 ua;a process- A7 PRINT El
1 ng (48] 1 PE| %
SPACE] 49 - 74 9 |
SELECT MEMORY 1) 2 S 5 6 7 8

&

Use a papar clip to indicats the memory being addrassed. Move s necessary.




This program automatically created a counter by the addition of
each variable, them it used the count to form a reverse counter
that went back to zero. Also, the program created a constant
divisor with the steps [*] [T] [=]. The answer to this divisien
of no importance but the total was converted into a constant di-
visor in only three ste

As you can see, the indirect memory is a very powerful system. This

m took just 65 steps to store and recall as many memories

necessary. To do this without the use of the "Pointer
ster" would have taken considerably more steps.




PRINTING AN IDEN

IFIER ON THE T APE

The Percentage Distribution program will produce a tape that is

somewhat difficult to read.
create a counter
of each entry and answer.

following formats.

1. e
123.00

2.
456.00

e
789.00

1368.00
3.00

i
789.00
57.68

100.00

The output

The way to solve this problem is to
in the program, and use it to identify the number )

may be either of the two

Identifier
(first entry)

Identifier
(second entry)

Identifier
(third entry)

(total of entries)
(number of entries)

Identifier
(1st percentage)

Identifier
(2nd percentage)

Identifier
(3rd percentage)

(total of percentages)

(number of entries)
(total of entries)

Identifier
(first entry)
(first percentage)

Identifier
(second entry)
(second percentage)

Identifier
(third entry)
(third percentage)

(total of percentages)




Either method is acceptable. The first method is simple to program

and one that you can write.

The second method is not so cbvious. Since each percentage is

printed immediately after its corresponding entry, all variables

be entered before the first one cam print. The entries will
printed during the second loop, as they are recalled from the

#ill have to change the previous program to get identifiers

t on the tape. A count is already being created in memoTy
is count can be recalled and printed during the second

To make the program print properly, steps 042-047 should
laced with steps 042-053 below.

Key
Step No. Depression Explanation

042 SEL
043 +* Add 1 to memory 00

044 “M/OUT Recall and print count from
c memory 00. This will create

08 v an identifier on the tape.

046 ]

047 SPACE

048 PRINT

049 +M/OUT Recall and print each

entry.

050 INDIR !

051 PRINT

052 L3 Compute and print each entry's
5 centage of the total.

053 PRINT pELCEnraE

tep 013, which is a [PRINT] instructien, should be eliminated
as been replaced by the [PRINT] instruction at step 051.



Because of the fine editing system available on the 900 Series,

¥you will not have to re-enter this program. If the old program is
in the program memory, change it to incorporate the new steps. The

old routine was:

|
|
|
Step No. Key Depression ]

042 SELECT M
043 +

044 +M/OUT ]
045 INDIR

046 $

047 PRINT

We can leave steps 042, 043 and 044 alone, erase step 045, then

sert the new steps from 045 to 051. The program will automatically

nd to allow room for the new steps. The [$], [PRINT], instruct-

t had been steps 046 and 047 will now be steps 052 and 053.

ng else will be adjusted accordingly.

|
|
1. Touch [JUMP] 045 [EDIT]. \
2. Touch [CLEAR] once to erase the [INDIR] instruction. |
3. Enter the new steps, 00 [SPACE] [PRINT] [+M/OUT] [INDIR]
PRINT] .
4. Touch [MANUAL] [JUMP] 013 [EDIT] [C
the [PRINT] instruction at step 013.

R] [MANUAL] to eliminate !

You might have wanted to correct step 013 before going on to step
045 However, that would complicate matters. When you eliminate
, and so on. Step 045
come step 044. Therefore it is always best to start with the

013, the old step 014 becomes step 013

last change and work backwards.




If you have followed the instructions properly, the tape

editing instructions should look like this:

The tape

may list out the m touching [LIST].

match this one:







DEFINITION OF SUBROUTINES

Subroutines are powerful tools that have many uses. [If program

has a routine that is to be used in several different

writing a subroutine steps. Insert the st

AN save many prog

[LABEL] (digit) (digit) in front of the subroutine and insert
[RE
and two-digit integer such

URN] after the last step. (Remember that (digit) (digit) means
01 or 99). Place the subroutine at

a that make

the end of the main body of the program or in any

The instructiens [60 SUB] (digit) (digit) will send the in
ram to the subroutine, and the [RETURN] instruction at the end
send the program ba to the first step after [GO SUB] (digit)

PROI USING A METRIC CONVERSION SUBROUTINE
11owing is an example of a program that uses a subrou to

steps. Assume that we must write a program that converts

meters and cubic yards *to cubic meters. Specifically,

re a number of boxes with measurements given in meters.

n should convert each side to its equivalent in yards,

ters and cubic yards.

volume of the box in both cubic

volume of a box with length L, width W and height H, the
L x W x H.

s simply; Volume

+ a number from meters to yards, it should be multiplied

298
{ALYZE THE PROBLEM
erhaps the most straightforward method is to enter each

variable, store it in meters, convert it to yards, then

store the converted number in a separate mMemory.




After the third variable is entered, converted and Stored,

the program can recall the three variables expressed in
meters, find their product, print the answer, recall the
variables in yards, find the product and print it.
Finally, the program should clear all the registers and
prepare to accept new set of data.
WRITE DOWN THE SOLUTTON
Flowchart the basic logic flow of the program, then incor-
porate the subroutine technique to shorten the number of

steps that the program will use.




this flowchart the need for a subroutine

By studying
ecomes obvious. One series of instructions is repeated

ree times.

PRINT AND
STORE

The flowchart will be rewritten using the subroutine technique.

e



ENTER THE
LENG IN

CONVERSION AND
STORAGE
SUBROUTINE

PRINT AND
STORE THE
SIDE IN METERS

PRODUCT (VOL -
JME IN MET

v

CONVERT THE
SIDE TO YARDS

GO TC

PRINT
STORE
SIDE IN

HE
YARDS

FIGURE Q

-58-




The flowchart indicates that there are only two »r routines

to be written.

a. Routine to Convert Meters

to Y is and Store Botl
Numbers

Entry sions Explan
5 (meters) 1 store

1.0936132983

VM IN

Now write the routine that calculates the wvolume

routine is to be used three times.

routine is used several times to store data that
will be used later on in the = n program, the Pointer

ister
ould be used to lead the memories.

(The same logic applies

loops). The subroutine looks like this:

CONVERSTON AND STORAGE SUBROUTINE

Depre Explanation
PRINT Print side in meters
SELECT M

- Add 1 to memory 00

M/ IN

INDIR
X

1

Store this side in meters




Key Depression Explanation

Convert this side to yards

4 Add 1 to memory 00 I
Store this side in yards

is used three times, it will load the

cutive registers. If

the beginning of the program,
go to memory 1, L (in yards)

(in meters) will go to memory 3

> to memory 6. Assuming this is

ine that will find the volume of

ubic meters and cubic yards.




ke snepTasElon Explanation
~M/OUT
0
1 L in meters
X
«M/OUT
0
3 W in meters
X
«M/OUT
0
5 H in meters

Volume in meters

+M/0UT

L in yards

W in yards

«M/OUT
0
6 H in yards

- Volume in yards

Incorporate both routines into one program that
allows entry of three variables.

INSERT [STOP], [PRINT], [SPACE] AND [JUMP] INSTRUCTIONS.




CALCULATOR MODEL NO.

Program Coding Form

PROGRAM TITLE

02/ o sun
03 o
04| 1

| I5/ST0P | Enter width

| " 6o suB

PROGRAMMER _
PAGE
DATE__ SR -
00/ L D\H‘Clear 2 50/ ABEL
\ __|memories 0 | | ]
| 51
DI._SIQP |Enter length % s L]

I |Subroutine to |
|2f . 5

|convert and m -'M_,fINW i
Volume in - store data. —
[ 28 panr| e 2| 53 nr 78 INDIR Store variabug
cul 4|52 eulm.rement —
2 ayout e in yards | 9> M Findirect 79| PRINT
‘ pointer S —
EUE) .
5 ey R[:' Retu
2 | 5 ""’i\ Store variable| 81 TURN. mm?“);“
E Tdeparture in
X | °/ INDIR| | 32. |main progran
X &3

1

| Meters con- I
verted to yds. 9

5 6 i 8 8

e
@ indicata the mamory being addressed. Move as necessary.




Notice the economy of steps achieved by using a subroutine ([GO SUB]
and [RETURN] instructions).

The operating instructions for the program are:

1. Depress [PROG], [CLEAR], then enter the program.
2. Depress [MANUAL], [RUN].

3. Enter the length in meters and depress [RUN] The length in
yards will print.

Enter the width in meters and depress [RUN]. The width in
meters and yards will print.

5. Enter the height in meters and depress [RUN]. The height in
meters and yards will print.
The volume in meters will print, followed by the volume
in meters and yards.

he program is ready to accept a new set of variables.

i this program for the variables (5,6,7) and (9.50, 4.41
vou will get the following printout with decimal at FL:




< conversion program used an unconditional subroutine.

The metri
The instructions
all circumstances.
conditional subroutines under
perform conditonal jumps. The calcul
keyboard register. It cam go to & subroutine under any of the

following conditions.

[GO SUB] 01 sent the program to label 01 under
The 900 Series alse has the ability to perform
the same conditions that it will

ator tests the number in the

INS' TRUCTION

Is X Positive? Branch if Pesitive
[GO SUB] [+]

Branch if Negative

Is X Negative?
[GO SUB] [-1]

Branch if
if no Entry
1 :
m will go to the
im will pass through




NESTED SUBROUTINE

If a program is calculating in a subroutine, it cam jump

second subroutine, go through its steps, return to the point it

left off at in the First subrout », then go back to t point

t jumped from in the main program. This process called "nesting
subroutines". The 900 Series can nest subroutines levels
deep, ich means it can jump from subroutine A to s ibroutine B
subroutine C to subroutine D to subroutine E, complete E, go
» and complete D, then go back to C, B, / 1 finally
to the main program., The following diagram will explain

neept.

Main Program Go Sub
0
il

Subroutine

Go Sub

—65-




Return

Subroutine #2

GO0 Sub

Return
LA

Subroutine #3




Go Sub
0
4

Return

LA
Subroutine 0

i

Go Sub
(1]

5

Return

LA
0
5

Return




ERROR CORRECTION SUBROUTINES

The program to compute standard deviation (refer to loops, page
40) will operate with one exception: what will happen if the

operator enters an incorrect value and touches [RUN]? He will have
to touch [CLEAR ALL] and start over again. There should be a method
of correcting such errors.

This can eas be solved by writing an error-correction routine,
Error correc T tines are written by following the same three
ave been using to write complete PTrograms.

Value was entered and [RUN] was touched,
accumulations would be incorrect. If you

wrong number, X, then the error correction
X* from £X2 and 1 from

SOLUTION
ing routine corrects the error and makes it
the tape.
Key Depre Explanation
Enter wrong entry X

SPACE

CHANGE SIGN

PRINT Print both X and -X to signify
error correction.

CHANGE SIGN Restore the sign of X
X Correct error

SPACE

SPACE




Because of the spaces and the red printing of X, the tape
will clearly show that this is not an entry but an error

correction.

The error correction routine can now be incorporated into
the main pregram. To allow the operater to access it
manually, label 59 will be inserted at the beginning

the routine. Touching [GO SUB] 99 or [JUMP] [LABEL]
[RUN] will take the prog to the routine.

The complete am for standard deviation looks like

the followi

INSERT [STOP], [PRINT], [SPACE] AND [JUMP] INSTRUCTIONS.




Program Coding Form

CALCULATOR MODEL NO. PROGRAM TITLE
FROGRAMMER
DATE

m\r CLEAR| Clear
J 16

AL | memories
1 Nullifies
Ul sto g . | | | =- | incorrect ent
52
| 53 space

JUMP

|

Jump to
continue data
entries 1

[Standard
‘| PRINT] deviation

FRINT Count

22

3| PRINT Mean
u 5

_|proper
SELECT MEMORY
-70-

Use a pager ciip to in
e memory being addressed. Move as necessary.




The loading and operating

follows:

1. Depress [MANUAL] [PROG]
step 000 and eliminates

pointer to

that had been held in

Enter
Enter each

If a mistake

Touch [GO SUB]
incorrect number will

The

The

\fter

all var
1lowing
Count
Mean
Var

Standard

the program,

is made

mistake

ables are entered, touch

instructions for this program aré as

[CLEAR]. This brings
the program memory.

then touch [MANUAL] [RUN].
and [RUN] is touched,

ace twice.
red. This
n has taken place.

is now corrected.

results:

Deviation

ation of a new set of data,

the step

any old pregram steps

do the follow-

will

Continue entering data.
[RUN] to see the

enter










— -

‘l‘ Rockwell



