

Made in America, with pride, by National Semiconductor

All the advanced electronics in this Novus calculator are manufactured by National Semiconductor Corporation, a world leader in the design and production of solid-state electronic components. National is a multinational, NYSE-listed company that has demonstrated unparalleled growth over the last six years.

Your Novus calculator is built in the USA. That's because American technology — and specifically the know-how of National Semiconductor — is the key to this product's quality, reliability and computation "horsepower." No other manufacturer can equal National's ability to produce rugged, performancepacked components in the large volumes that result in quality products with small price tags.

The same National Semiconductor electronics have helped take Americans to the moon and back, and are the critical "guts" of high-performance products ranging from life-saving medical equipment to consumer products such as color tv's and digital watches.

You now own one of the world's most technicallyadvanced consumer products. We hope you'll be as proud to use it as we were to make it.

Page

- 2 Getting Started
- 2 Battery Installation
- 2 AC Adaptor
- 3 Operations Display Automatic Display Shutoff Reverse Polish Logic and the Stack Principle

CONTENTS

- 4 Keyboard Layout
- 5 Keyboard Callout Keying In and Entering Numbers Correcting Mistakes
- 7 Performing Calculations Mathematical Hierarchy and Reverse Polish Logic One-Factor Calculations Square Root and Reciprocal Functions Logarithmic Functions Trigonometric Functions Two-Factor Calculations Power and Root Functions Chain Calculations
- 11 Memory Error Conditions
 - Degree/Radian Conversions
- 13 Appendices

12

- Appendix A Stack Diagrams Appendix B — Part 1: Some Examples Mathematics Chemistry Engineering
 - Statistics
 - Navigation Finance

Appendix B — Part 2: Hyperbolic and Inverse Hyperbolic Functions Appendix C —

Conditions for Error Indication

Getting Started

Turn your Novus Sliderule on with the switch on the left side of the calculator. The calculator is automatically cleared and the display should now show 0. If it does not, check to see if the battery is properly connected.

Battery Installation

Your Novus Sliderule is powered by a 9-volt transistor battery which should give you about 15 hours of operation with normal use. The Sliderule will show a decimal point on the extreme left side of the display as a low-battery indicator. Although calculations can still be made while the low-battery indicator is on, the battery should be replaced as soon as possible. Continued use on a weak battery may result in inaccurate answers.

To change batteries, turn the machine over, place a small coin in the slot at the top of the battery door and pull gently toward you. The battery door will slip out, BE SURE THE CALCULATOR, IS TURNED OFF BEFORE REPLACING THE BATTERIES.

Slip the slotted part of the battery door in toward the bottom of the machine and the battery door will snap back into place.

AC Adaptor

You can use your Sliderule on regular AC current by connecting the Novus AC Adaptor to the adaptor jack at the top of the machine. BE SURE YOUR CAL-CULATOR IS TURNED OFF BEFORE CONNECTING THE ADAPTOR.

Display

The Novus Sliderule will accept and display any

Operations

positive or negative number between 0.0000001 and 99999999. Any result larger than 99999999 or smaller than -999999999 will result in an overflow indicated by all zeros and decimal points being displayed.

Automatic Display Shutoff

To save battery life, the Novus Sliderule automatically shuts off the display and shows all decimal points if no key has been touched for approximately 30 seconds. No data has been changed and further entries or operations will bring back the display. To restore the display without changing its contents, touch CHS twice.

Reverse Polish Logic and the Stack Principle

The Novus Sliderule uses Reverse Polish logic with three registers called X, Y and Z. A register is an electronic element used to store data while it is being displayed, processed or waiting to be processed. The three registers are arranged in a "stack" as follows: (To avoid confusion between the name of a register and its contents, the registers in this diagram and the diagrams in Appendix A are represented by capital letters X, Y and Z and the contents of the registers by lowercase letters x, y and z).

CONTENTS	LOCATION	
z		
У	Y	
x	Х	

The display always shows the contents (x) of register X. See Appendix A for diagrams showing what happens to the stack for each operation on the Novus Sliderule.

V	Computes the square root of the number in the display.
1/x	Computes the reciprocal of the number in the display. (Divides 1 by "x").
х-у	Exchanges the number now in the display for the number previously in the display.
MR	Recalls the contents of memory to the display (X register).
MS	Stores the number in the display in memory.
CHS	Changes the sign of the number in the display.
ENT	Enters the number in the display (x register) into a working register (y register).
	Divides "y" by "x".
X	Multiplies "y" by "x".
-	Subtracts "x" from "y".
+	Adds "x" to "y".

C Clears contents of display (x register) and rolls stack down.

Keying In and Entering Numbers

To enter the first number in a 2-function calculation, key in the number and touch **ENT**. If your number includes a decimal point, key it in with the number. If a decimal is keyed in more than once in a number entry, the calculator will use the last decimal keyed in. You do not have to key in the decimal in whole numbers.

To enter a negative number, key in the number and touch CHS.

Correcting Mistakes

To clear a wrong number entry, touch C. Touching C clears the X register (display) and drops the stack down.

Performing Calculations

In addition to the separate memory, there are three locations where numbers can be kept and operated on. These locations are called registers and in your Silderule these have been combined into an automatic stack. Your Novus Sliderule uses the three level stack along with Reverse Polish logic to enable you to perform calculations according to mathematical hierarchy.

Mathematical Hierarchy and Reverse Polish Logic

"Hierarchy" is a term for the rules of mathematics which tell you in which order to perform operations on numbers. Those rules are:

- 1. Do the problem left to right.
- Do all operations within parentheses, if any, first.
- Perform operations in the following order:
 a. raising to powers, taking roots, trig, log
 - and reciprocal functions.
 - b. multiplication and division,c. addition and subtraction.
- Repeat steps 1 through 3 until the calculation is complete.

Example: The equation $(3^3 + 2)4 + \sin 30/\sqrt{25}$ = 116.1 is solved according to the rules of hierarchy as follows:

- 1. 3³ = 27.
- 2. 2 + 27 = 29.
- 3. 29 x 4 = 116.
- 4. sin 30 = .5
- 5. $\sqrt{25} = 5$.
- 6. $.5 \div 5 = .1$

8

7. 116 + .1 = 116.1

If you remember the following three steps in applying Reverse Polish logic to the rules of hierarchy, you will quickly master your Novus Sliderule and have confidence in its answers.

- Starting at the left and working right, key in the next number (or the first if this is the beginning of a new problem).
- Ask yourself: "Can an operation be performed according to the rules of hierarchy?" If so, perform all operations possible. If not, touch ENT
- 3. Repeat steps 1 and 2 until your calculation is complete.

Example: Following these three steps, you can calculate the equation $(3^3 + 2)4 + \sin 30/\sqrt{25}$ using Reverse Polish logic as follows:

KEY IN	DISPLAY SHOWS	COMMENTS
3	3	
ENT	3.	
3	3	
yx	27.	3 ³ .
2	2	
+	29.	$(2 + 3^3).$
4	4	
X	116.	$(2 + 3^3)4.$

30	30	
sin	.5	sin 30.
25	25	
V	5.	$\sqrt{25.}$
÷-	.1	.5 ÷ 5.
+	116.1	$(2+3^3)4 + \sin 30/\sqrt{25}$

Calculation is complete and performed according to the rules of hierarchy.

One-Factor Calculations

One-factor functions work directly on the number in the display. There is no need to touch **ENT** before performing the function.

Square Root and Reciprocal Functions

Computes the square root of the number in the display.

 1/x Computes the reciprocal of the number in the display.
 Example: Key in 2 1/x; display shows: .5.

Logarithmic Functions

In Computes the natural logarithm of any positive number in the display.

e^X Computes the natural antilog of the number in the display by raising "e" (2.718281) to the power in the display.

log Computes the common logarithm of any positive number in the display.

Trigonometric Functions

sin Computes the sine of the angle (in degrees) in the display.

Error Conditions

In the event of an logic error (e.g., division by zero) the Novus Sliderule will display all zeros and decimal points. An error condition is reset by touching **C**. Memory is not affected by error conditions. See Appendix C, table 1, for a complete table of improper operations.

Radian/Degree Conversion

To convert radians to degrees or vice versa, key in 57.29578 MS. This constant can then be used for conversions.

Example: How many radians are in 15.7°?

KEY IN	DISPLAY SHOWS	COMMENTS
15.7	15.7	Number of degrees.
ENT	15.7	
RM	57.29578	Recall conversion constant.
	.27401669	Number of radians.

Example: How many degrees are in 2.56 radians?

KEY IN	DISPLAY SHOWS	COMMENTS
2.56	2.56	Number of radians.
ENT	2.56	
MR	57.29578	Recall conversion constant.
×	146.67719	Number of degrees.
Example:	What is the sine o	f 2.4 radians?
KEY IN	DISPLAY SHOWS	COMMENTS
2.4	2.4	Number of radians.
ENT	2.4	
12		

MR	57.29578	Recall conversion constant.
×	137.50987	Convert to degrees.
sin	.6754633	Sine of 2.4 radians.

APPENDICES

Appendix A – Stack Diagrams

The following diagrams show what happens to the stack for each operation of the Novus Sliderule. Contents of registers are indicated by lower-case letters x, y and z. Locations are indicated by capital letters X, Y and Z. The display always shows the contents of register X. Memory is register M.

al and the second	and the second	and the second	100	_		and the second
5	5			35	25	0
+	9.			ENIT	35	O .
×	45.		÷.,	ENIT	35	Store Q in register V
Destroop	and a set of a set of a		*	COS	9101521	Sin O
decimal	degrees conve	econds to		MD	.0191021	Bacoll P
Example: and secor	Convert the follo	wing degrees, minutes grees: 56°23'44.5"	Sat		7. 5.7340647	X calculated.
KEY IN	DISPLAY SHOWS	COMMENTS		х-у	35.	Retrieve O from register Y
44.5	44.5	Seconds.		sin	.5735765	Sin θ.
ENT	44.5			MR	7.	Recall R.
60	60	60 seconds/minute.		X	4.0150355	Y calculated.
MS	60.			Note: To see	"X" again, tou	ich x-y.
	.74166666			Example: Co	moute the area	a of a cone with radius 5
23	23	Minutes.		and height 15		
+	23.741666			Using the fo	ormula: $A = \pi I$	$R \sqrt{R^2 + H^2} + \pi R^2$
MR	60.	60 minutes/degree.		Substituting	$A = \pi \times 5 \times 7$ = 326.904	$\sqrt{5^2 + 15^2 + \pi \times 5^2}$
	.39569443			KEY IN	DISPLAY SHOWS	
56	56	Degrees.	-	T	3.1415926	
+	56.395694	Decimal degrees.		ENT	3.1415926	
Delevie				5	5	
Polar to re	ectangular coor	dinate conversion		X	15.707963	
rectangular	coordinates using	g the formulas:		MS	15.707963	
	$X = R \cos \theta$, $Y = R \sin \theta$			5	5	
KEY IN	DISPLAY SHOWS	COMMENTS		ENT X	25.	
7	7	R.		15	15	
MS	7.	Store R in memory.		ENTX	225.	
20				14	250	21

V	15.811388
MR	15.707963
X	248.36469
5	5
ENTX	25.
π	3.1415926
X	78.539815
+	326.9045

CHEMISTRY

Example: Determine the depression of the mercury" column in a glass tube of inside diameter 0.6 mm which stands vertically with one end immersed in mercury. The angle of contact with the mercury is 120° and the surface tension is 490 dynes/cm.

Using the formula: $h = 2T/rdg (\cos \theta)$

where: h = height of mercury in tube,

- T = surface tension,
- r = inside radius of tube (1/2 diameter),
- d = density of the liquid = 13.6 g/cm³ for mercury,
- g = acceleration due to gravity = 980 cm/sec².

2 x 490 dynes/cm

 $h = \frac{12 \times 100 \text{ g/m}^{2} \text{ g/m}^{3} \text{ x}}{0.03 \text{ cm} \text{ x} 13.6 \text{ g/cm}^{3} \text{ x} 980 \text{ cm/sec}^{2} \text{ x} \cos 120^{\circ} = -1.225 \text{ cm}.$

KEY IN	DISPLAY SHOWS	COMMENTS
2	2	
ENT	2.	
490	490	Surface tension.
22		

×	980.	100 C 100
.03	.03	Inside radius in cm.
ENT	.03	
13.6	13.6	Density of mercury.
X	.408	
980	980	Gravity.
X	399.84	
	2.4509803	
120	120	Angle of contact.
COS	.4999999	
X	-1.2254899	Depres <mark>sion of colum</mark> n

Example: What is the molarity of a solution that contains 135 grams of calcium chloride, CaCl₂, per liter?

Using the formula mass of CaCl₂: $1 \text{ Ca} = 1 \times 40.08 \text{ u} = 40.08 \text{ u}$ $2 \text{ Cl} = 2 \times 35.453 \text{ u} = 70.906 \text{ u}$

110.986 u = 110.986 g/mole

in the equation: number of moles =

 $\frac{\text{mass of CaCl}_2}{\text{formula mass of CaCl}_2} = \frac{135 \text{ grams}}{110.986 \text{ g/mole}}$ = 1.21 moles.

So the concentration of the solution is 1.21 moles per liter.

KEY IN	DISPLAY SHOWS	COMMENTS
40.08	40.08	Atomic mass of Ca.
ENT	40.08	

35.453	35.453	Atomic mass of Cl.
ENT	35.453	
2	2	
X	70.906	Atomic mass of Cl ₂ .
	110.986	Formula mass of CaCl2
135	135	Grams of CaCl ₂ .
х-у	110.986	
+	1.2163696	Moles/liter.

Example: Calculate the percentage by weight of 10 grams of a substance with normality of 0.15 in 45 milliliters of standard solution with mew of 0.03646.

Using the formula:

 $\% wt = \frac{(mew) \times N \times V \times 10^2}{W}$

where: %wt = percentage by weight,

- mew = millequivalent weight of substance,
 - N = normality of the substance,
 - V = volume of standard solution in milliliters, and
 - W = weight of sample in grams.

Substituting:

% w1	$t = \frac{0.03646 \times 0.15 \times 45 \times 10}{10}$	<u>0</u> ² = 2.46105
KEY IN	DISPLAY SHOWS	
.03646	.03646	
ENT	.03646	
.15	.15	
X	.005469	
45	45	
24		

ENGINEERING

Example: What is the equivalent resistance of a 220-ohm resistor, a 145-ohm resistor and a 175-ohm resistor connected in parallel?

Using the equation:

	$R_{eq} = \frac{1}{1/R_1 + 1/2}$	$R_2 + 1/R_3$	
	_	1 .	
	= 1/220 + 1	/145 + 1/175	
KEY IN	DISPLAY SHOWS	COMMENTS	
220	220	R1.	
1/x	.00454545	1/R1.	
ENT	.00454545		
145	145	R2.	
1/x	.00689655	1/R2.	
+	.011442		
175	175	R3.	
1/x	.00571428	1/R3.	
+	.01715628		
1/x	58.2877	R _{eq} =1	_
		1/R1 + 1/R2 + 1/R	з
		2	5

Example: If the internal pressure of a tank of gas at 295°K is 1500 psi, what is the pressure if the temperature is raised to 303°K?

Using the formula:

	$P_2 = \frac{P_1 T_2}{T_1} = \frac{1500 \times 303}{295} = 1540.6779 \text{ psi.}$	
KEY IN	DISPLAY SHOWS	
1500	1500	
ENT	1500.	
303	303	
X	454500.	
295	295	
÷	1540.6779	

Example: What is the equivalent impedance of a 325-ohm resistor and a 15.2-millihenry inductor at a frequency of 1500 Hz?

Using the formula: $Z_{eq} = R/\Theta$

26

where: $\Theta = \arctan \frac{2\pi fL}{R}$ = arc tan $\frac{2 \times \pi \times 1500 \times .0152}{2 \times \pi \times 1500 \times .0152}$ 325 = 23.78739° and $R = \frac{2\pi fL}{\sin \theta} = 355.17239$ DISPLAY SHOWS COMMENTS KEY IN 2 2 ENT 2. 3.1415926 π 6.2831852 X

1500	1500	
X	9424.7778	
.0152	.0152	
×	143.25662	
MS	143.25662	Since you're going to use 2π fL again to calculate B store it for further use.
325	325	
	.4407896	
arc tan	23.78739	θ calculated.
sin	.4033439	
MR	143.25662	Recall 2πfL.
х-у	.4033439	Exchange X and Y regis- ters so you can divide what was last in display by what is now in display.
	355,17239	R calculated.

STATISTICS

Example: Compute the mean (x) of the following data: (2, 7, 3, 5, 2).

Using the formula:

	$x = \frac{\Sigma x}{n}$		
KEY IN	DISPLAY SHOWS		COMMENTS
2	2	X1.	
ENT	2.		
7	7	X2.	
+	9.		1

COS	.70215	cos α.
X	.43355248	sin b sin c cos α .
MR	.38231936	Recall memory.
+	.81587184	cos b cos c
arc	.81587184	+ sin b sin c cos α .
COS	35.32634	arc cos (cos b cos c
60	60	+ sin d sin c cos α).
×	2119.5804	Great circle distance.

FINANCE

Example: What will \$7,000 be worth in 5 years if it is compounded annually at a rate of 8.2% per year?

Using the formula: $FV = PV(1 + i)^n$ where: FV = future value.

whiche.				
	PV = present val	/ = present value,		
	i = interest per	= interest per period (in decimal),		
	n = number of p	periods.		
	= 7000	(1 + .082)5		
KEY IN	DISPLAY SHOWS	COMMENTS		
1	1			
ENT	1.			
.082	.082	i.		
+	1.082			
5	5	n.		
y ^x	1.482882	(1 + i) ⁿ .		
7000	7000	PV.		
×	10380.874	Future value (FV).		

Example: Compute the annual rate of return (after taxes) on an investment of \$10,000 which after 31/2 years is worth \$12,550 if the tax rate is 38%.

Using the formula:

	r	(FV - PV) (1	- tax rate)		
	PV				
	where: $r = rate of return$,				
	FV = future value,				
	PV =	present value			
	n =	number of pe	riods.		
	KEY IN D	ISPLAY SHOWS	COMMENTS		
	12550	12550	FV.		
	ENT	12550.			
	10000	10000	PV.		
	MS	10000.	Save for use in dividing.		
		2550.	FV – PV.		
	1	1			
	ENT	1.			
	.38	.38	Tax rate.		
	-	.62	1 – tax rate.		
	X	1581.	(FV - PV) (1 - tax rate).		
	MR	10000.	Recall PV.		
	+++	.1581	(FV-PV) (1-tax rate)		
	3.5	3.5	n.		
	X	.55335	$\frac{(FV - PV) (1 - tax rate)}{PV} x n.$		
	100	100	ΓV		
	X	55.335	Multiply by 100 to make into whole percentage = rate of return.		
34	1				

Part 1.

What is the annual payment on a loan of \$86,000 taken for 10 years if the rate is 8% per year? Using the formula:

$$PMT = PV \left[\frac{i}{1 - (1 + i)^{-n}}\right]$$

where:	PMT = payment, PV = present val i = interest rat decimal), n = number of	lue, e per perior (in periods.
KEY IN	DISPLAY SHOWS	COMMENTS
1	1	
ENT	1.	
.08	.08	L.
+	1.08	(1 + i).
10	10	n.
CHS	-10	
y×	.4631941	$(1 + i)^{-n}$.
CHS	4631941	
1	1	
+	.5368059	$1 - (1 + i)^{-n}$.
.08	.08	
х-у	.5368059	
	.14902965	$\frac{1}{1 - (1 + i)^{-n}}$
86000	86000	PV.
×	12816.549	PMT.

Part 2.

In the above example (part 1), what is the remaining balance after the 6th payment?

Using the formula:

BAL - PMT	$1 - (1 + i)^{k-n}$
DALK - FIVIT	i

where: k = number of payments made.

KEY IN	DISPLAY SHOWS	COMMENTS
1	1	
ENT	1.	
.08	.08	i,
MS	.08	Store for further use.
+	1.08	1 + i.
6	6	k.
ENT	6.	
10	10	n.
-	-4.	k – n.
у×	.7350307	$(1 + i)^{k-n}$.
CHS	7350307	
1	1	
+	.2649693	$1 - (1 + i)^{k-n}$.
MR	.08	Recall i.
÷	3.3121162	$\frac{1-(1+i)^{k-n}}{i}$
12816.55	12816.55	PMT (from part 1).
X	42449.902	Bal _k .

Appendix B – Part 2 – Hyperbolic and Inverse Hyperbolic Functions

The hyperbolic and inverse hyperbolic functions can be found by using the Gudermannian function:

gd x = 2 arc tan $e^{x} - \pi/2$ (Note: $\pi/2 = 90^{\circ}$).

and the inverse Gudermannian function:

 $gd^{-1} x = \ln \tan [\pi/4 + x/2]$ (Note: $\pi/4 = 45^{\circ}$).

in conjunction with the following formulas:

 $sinh x = \frac{e^{x} - e^{-x}}{2},$ $cosh x = \frac{e^{x} + e^{-x}}{2},$ $tanh x = \frac{sinh x}{cosh x} = sin gd x,$ $coth x = \frac{1}{tanh x},$ $sech x = \frac{1}{cosh x},$ $csch x = \frac{1}{cosh x},$ $sinh^{-1} x = ln [x + \sqrt{(x^{2} + 1)}] = gd^{-1}(sin^{-1} x),$ $cosh^{-1} x = sech^{-1} 1/x,$ $tanh^{-1} x = 1/2 ln [1 + x/1 - x] = gd^{-1}(sin^{-1} x),$ $coth^{-1} x = tanh^{-1} 1/x,$ $sech^{-1} x = [ln 1/x + \sqrt{1/x^{2} - 1}] = gd^{-1}(cos^{-1} x),$

 $\operatorname{csch}^{-1} x = \operatorname{sinh}^{-1} 1/x.$

37

Examples:

- Gudermannian function: gd 0.225 = 12.7841. Key in: .225 e^x arc tan 2 × 90 — Display shows: 12.7841
- Inverse Gudermannian function: gd⁻¹ 60° = 1.316958. Key in: 60 ENT 2 ÷ 45 + tan In Display shows: 1.316958.
- Hyperbolic sine:
 sinh 2.5 = 6.0502025.

 Key in:
 2.5 e^x
 ENT
 1/x
 −
 2

 Display shows:
 6.0502025.
- Hyperbolic cosine: cosh 2.5 = 6.1322875. Key in: 2.5 e^x ENT $1/x + 2 \div$ Display shows: 6.1322875.
- Hyperbolic tangent: tanh 2.5 = .9866143. Key in: 2.5 e^x arc $tan 2 \times 90$ — sin Display shows: .9866143.
- Hyperbolic cotangent: coth 2.5 = 1.0135673. Key in: 2.5 e^x arc tan 2 × 90 - sin 1/x Display shows: 1.0135673.
- Hyperbolic secant: sech 2.5 = .16307128. Key in: 2.5 e^x ENT $1/x + 2 \div 1/x$ Display shows: .16307128.
- Hyperbolic cosecant: csch 2.5 = .16528372. Key in: 2.5 e^x ENT $1/x - 2 \div 1/x$ Display shows: .16528372.
- Inverse hyperbolic sine: sinh-1 30 = 4.094624. Key in: 30 arc tan 2 ÷ 45 + tan In Display shows: 4.094624.
- Inverse hyperbolic tangent: $tanh^{-1}.52 = .5763396$. Key in: .52 arc sin 2 ÷ 45 + tan In Display shows: .5763396.

- Inverse hyperbolic secant: sech⁻¹ .52 = 1.271361. Key in: .52 arc cos 2 \div 45 + tan In Display shows: 1.271361.
- Inverse hyperbolic cosine: $\cosh^{-1} 30 = 4.094066$. Key in: 30 1/x arc $\cos 2 = 45 + \tan \ln 2$ Display shows: 4.094066.
- Inverse hyperbolic cotangent: $\operatorname{coth}^{-1} 30 = 0.0333458$. Key in: 30 1/x arc sin 2 ÷ 45 + tan In Display shows: 0.0333458.
- Inverse hyperbolic cosecant: csch-1 .52 = 1.408696. Key in: .52 1/x arc tan 2 ÷ 45 + tan In Display shows: 1.408696.

Appendix C – Operating Limits

CONDITIONS FOR ERROR INDICATION

FUNCTION	CONDITION (X=contents of register X)
+, -, ×, ÷	X > 99999999
÷, 1/x	X ≤ 0.0 <mark>0000001</mark>
Vx	X < 0
Yx	Y ≤ 0; 18.420 <mark>60 < X In Y < −28</mark>
LOG X, Ln x	X ≤ 0
ex	18.42068 < X < -28
SIN, COS	X≥7 radians, X≥401°
TAN	X ≥90°, X≥7 radians
SIN-1, COS-1	X > 1
TAN-1	X > 99999999

Other Products

Other "professional" calculators from NOVUS....

Novus 4510 Mathematician

- The Electronic Slide Rule
- Trig and inverse trig functions
- Common and natural logs and anti-logs
- Fully addressable, accumulating memory

Novus 4515 Mathematician PR

- The Programmable Electronic Slide Rule
- Same features as Novus 4510
- 100-step programming capability

Novus 4520 Scientist

- The Scientist's Electronic Slide Rule
- Scientific notation
- Trig and inverse trig functions
- Common and natural logs and anti-logs

Novus 4525 Scientist PR

- Scientist's Programmable Electronic Slide Rule
- Same features as Novus 4520
- 100-step programming capability

Novus 6010 International Computer

- The Electronic Measurement Converter
- Over 65 international measurement conversions
- Fully addressable, accumulating memory
- Total calculating capability with live percent

Novus 6020 Financier

- The Electronic Financial Calculator
- Dedicated to solving financial calculations
- · Pre-programmed financial equations
- Fully addressable, accumulating memory

Novus 6025 Financier PR

- Programmable Electronic Financial Calculator
- Same features as the Novus 6020
- 100-step programming capability

Novus 6030 Statistician

- The Electronic Statistical Calculator
- Dedicated to solving statistical calculations
- Pre-programmed statistical equations
- Fully addressable, accumulating memory

Novus 6035 Statistician PR

- Programmable Electronic Statistical Calculator
- Same features as the Novus 6030
- 100-step programming capability

Novus AC adaptors and chargers also available

For further information see your dealer or write: NOVUS CUSTOMER RELATIONS DEPT.

1177 Kern Avenue Sunnyvale, CA 94086 (408) 732-5000

Consumer Warranty

Model Number 3500

NOVUS, the consumer products division of National Semiconductor Corporation, is proud to guarantee your electronic calculator to be free from defects in workmanship and materials for a period of one year from date of purchase. Defects caused by abuse, accidents, modifications, negligence, misuse or other causes beyond the control of NOVUS are, of course, not covered by this warranty, nor are batteries. Should the calculator prove defective within 30 days of purchase, NOVUS will repair or, at its discretion, replace it free of charge. If the defect occurs after 30 days from date of purchase, a \$3.50 charge will be made for handling and insurance. If your calculator becomes defective after the one-year period, NOVUS will make repairs for a nominal charge of \$17.50. Simply mail it prepaid and insured with your check or money order to the nearest NOVUS service center. Repair prices are subject to change without notice. Please do not send or include cash. Make your check or money order payable to NOVUS. Upon receipt, your calculator will be promptly serviced and returned to you freight prepaid.

Warranty Information For Your Records

NOVUS Warranty Certificate Please retain for your records. See insert for trouble-shooting tips and product service locations.

Model Number_

Serial Number_

Purchased from.

Date purchased_