

CONTENTS
Getting Started
AC Charger
Operations Display Automatic Display Shutoff
Reverse Polish Logic and Stack Principle
Keyboard Layout
Keyboard Callout
Keying In and Entering Numbers Correcting Wrong Number Entries
Performing Calculations Mathematical Hierarchy and Reverse Polish Logic Double Functions
One-Factor Calculations Square, Square Root, Reciprocal Functions Logarithmic Functions
Trigonometric Functions Degree/Radian Conversion
Two-Factor Calculations
Basic Functions (+ $- \times \div$) Power and Root Functions
Chain Calculations
Memory Memory Clear Accumulating Memory
Calculations with Large Numbers
Straight Multiplication and Division Fractional Multiplication and Division Scientific Notation Multiplication and Division
Error Conditions
Programming
Programming Function Keys

Programming Function Keys LOAD/STEP/RUN Switch Programming Keys Error Alarm Entering Variables 20

S. S. S. S.

- 22

Page

16 17

and the second second second

	22 23	Entering Constants Programmer Control Operations
والمراجع والمراجع والمراجع المناصب والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع	24 24 31 35 45 53 58 62	Programming Examples Entering Single Programs Saving Programming Steps Entering Multiple Programs "Indexing" Your Programs "Indexing" With Memory "Indexing" With Memory "Looping" and "Branching"
	68	A Recap of Programming Tips
	69 69 76 76	Appendices Appendix A — Stack Diagrams Appendix B — Part 1: Some Examples Mathematics Sum of Products and Product of Sums Adding time, or Degrees, Minutes and Seconds
		Degrees, Minutes and Seconds to Decimal Degrees Conversion Polar to Rectangular Coordinate Conversion Rectangular to Polar Coordinate Conversion
	81	Chemistry
	83 86	Engineering Statistics
	90 94	Navigation Finance
	98	Appendix B — Part 2: Hyperbolic and Inverse Hyperbolic Functions
	101	Appendix B — Part 3: Some Common Mathematical Formulae with Examples
	107	Appendix B — Part 4: Stack Diagrams for Some Examples
	112	Appendix C—Conditions for Error Indication

Getting Started

Turn your calculator on with the switch on the left side of the machine. The calculator is automatically cleared and the display should now show 0. If it does, not, check to see of the battery needs recharging by connecting the AC charger.

AC Charger

Your calculator is powered by rechargeable NiCd batteries which should give you about eight hours use with normal operation. To charge your batteries, connect the AC charger to the jack on top of the calculator. A typical full charge takes five hours. It is recommended that you plug your machine in to charge each night. You can operate your calculator with the charger connected and the calculator will not overcharge. BE SURE CALCULATOR IS TURNED OFF BEFORE CONNECTING THE CHARGER.

Display

Operations

Your calculator will accept and display any positive or negative number between 0.0000001 and 99999999. Any result larger than 99999999 or smaller than –99999999 will result in an overflow indicated by all zeros and decimal points being displayed. Note: See *Calculations with Large Numbers* section.

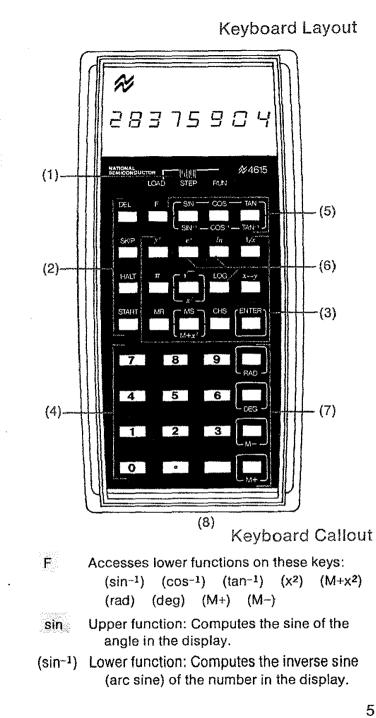
Automatic Display Shutoff

To save battery life, your calculator automatically shuts off the display and shows all decimal points if no key has been touched for approximately 25 seconds. No data has been changed and further entries or operations will bring back the display. To restore the display without changing its contents, touch CHS twice.

Reverse Polish Logic and the Stack Principle

Your calculator uses Reverse Polish logic with three registers called X, Y and Z. A register is an electronic element used to store data while it is being displayed, processed or waiting to be processed. The three registers are arranged in a "stack" as follows: (To avoid confusion between the name of a register and its contents, the registers in this diagram and the diagrams in Appendix A are represented by capital letters X, Y and Z and the contents of the registers by lowercase letters x, y and z).

CONTENTS	LOCATION
Z	Z
у	Y
x	Х


The display always shows the contents (x) of register X. See Appendix A for diagrams showing what happens to the stack for each operation on the calculator.

Keyboard Layout

- (1) LOAD/STEP/RUN switch
- (2) Program control keys
- (3) Special mathematical functions and memory keys
- (4) Number entry keys

- (5) Trig function keys
- (6) Logarithmic function keys.
- (7) Basic function, radian degree conversion, accumulating memory keys

(8) Clear key

CO	S	Upper function: Computes the cosine of the angle in the display.
(co:	s-1)	Lower function: Computes the inverse cosine (arc cosine) of the number in the display.
ta	n.	Upper function: Computes the tangent of the angle in the display.
(tar	ו−1)	Lower function: Computes the inverse tangent (arc tangent) of the number in the display.
у×	8. 	Raises "y" to the "x" power.
ex		Computes the natural antilogarithm of the number in the display (raises $e = 2.718281$ to the "x" power).
In		Computes the natural logarithm of the number in the display.
1,	/x	Computes the reciprocal of the number in the display (divides 1 by "x").
77		Enters Pi (π) = 3.1415926 into the display.
y	/	Upper function: Computes the square root of the number in the display.
(X ²	2)	Lower function: Squares the number in the display.
k)g	Computes the common logarithm of the number in the display.
X	-у	Exchanges the number now in the display with the number previously in the display.
N	IR	Recalls the contents of memory to the display.
N	IS	Upper function: Stores the number in the display in memory.
(M	+x2)	Lower function: Adds the square of the number in the display to the contents of memory.
c	HS	Changes the sign of the number in the display.
E	NT.	Enters the number in the display into a working register ("y").
6		

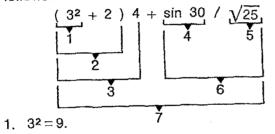
nije.	Upper function: Divides "y" by "x."
(rad)	Lower function: Converts the number of degrees in the display to radians.
X	Upper function: Multiplies "y" by "x."
(deg)	Lower function: Converts the number of radians in the display to degrees.
	Upper function: Subtracts "x" from "y."
(M–)	Lower function: Subtracts the number in the display from the contents of memory.
4	Upper function: Adds "x" to "y."
(M+)	Lower function: Adds the number in the display to the contents of memory.

Keying In and Entering Numbers

To enter the first number in a 2-factor calculation, key in the number and touch ENT. If your number includes a decimal point, key it in with the number. If a decimal is keyed in more than once in a number entry, the calculator will use the last decimal keyed in. You do not have to key in the decimal in whole numbers. To enter a negative number, key in the number and touch CHS.

Correcting Wrong Number Entries

To clear a wrong number entry, touch C. Touching C clears the X register (display) and drops the stack down.


Performing Calculations

In addition to the separate memory, there are three locations where numbers can be kept and operated on. These locations are called registers and in your calculator these have been combined into an automatic stack. Your calculator uses the three level stack along with Reverse Polish logic to enable you to perform calculations according to mathematical hierarchy.

Mathematical Hierarchy and Reverse Polish Logic "Hierarchy" is a term for the rules of mathematics which tell you in which order to perform operations on numbers. Those rules are:

- 1. Try to do the problem left to right (this may not always be possible).
- 2. Do all operations within parentheses, if any, first.
- 3. Perform operations in the following order:
 - a. raising to powers, taking roots, trig, log and reciprocal functions.
 - b. multiplication and division.
 - c. addition and subtraction.
- 4. Repeat steps 1 through 3 until the calculation is complete.

Example: The equation $(3^2 + 2)4 + \sin 30/\sqrt{25}$ = 44.1 is solved according to the rules of hierarchy as follows:

- 2. 9+2=11.
- 3. $11 \times 4 = 44$.
- 4. $\sin 30 = .5$
- 5. $\sqrt{25} = 5$.

8

- 6. $.5 \div 5 = .1$
- 7. 44 + .1 = 44.1.

If you remember the following three steps in applying Reverse Polish logic to the rules of hierarchy, you will quickly master your calculator and have confidence in its answers.

- 1. Starting at the left and working right, key in the next number (or the first if this is the beginning of a new problem).
- Ask yourself: "Can an operation be performed according to the rules of hierarchy?" If so, perform all operations possible. If not, touch ENT.
- 3. Repeat steps 1 and 2 until your calculation is complete.

Example: Following these three steps, you can calculate the equation $(3^2 + 2)4 + \sin 30/\sqrt{25}$ using Reverse Polish logic as follows:

KEY IN	DISPLAY SHOWS	COMMENTS
3	3	
F (x²)	9.	3 ² .
2	2	
÷	11.	3 ² + 2.
4	4	
×	44.	$(3^2 + 2)4.$
30	30	
sin	.5	sin 30.
25	- 25	
$\sqrt{-}$	5.	$\sqrt{25.}$
	.1	$\sin 30/\sqrt{25}$.
+	44.1	$(3^2+2)4 + \sin 30/\sqrt{25}$.

Calculation is complete and performed according to the rules of hierarchy.

Double Functions

Some keys on your calculator have double functions; that is, touching the same key will perform two different operations. Double functions have their function defined in lettering in front of the keys. They will be referred to by parentheses () in this manual. Primary functions will be referred to by a color bar

F — Accesses double function keys.

^M If F is touched accidentally, touch C to cancel the effect. The stack is not affected.

ect. The stack is not

or One-Factor Calculations

W

One-factor functions work directly on the number in the display. There is no need to touch ENT before performing the function.

Square, Square Root and Reciprocal Functions

- (x²) Touched after the F key, squares the number in the display.
- Computes the square root of the number in the display.
- 1/x Computes the reciprocal of the number in the display.

Example: Key in 2 1/x; display shows: .5.

Logarithmic Functions

In Computes the natural logarithm of any positive number in the display.

e^x Computes the natural antilog of the number in the display by raising "e" (2.718281) to the power in the display.

log Computes the common logarithm of any positive number in the display.

To compute the common antilogarithm of the number in the display, key in: 10 $x-y y^{x}$.

Trigonometric Functions

- sin Computes the sine of the angle (in degrees) in the display.
- cos Computes the cosine of the angle (in degrees) in the display.
- tan Computes the tangent of the angle (in degrees) in the display.
- (sin⁻¹) Touched after F, computes the arc sine (in degrees) of the number in the display,
- (cos⁻¹) Touched after F, computes the arc cosine (in degrees) of the number in the display.

(tan⁻¹) Touched after **F**, computes the arc tangent (in degrees) of the number in the display.

Note: To compute hyperbolic and inverse hyperbolic functions, see Appendix B—Part 2.

Example: Find the cotangent, secant and cosecant of 30°. Using the formulae:

	1	1 1
	$\cot = \frac{1}{\tan}$, se	$ec = \overline{\cos}, \csc = \overline{\sin}$
KEY IN	DISPLAY SHOWS	COMMENTS
30	30	
MS	30.	Store for further use with- out having to re-enter.
tan	.5773502	
1/x	1.732051	Cotangent 30°
MR	30.	Re-enter 30°
cos	.8660255	
1/x	1.1547004	Secant 30°
MR	30.	Re-enter 30°
sin	.5	
1/x	2.	Cosecant 30°

Example: Find the arc cotangent of 1.7320508. arc cot $1.7320508 = 30^{\circ}$

KEY IN	DISPLAY SHOWS
1.7320508	1.7320508
1/x	.57735027
F	.57735027
(tan-1)	30.

Degree/Radian Conversion

- (rad) Touched after F, converts the contents of the display from degrees to radians.
- (deg) Touched after E, converts the contents of the display from radians to degrees.

11

N " c	Example: How many radians is 30°? Key in 30 F (rad) ; display shows: .52359877. Example: What is the sine of .6 radians? Key in .6 F (deg) sin ; display shows: .5646425.	KEY I 2 EN 3 H
To p num	-Factor Calculations erform two-factor calculations, key in the first ber, touch ENT, then key in the second factor touch the desired function key.	4 EN 5
Basi +	c Functions (+ $- \times -$) Adds "x" to "y". Subtracts "x" from "y". Example: Key in 5 ENT 3 +;	*
×	display shows: 8. Multiplies "y" by "x". Divides "y" by "x". Example: Key in 36 ENT 12 ÷ ; display shows: 3.	MS MR
yx Since y to th 1/x	er and Root Functions Raises "y" to the "x" power. Example: Key in 5 ENT 3 y ^x ; display shows: 124.9999.* e taking the x th root of y is the same as raising he 1/x power, roots are obtained by touching before touching y ^x . Example: key in 125	lemo o clea ccum A+) A-)
	 3 1/x y^x; display shows: 4.999995.* The reason for the small variation from the absolute answer is that the calculator uses a log, antilog method of raising to powers; i.e., y^x=e^{x tn y}. See Appendix A for a diagram of how this function works on the stack. 	V+x²)
The n Calcu Exam	The Stack. The Calculations number in the display is always ready to have lations performed on it. tiple: $(2+3) \times (4+5) = 45$.	хатр x ² = ⁻ кеу (0 М 1
12		

KEY IN **DISPLAY SHOWS** 2 ENT 2. 3 5. 4 ENT 4. · 5 9. 45. Memory Stores the number in the display in memory (register M). Recalls the contents of memory (register M) to the display (register X). emory Clear clear memory, key in: 0 MS. cumulating Memory Touched after F, adds contents of display to contents of memory. Display (register X) is unaffected. Touched after F, subtracts contents of display from contents of memory. Display (register X) is unaffected. I+x²) Touched after F, adds square of contents of display to contents of memory. Display register X) is unaffected. cample: Compute the following: $\Sigma x = 1 + 2 + 3 = 6$; $(^2 = 1^2 + 2^2 + 3^2 = 14.$ COMMENTS KEY IN **DISPLAY SHOWS** 0 MS 0. Clear memory. 1 13

KEY IN	DISPLAY SHOW	S COMMENTS
F (M+x²)	1.	x ² summed in memory
ENT	1.	x summed in register >
2	2	
F (M+x ²)	2.	1 ² + 2 ² in memory.
	3.	1 + 2 in register X.
3	3	
F (M+x²)	3.	$1^2 + 2^2 + 3^2$ in memory.
	6.	1+2+3 in register X.
MR	14.	Recall x ² .

Calculations with Large Numbers

The capacity of your calculator is ±999999999. On occasion, however, you may be doing a calculation which involves numbers expressed in scientific notation or whose result would exceed the capacity of the machine.

There are basically three types of multiplication and division problems involving large numbers that can be handled on your calculator: straight multiplication and division problems; fractional multiplication and division problems; and scientific notation multiplication and division problems. All three kinds are handled by adding and subtracting common logs, then finding the common antilog.

Straight Multiplication and Division

The rule here is: If you are multiplying by a number, add its common log; if you are dividing by a number, subtract its common log.

Example: Multiply 445662 x 776550 x 8876.25:

KEY IN	DISPLAY SHOWS	COMMENTS
445662	445662	First number.
log	5.649006	Common log.

KEY IN MS	display shows 5.649006	COMMENTS Store first log	
776550	776550	in memory. Second number.	
log	5.890169	Common log.	
F (M+)	5.890169	Add to memory.	
8876.25	8876.25	Third number.	
log	3.94823	Common log.	
F (M+)	3.94823	Add to memory.	
MR	15,487405	Recall summed logs.	
15	15	Key in the characteristic (number to left of deci- mal) of summed logs. This is your power of 10.	
MS	15.	Store characteristic.	
	.487405	Subtract characteristic from mantissa (number to right of decimal point)	
10	10	leaving mantissa.	
х⊣у	.487405		
y *	3.071883	Take common antilog. This number is the man- tissa portion of answer in scientific notation.	
MR	15.	This number is the expo- nent portion of answer in scientific notation. Hence, the answer is 3.071883 x 10 ¹⁵ .	
Note: Touch $x-y$ to see either part again.			

14

in stability The				F		
	Example: 2163	3 x .067 ÷ 8766	500:	KEY IN	DISPLAY SHOWS	COMMENTS
n ¢	KEY IN	DISPLAY SHOWS	COMMENTS	log F (M-	-) –.1249387	Compute and subtract
٧	2163	2163		88644	88644	second log (division).
C	log MS .067	3.335056 .067	Compute, store first lo	iog F (M-	+) 4.947649	Compute and add third log (multiplication).
	log F (M+)		0	526	526	Under the line:
	and when a state of	_	Compute and add sec- ond log (multiplication	log F (M-	-) 2:720986	Compute and subtract
	8766500	8766500		.028	.028	first log.
	log F (M-)	6.942826	Compute and subtract third log (division).	1. 2. 2. 2. 2. 2. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		Compute, subtract sec-
	MR	-4.781695	Recall summed logs.		,	ond log (multiplication).
	4 CHS	-4	noodh odhinicu iogs.	126	126	
	MS —	781695	Store and subtract	log F (M-	+) 2.10037	Compute and add third log (division).
: 2	10	10	characteristic.	MR	10.534782	Recall summed logs.
	Western, without	10	Compute common antilog.	10 MS —	.534782	Store and subtract characteristic.
	х-у ух	.1653123	Mantissa portion of sci entific notation answer	10 x-y y ^x	3.425955	Compute common anti- log to obtain mantissa
a sha ara	MR	-4.	Exponent portion of sci entific notation answer			portion of scientific notation answer.
ale al second and all all all all all all all all all al	Fractional Multip	plication and D	Answer .1653123 x 10 ⁻⁴	MR	10	Recall exponent portion of scientific notation answer. Answer is
	These types of ec	quations are in t	the form: <u>axb</u>			3.425995 x 10 ¹⁰ .
	The rule here is:	For numerators	, add c x d act logs for division.	<i>C</i>	ation Multiplicati	
	For denominator	s, subtract logs	for multiplication			the form: a x 10 ⁱ x multiplying, add the
	and add logs for	division.	ior manphoaton	A.		ctual value of the
		22200 - 0	75 000 / /	exponents (thi	s is because wha	t you are really adding
	Example: Calcul	ale	0.75 x 88644 28 ÷ 126	1		nent = exponent);
			20 120			logs of the mantissas ments. If you have
	KEY IN E	SPLAY SHOWS	COMMENTS	2	are in fractional	-
- C. 12	3388Z	33883	On tom of the			

Compute, store first log. for fractional notation.

Example: Calculate 9.886 x 10¹³ x 7.654 x 10⁵:

scientific notation, combine these rules with those

17

16

.75

33882

log MS

33882

75

4.529969

On top of line:

KEY IN	DISPLAY SHOWS	COMMENTS	KEY IN	DISPLAY SHOWS	COMMENTS
9.886	9.886		F (M-)	-5.	Subtract actual value of exponent (division).
log MS	.9950206	Compute, store first log.	MR	18.111132	Recall summed logs.
13 F (M+)	13 13.	Add actual value of	18 MS —	.111132	Store and subtract characteristic.
7.654	7.654	exponent.	10 x-y y ^x	1.291611	Compute common anti- log to obtain mantissa
log F (M+) 5	.8838885 5	Compute and add log of next mantissa.	MR	18.	portion of answer. Recall exponent portion
F (M+)	5.	Add actual value of next exponent.			of answer. Answer is 1.291611 x 10 ¹⁸ .
MR	19.878908	Recall summed logs.		r.	Error Conditions
19 MS —	.878908	Store and subtract characteristic.	your calculate	or will display all z	I., division by zero), eros and decimal
10 x−y y ^x	7.56672	Compute common anti- log to obtain mantissa portion of answer.	any key. If the	error condition is	be reset by touching s cleared by any key sume that the contents
MR	19.	Recall exponent portion of answer. Answer is 7.56672 x 10 ¹⁹ .			Programming
portion of th Example: Cal		013 ∻ 7.654 x 10-5:	already power time saving ap tions or those	rful calculator pro oproach to the eva which require ite	
KEY IN	DISPLAY SHOWS	COMMENTS	7		essentially automatic ts of the "learn-mode"
9.886	9.886		,		plicity in developing
log MS	.9950206	Compute, store first log.		-	use of the programmer
13	13				ills or knowledge of can use the calcu-
F (M+)	13.	Add actual value of	lator, you can	use the program	meri
7.654	7.654	exponent.			mode" programming pers the sequence of
log F∖ (M-	-) .8838885	Compute and subtract log of next mantissa	key depressio	ons used to solve a	a problem. Therefore, ou must do is solve the
5 CHS	-5	(division).	problem once	correctly with the	e programmer in LOAD de, when the proper
18					1:

corrections are made, the programmer will learn the corrections and yield the proper solution.

Note: Be sure you switch your calculator on in RUN position, then slide the LOAD/STEP/RUN switch to LOAD before entering programs.

LOAD/STEP/RUN Switch

LOAD — Allows loading of program steps into the program storage area.

STEP — Executes one step of a stored program for each touch of start.

RUN — Permits execution of programs by use of the start or skip keys.

Programming Keys

start The start key has functions in both the LOAD and RUN modes. In LOAD mode, touching start will erase all previously stored information in the program storage area, write a STAR code and mark the beginning of the first program. In the RUN mode, touching start begin execution of the first program. If the programmer is stopped at a HALT code (explained below), touching start continues the program to the next HALT or to the end of the program. After reaching the end of a program, the programmer always returns to the START code at the beginning of the first program.

halt The halt key functions only in the LOAD mode and is used to insert a HALT code in the program sequence. In the RUN mode, when the programmer encounters a HALT code, it stops the playback of the program and returns control of the calculator back to the user. halt is usually used as a pause in the program execution to allow the reading of an intermediate result and/or to input a variable for further processing. Normally, start is used to leave the HALT condition and continue execution of the program, but it will also allow branching to the next or subsequent programs if skip is touched.

skip The skip key has functions in both the LOAD and RUN modes. In the LOAD mode, touching skip marks the beginning of programs other than the first. It writes a SKIP code for each subsequent program. In RUN mode, touching skip causes the programmer to jump from the beginning of a program, or from a HALT point, to the beginning of the next program and begin execution of that program. Execution continues to the first HALT or to the end. If only one program is stored and the programmer is stopped at a HALT, touching skip will jump over the remaining part of the program and return to the beginning of the program. This feature may be used to create a "loop" within the main program. When only two programs are stored, touching skip effectively executes the second program and touching start executes the first. When more than two programs are stored, a HALT code must be programmed in somewhere in all programs except the first. To execute the second program, touch skip; to execute the third program, touch skip twice; to execute the nth program, touch skip n-1 times.

> The del key (delete) functions only in the LOAD mode and is used for editing the program. Its purpose is to remove entries from the program memory. Touching del always starts with the last program step entered and removes one entry each time it is touched. It is essentially a backspace key. Using the del key can cause the error alarm to come on if an attempt is made to delete a START or SKIP code. When a SKIP code is deleted, the

20

alarm means that an entire program has been removed. Touching del again will turn off the error alarm and delete the last step of the program preceding the deleted SKIP. If the alarm does not go off with the next touch of del, it means that the START code is the only code left in the program memory and all programs have been cleared. The START code cannot be deleted. If a SKIP code is deleted accidentally, re-entering skip will reinitiate that program.

Error Alarm

Your programmable calculator has a program memory capacity of 100 steps. If more than 100 program steps are entered, or if a SKIP code is deleted, or an attemp is made to delete a START code, an error alarm consisting of all decimal points will be displayed. This alarm differs from the automatic display shutoff in that the decimals appear with the number in the display. For example, .1.2.3.4.5... would indicate an error alarm.

Entering Variables

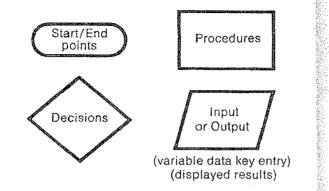
With the LOAD/STEP/RUN switch in the LOAD position, key in halt wherever a variable is going to appear in your program. With the LOAD/STEP/RUN switch in the RUN position, when the programmer encounters a HALT code, control of the calculator is returned to the user. A variable can be entered for further processing at that time. A variable consists of any number entry key (0-9), • , CHS or π . Touching start after the variable has been entered continues the program from the HALT code. The vari-P able does not become part of the program. It consists of the one program step halt.

Entering Constants

With the LOAD/STEP/RUN switch in LOAD position, keying in any number entry key (0-9), \bullet , CHS or π WITHOUT preceding the number with a halt enter

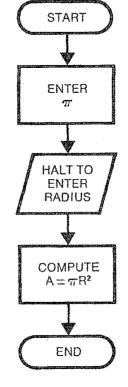
the number in the program as a constant. This constant will automatically be keyed in and used each time the program is run. The constant takes as many program steps as there are digits (including decimal and CHS) in the number.

Programmer Control Operations


The following table summarizes the operations of the programming switch and keys.

		-	-			
KEY	LOAD	MODE	RUN MODE			
start		ogram area START code.	Starts first program or continues from a HALT.			
skip	Marks beg programs to the first	subsequent	Jumps over remainder of a program and begins execution of the next program.			
del		e last step a program.	No function.			
halt	Writes a H in the prog returns co calculator	gram and ntrol of	No function.			
SWI	тсн	FUNC	TION			
RUN p	osition	Permits execut start or skip.	ion of programs by use of			
LOAD	position	Allows loading of programs into program storage area.				
	ing from to RUN n	Positions programmer control to begin execution of the first program.				
	ing from 5 LOAD m	entering more of the last prog program data i	rammer control to begin program steps to the end gram entered. Previous s not affected. Multiple be added at this point tip.			

Switching from RUN to LOAD to RUN position	execution of the first program entered. This feature can be useful if the user is interrupted during his calculations and	Example: Program your calculator to find the area of circles of varying radii using the formula $A = \pi r^2$. We can use a "test" variable of 1 in this program. Thus, if after keying in the program we come up with a calculated result of π , we know that the program we can use a key of π .
STEP position	Executes one step of a stored program for each touch of the start key.	was keyed in correctly. Desired flow of execution:


Programming Examples

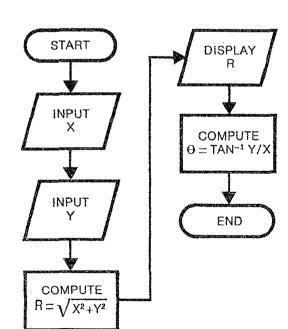
The following examples will illustrate the versatility of your "learn-mode" programmer. The following programming symbols will be used to help define the flow of execution of sample programs:

Entering Single Programs

Your "learn-mode" programmer functions as a calculator while it is being programmed, thus enabling you to use actual data to get a meaningful result as you program. While it is not necessary to use actual data while keying in a sequence of program steps, doing so for simple, non-iterative programs where a result can be predicted can be quite helpful. This feature lets you "debug" your program by seeing if the calculated results displayed at the end of programming are the same as your predicted results for the calculations involved. If the results are the same, you have keyed in the program correctly.

25

Loading the program: Using 1 as a "test" variable


				REGIST	CONTE	NTS	
LINE NO.	KEY ENTRY	DATA ENTRY	X (Display)	Y	Z	M (Memory)	COMMENTS
S	witch: L	OAD pos	ition				
1	start			<u> </u>			Mark beginning of program.
2	π		П				
3	halt		π				Halt to enter radius.
		1	1	77			r.*
4	F		1	π			₩₽₩₽₽₩₽₩ ₩₩₩₩₽₩₽₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
5	(X ²)		1.	π			۲ ² .
6	×		П				π r ² . End of program.

Running the program: Switch: RUN position.By the example in Appendix B — Part 1, we see thatWhat is the area of a circle of radius 5? 2.25?8.73? if we use "test" variables of x = 6, y = 8, we canWrev we are proposed as the program: Supposed as the program in the program is the program.predict R = 10 and $\theta = 53.1301$.

KEY IN	DISPLAY SHOWS	COMMENTS	predict R = 10 and Θ = 53.13
start	3.1415926	Start program and execut to first HALT.	Desired flow of execution:
5	5	First radius.	
start	78.539815	Program continues to en First area computed.	START
start	3.1415926	Start program and executo first HALT.	· / /
2.25	2.25	Next radius.	
start	15.904312	Next area computed.	
start	3.1415926	Start program.	4
8.73	8.73	Next radius.	
start	239.42988	Next area.	INPUT Y

Example: Program the calculator to convert rectangular coordinates to polar coordinates , using the formulas: $B = \sqrt{x^2 + y^2}$

$$\theta = \tan^{-1}(y/x.)$$

	g the pro x = 6, y = 8		" variables:			· .	
	1051			REGIST		1 1	
LINE NO.	KEY ENTRY	DATA ENTRY	X (Display)	Y	Z	M (Memory)	COMMENTS
S	witch: L	DAD pos	ition				
1	start						Mark beginning of program.
2	halt						Halt for x.
		6	6		2		Χ.
3	ENT		6.	6.			ануу народ на народ н
4	ENT		6.	6.	6.		
5	×		36.	6.			X ² .
6	halt						Halt for y.
		8	8	36.	6.		у.
7	MS		8	36	6	8	
8	F		8	36	6	- 8	
9	(X ²)		64.	36	6	8	y².
10	+		100.	6		8	$x^2 + y^2.$
11			10.	6		8	$\sqrt{x^2 + y^2} = r.$
12	halt		10.	6		8	Halt to display r.
13	х–у		6	10		8	
14	MR		8	6	10	8	
15	х–у		6	8	10	8	
16	÷		1.3333333	10		8	
17	F		1.3333333	10		8	
18	(tan-1)		53.1301	10			θ calculated. End of program.

29

Solt 2 Supplication of the

Running	the prog	ram: Sw	ritch: RUN por	sition.	start	26	63.18572	Program continues to
			ngular coordir		14.567	· • •	4.567	next HALT. v.
polar coc	Jruinales	: x - 4, y	=7; x = 16.223	o, y 14.00				-
KEY IN		LAY SHOWS			start	2.	1.803284	Program continues to next HALT. R calculated
start	50	3.1301	Start progra first HALT. (result of pro	Display sho		4	1.92139	and displayed. Program continues to end.
4	4		х,	.				θ calculated, displayed.
start	1	6.	Program co	ntinues to	-890/ac	-	ning Steps	
2020	L.	···	next HALT.		200 C		• •	ming steps on your
7	7		у.					ial to program equations Re-arranging equations
start	8	.0622577			and settir	•	•	nable the machine to
			next HALT. and display		pegin cai			umber currently in the
start	6	0.25511	Drogram co	ntinune to e				oth programming steps in of start in RUN position.
start	6	0.25511	Start progra	m, execute Display sho	tet's rew	rite the fi	rst two pro	grams using some step- It program involving the
			result of las	t program).				hat if we set up the
16.223	31	6.223	Х.		SG	•		is in the display and then
					nultiply i	t by π, w	e can elimi	nate one touch of start.
Loading	g the pro	gram:						
LINE	KEY	DATA I		REGIST		r	r	
NO.	ENTRY	ENTRY	X (Display)	Ý	z	M (Memory)	CC	OMMENTS
		1	1				"Test" v	ariable.
S	witch: L	OAD pos	ition			I		
1	start		1				Mark beg	ginning of program.
2	F		1					
3	(X ²)		1				1	
4	T		77	1			1	
5	×		П			·····	End of p	rogram.
					6. 27			

s ifar

Running the program: Switch: RUN position. KEY IN The program will now take whatever is in the display start. at the time you touch start, square it and multiply it 83.6 by π ; hence, πr^2 . start

Example: What is the area of a circle of radius 5? Of radius 7.7? Of radius 83.6?

			Programming the equation in this manner saved one
KEY IN	DISPLAY SHOWS	COMMENTS	programming step in the program and eliminated one
5	5	First radius.	puch of start while running the program.
start	78.539815		xech the second program we can use the (M+x ²) feature ted bave programming steps and the x-y feature b eliminate one touch of start.
7.7	7.7	Next radius.	
bading the	e program:		

DISPLAY SHOWS

186.26502

21956.465

83.6

COMMENTS

Next area.

Next radius.

Next area.

....

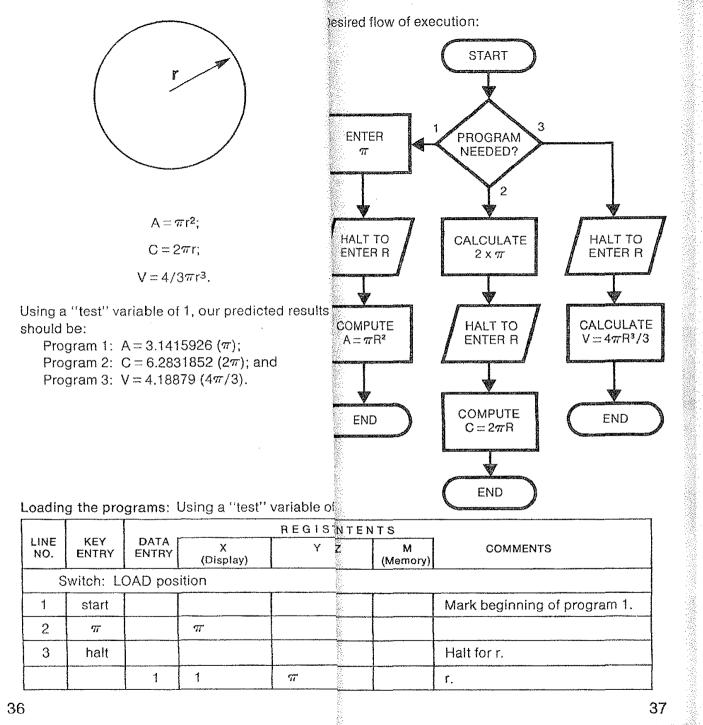
Loading the program:

1.1617	14534	DATA -		REGIST	ONTE	NTS	
LINE NO.	KEY ENTRY	DATA ENTRY	X (Display)	Ŷ	Z	M (Memory)	COMMENTS
		0	0				
	MS		0				Clear memory.
		8	8				у.
S	witch: L	OAD pos	ition		<u>}</u>		
1	start		8				Mark beginning of program.
2	F		8				annananananananananananananananananana
3	(M+x²)		8.			64.	Add y ² to memory (0).
4	halt		8			64.	Halt for x.
		6	6	8		64.	kontekselen man an under er en
5	F		6.	8		64.	- Mari B <u>aray kana kana kana kana kana k</u> ana kana kan
6	(M+x²)		6	8		100.	Add x ² to memory (y ²).
7	÷		1.3333333			100.	ατονογγαμοτοληγη _{ματο} ι <u>ι Α</u> λλαγματαγγαγική τη
8	F		1.33333333			100.	
9	(tan-1)		53.1301			100.	θ calculated.
10	MR		100.	53.1301		100.	Recall $y^2 + x^2$.
11			10.	53.1301		100.	r calculated. End of program.

32

Running the program: Switch: RUN position. Convert the following rectangular coordinates to polour "learn-mode" programmer has 100 programcoordinates: x = 4, y = 7; x = 35.6, y = 75.25. We have to clear memory each time before running this program and input y first.

programming steps and one touch of start.


KEY IN	DISPLAY SHOWS	COMMENTS	narks the beginning of a r
0 MS	0.	Clear memory.	bosition, touching skip m
7	7		rom the beginning of the
1	•	у.	hing of the second progra
start	7.		that program; or, touching
		to first HALT.	ner jump from a HALT cod
4	4	Χ.	reginning of the next prog
start	8.0622577	R calculated, displayed	hat program. If you plan t
х- у	60.25511		nograms in the machine,
			ode programmed somew
O MS	0.	Clear memory.	he first. Since the program
35.6	35.6	у.	tode on all programs exce tole to access the third, for
start	35.6		HALT code is built into t
COMPANY, AN	35.0		he programmer to stop at
75.25	75.25	х.	program, build the HALT of
start	83.246156	R calculated, displayed	sten after skin
and the second	05 01005		the programmer will retur
∧⊤У	25.31835	necali o nolli register i	ale programmer win retur

Entering Multiple Programs

ning steps. You can enter as many programs as will it into 100 steps. The use of the skip key enables rou to enter more than one program. While in LOAD position, touching skip terminates one program and new program. While in RUN makes the programmer jump first program to the beginam and start execution of ng skip makes the programode in any program to the ogram and start execution of to have more than two , make sure there is a HALT where in all programs except ammer jumps from a HALT cept the first, it will not be fourth, etc. programs unless those programs. If you want at the beginning of each code in as the first program irn to the beginning of the irst program after completing any program. Thus, Programming the equation in this manner saved sevilter executing program 3, the programmer returns to he top and gets ready to execute program 1 again.

> Example: Program the calculator to compute the area ind circumference of a circle of radius r and the folume of a sphere of radius r.

Program 1 will calculate the area; Program 2 will calculate the circumference; and Program 3 will calculate the volume.

				REGIS	TONTE	NTS	
LINE NO.	KEY ENTRY	DATA ENTRY	X (Display)	Y	Z	M (Memory)	COMMENTS
S	witch: L	OAD pos	ition				
4	F		1	*77	1		
5	(X ²)		1.	π			₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
6	×		П				A calculated. End of program 1.
7	skip		'л				Mark beginning of program 2.
8	2		2	rπ			ντ. το ποιατα Μαρακορια χρητικοι τρού θε η 20 κατα πολιτών την 400 κατα του πολιτής δε μεταγο
9	ENT		2.	2	TT.		
10	π		π	2	a.		***************************************
11	×		2π	π			
12	halt		277	π			Halt for r.
		1	1	277	77		
13	×		2π				C calculated. End of program 2.
14	skip		2π				Mark beginning of program 3.
15	halt		2π				Halt for r.
		1	1	277			
16	ENT		1	1	277		₩ ⁹
17	ENT		1	-1	1		
18	×		1	1			
19	×		1		S.		r ³ .
20	π		π	1			
21	×		π				77 r ³ .
22	4		4	π			
23	×		4π		<u></u>		
24	3		3	4π			
25	÷		4π/3		N.		$4\pi r^3/3$, V calculated. End pgm 3.

.

				REGIST	NTS	
LINE NO.	KEY ENTRY	DATA ENTRY	X (Display)	Y Z	M (Memory)	COMMENTS
			0			End of program 1.
5	X		0			Mark beginning of program 2.
6	skip					Halt at beginning of program 2
7	halt		0			
8	ENT	<u> </u>	0			
9	π		π	ļ		
10	×		0			and a second and a s
11	2		2			End of program 2.
12	×		0			
13	skip	1	0			Mark beginning of program 3.
14	halt		0			Halt at beginning of program 3
15	ENT		0		_	
16	ENT		0			
17	×		0			
18	×		0			
19	π		π			
20	×		0			
21	4		4			
22	×		0			
23	3		3			End of program 3.
24	÷		0			End of program 5.

Shine .

42

. 43

and the second second

Running the program: Switch: RUN position. Compute:

1. The area of a circle of radius 7.75:

DISPLAY

KEY IN

7.75

13

skip

skip

start

9.2

skip

start

start

2. The volume of a sphere of radius 13; and

3. The circumferen

ne of a sphere mference of a	of radius 13; and circle of radius 9.2.	cuted. There is no set way to "index" programs. Try a few sample programs out and some of your own to get
ISPLAY SHOWS	COMMENTS , R for problem 1.	a feel for it. Just remember to watch your registers so as not to destroy data that you may need in a
188.6919	Start program 1. Program continues to end, area calculated.	a narticular program
13	R for problem 2.	number in memory. Obviously, these kinds of pro-
13	Skip program 1.	grams would have to be those which do not use the
13	Skip program 2.	contents of memory from another program. Example: Write two programs:

	Start program 3, program Progra	
9202.7716	Start program o, program Progra	m 1: Converts centigrade to fahrenheit
	continues to end, volume	uping the family TO rain official
	calculated.	using the formula: $F^{\circ} = 9/5 C^{\circ} + 32$
	Droora	m 2: Convorte febrer hatte
9.2	R for problem 3.	m 2: Converts fahrenheit to centigrade
J. L.	· · ·	using the formula: $C^{\circ} = 5/9$ (F° – 32).
0.0	Skip program 1. These pro	-32).
9.2	Ence hi	ograms will be written in two ways. One way
	Otart program 2 programill illust	ate a method of indexing where the variable
57.805302	Start program 2, programminusti	are a method of indexing where the variable
	continues to end, circuits keyed i	n immediately after the index number is
	ference calculated.	and and a liter the index number is

"Indexing" Your Programs

"Index" numbers can be built into programs in such

45

a way to indicate which program is about to be exe-

ference calculated. displayed before touching start, the other method will Programming this way eliminates one program stepillustrate touching start after the index number is and makes it easier to tell which program you are displayed to start the program before entering the running. Remember, the programmer returns to thevariable.

beginning of program 1 after executing any programethod 1: With this method, you enter the variable just Thus, because the programmer returns to the begin fter the index number is displayed, then touch start ning of program 1, to execute program 3 after exect start the program. This saves a touch of start. ing program 2, you must touch skip to skip progra 1, and skip to skip program 2.

IE	KEY ENTRY		X (Display)	EGISTE Y	z	M (Memory)	COMMENTS	
· 1_	L			_		1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Sw T	ſ	DAD posit		`		1	Mark beginning of program 1.	
1	start		1				"Index" number.	
2	1		1.			1.	Store in memory.	
3	MS		1.			1.	Halt for °C.	
4	halt			1.		1.	<u></u>	
5	ENT		9	1.		1.	استان وراههای با	
6	9	<u></u>	9.			1.		
7	×	<u> </u>	5	9.		1.		
8	5 ÷		1.8	<u></u>		1.		
9			3	1.8		1.		
10	3		32	1.8		1.		
11	2+		33.8			1.	°F calculated.	
12	skip		33.8			1.	Mark beginning of program 2.	
13	2		2	33.8		1.	"Index" number.	
14	MS		2.	33.8		2.	Store in memory.	
15 16	halt		2.	33.8		2.	Halt for °F.	
17	ENT		2.	2.	33.8	2.		
18	3		3	2.	33.8	2.		
10 19	2		32	2.	33.8	2.		
20	<u> </u>		-30.	33.8		2.		
20	5		5	-30.	33.8	2.		
21			-150.	33.8		2.		
23			9	-150.	<u>3</u> 3.8	2.		
23			-16.666666	33.8		2.	°C calculated.	
.6								47

Running the program: Switch: RUN position. Problem 1: Convert 100°C to °F; Problem 2: Convert 212°F to °C; Problem 3: Convert 78°F to °C.

KEY IN	DISPLAY SHOWS	COMMENTS
start	1.	Program 1 is ready to execute.
100	100	°C.
start	212.	Program executes to er °F computed.
skip	2.	Program 2 is ready to execute.
212	212	°F.
start	100.	Program executes to en °C computed.
skip	2.	Program 2 is ready to execute.
78	78	°F.
start	25.555555	°C, computed.

Method 2: With this method, you start the program after seeing the "index" number and before entering the variable. While this involves an extra touch of start, it can be useful if the first step in your program involves entering a constant. You have to have a HALT code built in after the index number in order for the machine to stop and display the index number. If the next step in the program is to enter a constant, you have to have some way to terminate the HALT condition so the constant will not be treated as a variable. Touching F does not affect the stack, does not affect single function keys, but DOES terminate a HALT condition. Using this feature, constants can be programmed in following a HALT.

Loading the program: Again, no "test" variables will be used.

LINE	KEY	DATA J		REGIS			·····
NO.	ENTRY	ENTRY	X (Display)	Y	ž Z	M (Memor	COMMENTS
S	witch: L(DAD pos	ition	· ·····			
1	start						Mark beginning of program 1.
2	1		1		<u> </u>		"Index" number.
3	MS		1.	<u> </u>		1.	Store in memory.
4	halt		1.			1.	Halt to display "index."
5	F		1.	<u> </u>		1.	Clear HALT code.
6	9		9	1.		1.	Constant.
7	ENT		9.	9.	1.	1.	
8	halt		9.	9.	1.	1.	Halt for °C.
9	×		81.	1.	<u> </u>	1.	
10	5		5	81	<u></u> 1.	1.	
11	÷		16.2	1.		1.	
12	3		3	16.2	<u> </u>	1.	****
13	2		32	16.2	1.	1.	******
14	+		48.2	1.		1.	°F calculated.
15	skip		48.2	1.		1.	Mark beginning of program 2.
16	2		2	48.2	1.	1.	"Index" number.
17	MS		2.	48.2	1.	2.	Store in memory.
18	halt		2.	48.2	1.	2.	Halt to display "index."
19	F		2.	48.2	1.	2.	Clear HALT code.
20	5		5	2.	48.2	2.	Constant.
21	ENT		5.	5.	2,	2.	
22	halt		5.	5.	2.	2,	Halt for °F.
23	ENT		5.	5.	5.	2.	
24	3		3	5.	5.	2.	******

				REGIS		110	
LINE NO.	KEY ENTRY	DATA ENTRY	X (Display)	Y	Σ	M (Memory)	COMMENTS
25	2		32	5.	5.	2.	
26			-27.	5.	<u> </u>	2.	
27	×		-135.			2.	
28	9		9	-135.		2.	na an an an Anna an Anna an Anna an Anna an Anna An
29	÷		-15.			2.	°C calculated.

Running the program: Switch: RUN position.

Problem 1: Convert 212°F to °C; Problem 2: Convert 13°C to °F; Problem 3: Convert 69°F to °C.

	(0000000000		be aware of what your ind
	KEY IN D	ISPLAY SHOWS	COMMENTS	stack because they do ta
	skip	2.	Program 2 is ready to execute.	register. It is advisable to displaying the "index" ni
	start	5.	Start program 2 and execute to first HALT.	Example: Let's reprogra
	212	212	°F.	and volume programs thi which is common to all th
	start	100.	°C computed.	and "indexing" the progr
	start	1.	Program 1 is ready to execute.	Program 1 = Area of ci Program 2 = Circumfer
	start	9.	Start program 1 and execute to first HALT.	Program 3 = Volume of
	13	13	°C.	
	start	55.4	°F calculated.	
	skip	2.	Program 2 is ready to execute.	
	start	5.	Start program 2.	
	69	69	°F.	
	start	20.555555	°C calculated.	
52				

"Indexing" Without Memory

If you want to use the contents of memory in a program, perhaps because a variable is stored there, you can "index" your program using the stack. ndex numbers will do to the ake up a position in the X to clear the X register after number.

am the area, circumference his time putting the variable (r) three programs in memory grams to tell which is which. circle = πr^2 ; erence of circle = $2\pi r$:

of sphere = $4/3\pi r^3$.

Loading the program: A ''test'' variable of 1 will be used. Key in: 1 MS,

LINE	KEY	DATA [REGIST			
NO.	ENTRY	ENTRY	X (Display)	Y	Z	M (Memory	COMMENTS
S	witch: L	OAD pos	ition	-			
1	start		·····			1.	Mark program 1.
2	C				1	1.	Clear previous "index" numbe
3	С					1.	
4	1		1			1.	"Index" number.
5	halt		1			1.	Halt to display "index."
6	MR		1.	1.		1.	Recall variable (r).
7	F		1.	1.		1.	
8	(x²)		1.	1.	<u></u>	1.	۲ ² .
9	π		П	1.	1.	1.	
10	×		π	1.		1.	πr ² .
11	skip		π	1.	_	1.	Mark program 2.
12	C		1.			1.	Clear previous "index" number
13	С		0.			1.	
14	2		2			1.	"Index."
15	halt		2			1.	Halt to display "index."
16	MR		1	2.		1.	Recall r.
17	ENT		1.	1.	2.	1.	
18	П		π	1.	<u></u>	1.	۲۰۰٬۳۳۰ - ۲۰۰٬۰۰٬۰۰٬۰۰٬۰۰٬۰۰٬۰۰٬۰۰٬۰۰٬۰۰٬۰۰٬۰۰٬۰۰٬
19	×		π	1.		1.	= = = = = = = = = = = = = = =
20	2		2	π	<u></u> 1	1.	
21	×		277	1.		1.	2 [;] πr.
22	skip		21	1.		1.	Mark program 3,
23	C		1.			1.	Clear previous index.
24	С		0.			1.	

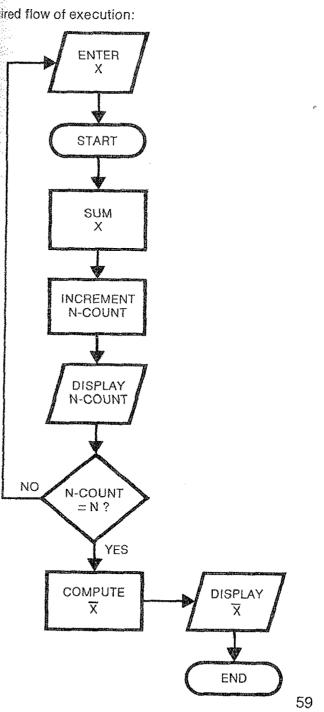
				REGIST		TS	
LINE NO.	KEY ENTRY	DATA ENTRY	X (Display)	Y	Z	M (Memory)	COMMENTS
25	3		3			1.	''Index.''
	halt		3			1.	Halt to display "index."
27	MR		1.	3.		1.	· · · · · · · · · · · · · · · · · · ·
28	ENT		1.	1.	3,	1.	
29	ENT		1.	1.	1	1.	
30	×		1.	1.		1.	
31	×		1.			1.	r ³
32	π	1	π	1.		1.	
33	×		π			1.	
34	4		4	π		1.	
35	×		477			1.	
36	3		3	4π		1.	
37			4/377			1.	4/3\pir ³ .

Running the program: Switch: RUN position. KEY IN Problem 1: What is the area of a circle of radius Problem 2: What is the volume of a sphere of skip radius 5? skip Problem 3: What is the circumference of a circle of radius 9.6? Problem 4: What is the area of a circle of start radius 9.6? COMMENTS 9.6 MS DISPLAY SHOWS KEY IN R for problem 1. 5 MS 5. skip Program 1 is ready to start 1 execute. start

DISPLAY SHOWS	COMMENTS
78,539815	Area for problem 1.
2	Skip program 1.
3	Skip program 2. Program 3 is ready to execute. R for problem 2 is already in memory.
523.59873	Volume for problem 2.
9.6	R for problem 3.
2	Skip program 1, program 2 is ready to execute.
60.318576	Circumference for problem 3.
	57

KEY IN	DISPLAY SHOWS	COMMENTS	Desired flow of exe
start	1	Program 1 is ready cute. R for problem	to exe 4 is
start	289.52917	already in memory. Area for problem 4.	

"Looping" and "Branching"— Iterative Programs There are two methods of making your "learn-mode programmer "loop." One is using the skip key feature in single programs; the other is using the start key feature in multiple programs. The following examples will illustrate both methods.


"Looping" With SKIP

If only one program is stored and the programmers stopped at a HALT, touching skip will jump overly remaining part of the program and start executions the beginning of the program automatically. This feature may be used to create a "loop" within the main program.

Example: Find the mean of a list of numbers using the formula:

$$\overline{\mathbf{x}} = \frac{2\mathbf{x}}{\mathbf{n}}$$
.

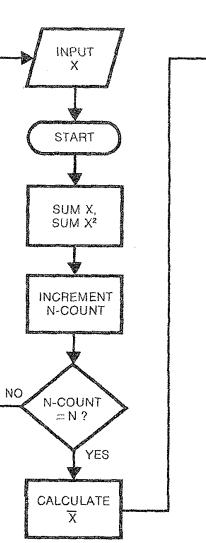
Clearly, we need a "loop" to sum up "x." In this p gram, we will build an "n" count into the loop so w can always tell how many numbers we have entere. Keying in a number and touching skip will enter number into the loop and add it to Σx . When the "r count reaches the number of entries we have, we "branch" out of the loop by touching start.

Loading the program: To program iterative programored. This program has been written as if we act as if you are programming the second, third or were about to perform the n^{th} iteration. The results n^{th} iteration and think of what you would like to had of iteration n-1 are currently in the registers, when in each register when the iteration is next per-

				REGIST	ONTEI	VTS	· · · · · · · · · · · · · · · · · · ·
LINE NO.	KEY ENTRY	DATA ENTRY	X (Dìsplay)	Y	Z	M (Memory)	COMMENTS
S	witch: LO	OAD pos	ition				
			Σn	Σx		Σn	Result of iteration n-1.
1	start		x	∑n	Σ_X	Σn	Start program. "x" is in display.
2	х-у		Σn	x	Σx	Σn	
3	С		х	Σχ		ນກ	Clear displayed n-count.
4	+		Σx			Σn	Sum x.
5	1		1	Σx	k.	Σn	
6	F		1	Σx		Σn	
7	(M+)		1.	Σx		ັນກ	Increment n-count in memory.
8	С		Σχ				Clear increment.
9	MR		Σn	Σx		Σn	Recall new n-count.
10	halt		Σn	Σχ		Σn	Build in ''loop'' point.
11	÷	1	Σx/Σn				x calculated.

Running the program: Switch: RUN position. Calculate the mean of the following five numbers: 5, 7, 6, 3). We need to clear all registers and memo before using this program. Key in: C C MS

KEY IN	DISPLAY SHOWS	COMMENTS	KEY IN	DISPLAY SHOW	S COMMENTS
2	2	X1.	6	6	X4.
skip	1.	N-count.	skip	4.	N-count.
5	5	X2.	3	3	X5.
skip	2.	N-count.	skip	5.	N-count. N-count = 5, so
7	7	Хз.	a bere de la companya de la company		we ''branch'' to calculate mean.
skip	3.	N-count.	start	4.6	Mean calculated.
124725/197641.0021g7			and the last fair at		61


Example: A (212, 243, 1	verage the follov 98).	Desired flow of execution:	
KEY IN	DISPLAY SHOWS	COMMENTS	INPUT
C MS	0.	Clear registers, memory	
212	212	First score.	And a second second
skip	1.	N-count.	
243	243	Second score.	START
skip	2.	N-count.	
198	198	Third score.	
skip	3.	N-count = 3, "branch" find average.	to SUM X, SUM X ²
start	217.66666	Average score.	A A A A A A A A A A A A A A A A A A A

"Looping" With START

Since after executing any program, the programmer returns to the top of the program memory and gets ready to execute the first program again, we can ''loop'' through the first program of a multiple program set by touching start and "branch" to anothe program after the iterations have been completed by touching skip.

Example: Program the calculator to compute the mean, variance and standard deviation of a group of data, using the equations:

$$\overline{\mathbf{x}} = \frac{\Sigma \mathbf{x}}{\mathbf{n}}; \, \sigma^2 = \frac{\Sigma \mathbf{x}^2 - (\Sigma \mathbf{x})^2/\mathbf{n}}{\mathbf{n} - 1}; \, \mathrm{SD} = \sqrt{\sigma}$$

63

DISPLAY

X

CALCULATE ø

DISPLAY

CALCULATE STD. DEV.

DISPLAY

STD. DEV.

END

Loading the program: Assume "x" is in the display summing x, x^2 and incrementing the n-count; and that you are programming the nth iteration of program 2 will compute \overline{x} , the variance and the program 1. Program 1 will be the iterative program $\frac{1}{2}$ standard deviation.

			REGISTENDNTENTS					
LINE NO.	KEY ENTRY	DATA ENTRY	X (Display)	Y	Z	M (Memory)	COMMENTS	
S	witch: L	DAD pos	ition					
			Σ_X	Σn		$\Sigma \chi^2$	Results of iteration n-1.	
1	start		Х	Σχ	Σn	$\Sigma \chi^2$	Mark program 1.	
2	F		x	Σχ	Σn	$\Sigma \chi^2$	hennen alle fri den uter en en gestelle hannen frieden er en en geför klamatet för som etter en geför proken kökkeldare er en er	
3	(M+x ²)		Х	Σχ	Σn	$\Sigma \chi^2$	Sum x ² in memory.	
4	+		Σχ	Σn		$\Sigma \chi^2$	Sum x in stack.	
5	ху		Σn	Σχ		$\Sigma \chi^2$	Retrieve n-count.	
6	1		1	Σn	Σχ	Σx ^z	αματοική διατιγγγατιγή μεριστικα το ματρ	
7	+		Σn	Σx	Į.	$\Sigma \chi^2$	Increment n-count.	
8	x-y		Σχ	Σn		$\Sigma \chi^2$	Retrieve Σx for next iteration.	
9	skip		Σχ	Σn		Σx²	Mark program 2.	
10	xy		Σn	Σx		Σx²	na na handa an ann an ann an ann an ann ann ann	
11	MR		$\Sigma \chi^2$	Σn	Σχ	$\Sigma \chi^2$	۲۰۰۰ که میکند. به میکند این اور با	
12	х–у		Σn	Σx ²	Σχ	$\Sigma \chi^2$	που μεταγγατική του μεταγγαριματική του μεταγγαριματική του ματά του ματά στη ματά του ματά του του ματά του π Το ποιο του ποιο ποιο ποιο ποιο ποιο ποιο ποιο πο	
13	MS		Σn	$\Sigma \chi^2$	Σχ	Σn	Exchange $\Sigma x^2 \& \Sigma n$ in memory.	
14	С		$\Sigma \chi^2$	Σx		Σn	، به بالم الم الم الم الم الم الم الم الم الم	
15	ху		Σ_X	Σ_X^2		Σn	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	
16	MR		Σn	Σχ	Σx²	Σn	Recall n.	
17	÷		Σx/n	$\Sigma \chi^2$		Σn	x calculated.	
18	halt		Σx/n	Σ_X^2		Σn	Halt to display x.	
19	F		Σx/n	Σx ²		Σn	· · · · · · · · · · · · · · · · · · ·	
20	(X ²)		(Σx/n)²	$\Sigma \chi^2$		Σn	$(\Sigma x/n)^2$.	
21	MR		Σn	$(\Sigma x/n)^2$	Σx ²	Σn	Recall n.	
22	X		$(\Sigma x)^2/n$	Σx²		Σn	$(\Sigma x)^2/n.$	

64

	1/ EV	DATA P		REGISTE	CONTEN	TS	
LINE NO.	KEY ENTRY	DATA ENTRY	X (Display)	Ŷ	Z	M (Memory)	COMMENTS
23			$\Sigma x^2 - (\Sigma x)^2 / n$			Σn	$\Sigma x^2 - (\Sigma x)^2/n.$
24	MR		Σn	$\Sigma \chi^2 - (\Sigma \chi)^2 / \langle \Sigma \chi \rangle^2$		Σn	Recall n.
25	1		1	ັ ^ນ n	$\sum_{x^2-(\Sigma x)^2/n}$	Σn	
26			n-1	$\Sigma \chi^2 - (\Sigma \chi)^2 / c$		Σn	n-1.
27	÷-		σ			Σn	Variance calculated.
28	halt		σ			Σn	Halt to display σ.
29			S.D.			Σn	Standard deviation calculated.

Running the program: Switch: RUN position.

Calculate the mean, variance and standard deviation of the following data: (2, 7, 3, 5, 2). We can iterate program 1 by entering "x" and touching start. This program does not display the n-count, so after entering all x's, we "branch" to program 2 to calculate the mean, variance and standard deviation. We have to clear all registers and memory before using this program. Key in: C C MS.

KEY IN	DISPLAY SHOWS	COMMENTS
2	2	X1.
start	2.	Σx.
7	7	X2.
start	9.	Σx.
3	3	Хз.
start	12.	Σx.
5	5	X4.
start	17.	≌x.
2	2	X5.

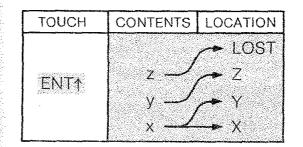
KEY IN	DISPLAY SHOWS	COMMENTS
start	19.	Σx . We are through sum- ming x, x ² and n. "Branch" to program 2.
skip	3.8	Mean calculated and displayed.
start	4.7	Variance calculated and displayed.
start	2.1679483	Standard deviation calcu- lated and displayed.
MR	5.	Touch MR to see n-count.
Example:	Calculate the mean	n, variance and standard

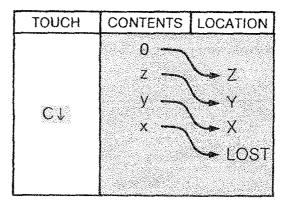
deviation of the following data: (3.44, 7.86, 4, 5, 9).

KEY IN CCC	DISPLAY SHOWS	COMMENTS
C MS	0.	Clear registers, memory.
3.44 start	3.44	X1.
7.86 start	11.3	X2.
4 start	15.3	X3.
5 start	20.3	X4.

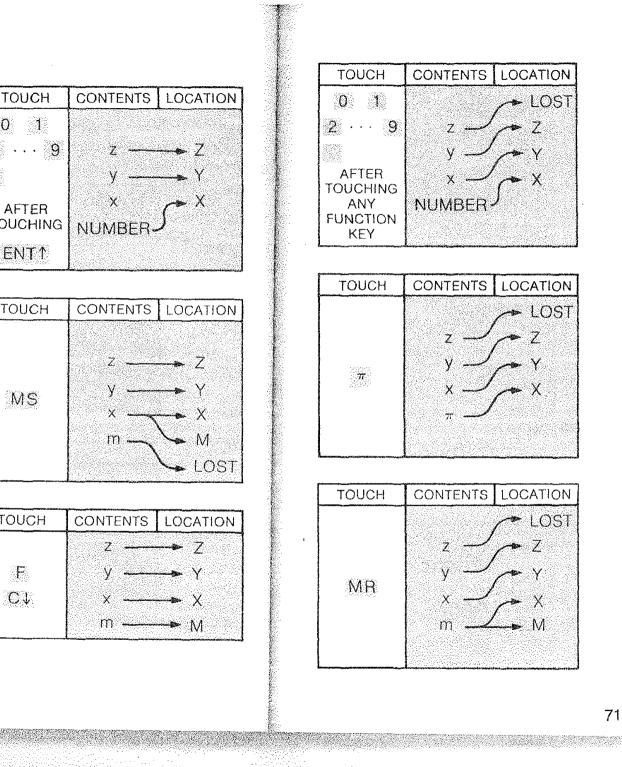
KEY IN	DISPLAY SHOW	S COMMENTS
9 start	29.3	x₅. Sum of x displayed. "Branch" to program 2
skip	5.86	Mean.
start	5.9788	Variance.
start	2.4451584	Standard deviation.

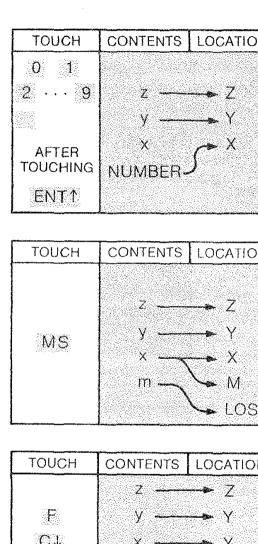
A Recap of Programming Tips

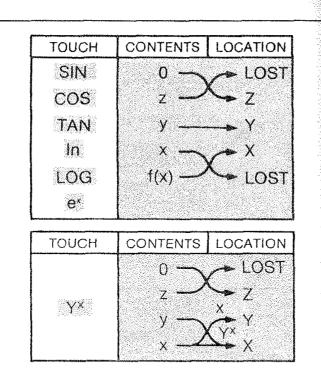

- 1. Always turn your machine on with the LOAD/ STEP/RUN switch in RUN position. Slide it to LOAD to enter a program.
- To clear display before starting a program, touch C until a zero appears in the display. To clear memory, touch 0 MS.
- 3. Touching start while in LOAD position always erases what you have already keyed in. If you change your mind in the middle of a program an want to start again, touch start.
- 4. The del key deletes the last step entered.
- 5. Mark the beginning of the first program with sla Mark the beginning of all subsequent programs with skip. If more than two programs are being stored, all except the first must have a HALT coc as part of the program to permit accessing of those programs.
- 6. To interrupt a program, whether to enter a variation or display a result, touch halt.
- 7. To enter a constant, key in the desired number. It becomes part of the program.
- To enter a variable, key in half. Any number following the keying in of half will not be reme bered by the programmer and will be treated as a "test" variable. Remember that *m* and CHS keyed in after a halt are considered part of the "test" variable.

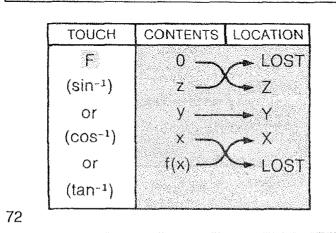

To start the first program, touch start.
 To start the second program, touch skip.
 To start the nth program, touch skip n-1 times.

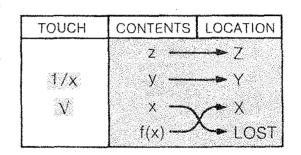
APPENDICES

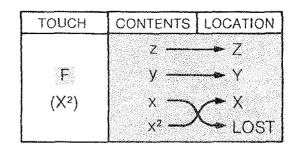

Appendix A — Stack Diagrams

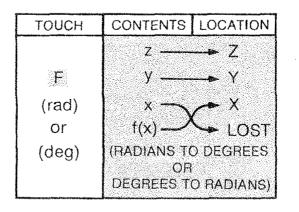

The following diagrams show what happens to the stack for each operation of your calculator. Contents of registers are indicated by lower-case letters X, y and z. Locations are indicated by capital letters X, Y and Z. The display always shows the contents of register X. Memory is register M.



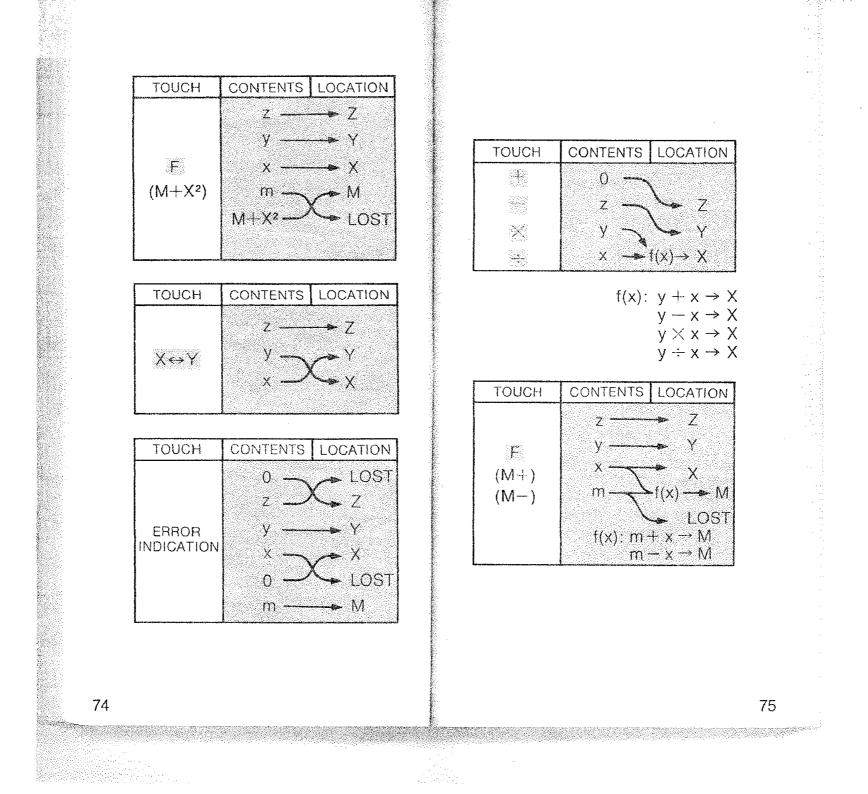

1







*Note: Performing any trig, log or antilog function clears register Z. f(x) is transferred to register X, and register Y remains unchanged. Performing the Y^x function clears register Z. The contents of register X are transferred to register Y and Y^x are transferred to register X.



Appendix B — Part 1: Some Examples

In the previous sections of this manual, you have seen Add 1 hour, 45 minutes and 45 seconds to 1 hour, 30 a summary of how the functions of your calculator work. This appendix demonstrates the versatility of the machine in a variety of disciplines.

		the failet, of all spinico;	1			
	MATHEMA	TICS	- 1	KEY IN	DISPLAY SHOWS	COMMENTS
	Sum of Pro	oducts and Product of Sums		1.4545	1.4545	1 hour, 45 min., 45 sec.
÷		ducts: $(2 \times 3) + (4 \times 5) = 26$		ENT	1.4545	
	KEY IN	DISPLAY SHOWS	1	1.3020	1.3020	1 hour, 30 min., 20 sec.
	2 ENT	2 2.		ŧ	2.7565	Now, look at the "ss" part of the answer (65). If it is above 60, add .004. Repeat
	3	3 6.				this step until the seconds portion of the answer is below 60.
	4	4		.004	.004	
•	ENT	4.		+	2.7605	Now, look at the "mm" part of the answer (76). If it is
	5	5				above 60, add .4. Repeat as you did with the seconds
	×	20.		4	4	portion.
	÷	26.		.4 . wasan	.4	
	Product of KEY IN	sums: (2 + 3) x (4 + 5) = 45 DISPLAY SHOWS		÷	3.1605	Final answer: 3 hours, 16 minutes, 5 seconds.
	2	2	D	egrees, N	linutes and Seco	onds to
	419475-752455		D	ecimal De	egrees Conversio	on
	ENT	2.				ving degrees, minutes
	3	3	a			rees: 56°23'44.5"
	+	5.		key in 44.5	DISPLAY SHOWS 44.5	COMMENTS Seconds.
	4	4		Sector and American		Seconds.
	ENT	4.		ENT	44.5	
	5	5		60	60	60 seconds/minute.
		9.		MS	60.	
	×	45.			.74166666	
	1999 (1999) 1999 - State State (1999)			23	23	Minutes.
	of these exa	dix B — Part 4 for stack diagrams		Ŧ	23.741666	
	76	ampies.	1	\$\$. \$ \$	2011-11000	
~						77
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	A DAMAGE STREET, BUCK AND					

Adding Time, or Degrees, Minutes and Seconds

minutes and 20 seconds. Enter all times as hh.mmss

where hh = hours, mm = minutes and ss = seconds

[dd.mmss for degrees, minutes and seconds).

KEY IN MR	display show 60.	S COMMENTS 60 minutes/degree.			dinate Conversion dinates $X = 6$, $Y = 8$ to
	0.3956944				Unlates X = 0, 1 = 0 10
56	56	Degrees.		$R = \sqrt{\chi^2 + \chi^2}$	-
		Decimal degrees.		$\Theta = \tan^{-1} Y$	
ł	56.395694	Decimal degrees.	KEY IN	DISPLAY SHOWS	COMMENTS
Polar to Re	ctangular Coord	inate Conversion	6	6	X coordinate.
•		linates $\theta = 35^{\circ}$, R = 7 to	ENT	6.	
rectangular	coordinates usir $X = R \cos \theta$,		ENT	6.	Transfer contents of registe
	$Y = R \sin \theta$.				Y to register Z to save for use in calculating Θ .
KEY IN	DISPLAY SHOWS	COMMENTS	×	36.	use in calculating 0.
35	35	θ.	8	8	Y coordinate.
ENT	35.		MS	8.	Save for use in calcu-
7	7	R.	F (x ²)	64.	lating O .
MS	7	Store R in register M.		100.	$X^2 + Y^2$
х−у	35.			10.	R calculated.
ENT	35.	Store Θ in register Y.	х-у	6.	Exchange to bring X coor-
COS	0.8191521	cos O .			dinate back to register X.
MR	7.	Recall R.	MR	8.	Recall Y coordinate.
×	5.7340647	X displayed = R $\cos \Theta$.	х−у	6.	Exchange to divide Y by X
х-у	35.	θ.		1.33333333	
sin	0.5735765	sin θ.	F (tan-1) 53.1301	e calculated.
MR	7.	Recall R.	- 1	see R again, to	
×	4.0150355	Y displayed = R sin θ .	See Append		or a stack diagram
	see X again, tou	ch x≕y.		P.0.	
See Appen	dix B — Part 4 fo	r a stack diagram			
of this exan	nple.				
78					ī
			1		

Example: Compute the area of a cone with radius 5 and height 15. Using the formula: $A = \pi R \sqrt{R^2 + H^2} + \pi R^2$ Substituting: $A = \pi x 5 x \sqrt{5^2 + 15^2} + \pi x 5^2$ = 326.9045 KEY IN DISPLAY SHOWS π 3.1415926 5 5 5 X 15.707963 5 5 5 F (x ²) 25. 15 15 F (x ²) 225.	CHEMISTRY Example: Determine the depression of the mercury column in a glass tube of inside diameter 0.6 mm which stands vertically with one end immersed in mercury. The angle of contact with the mercury is 120° and the surface tension is 490 dynes/cm. Using the formula: $h = 2T/rdg (\cos \theta)$ where: $h = height of mercury in tube,$ T = surface tension, r = inside radius of tube (1/2 diameter), $d = density of the liquid = 13.6 g/cm^3$ for mercury, g = acceleration due to gravity = $980 cm/sec^2.$ $h = \frac{2 \times 490 dynes/cm}{0.03 cm \times 13.6 g/cm^3 \times 980 cm/sec^2}$ $x \cos 120^\circ = -1.225 cm.$
$F_{(x^2)}$ 223.+250. $$ 15.811388 \times 248.36469 π 3.1415926ENT3.141592655 $F_{(x^2)}$ 25. \times 78.539815+326.9045	KEY INDISPLAY SHOWSCOMMENTS22ENT2.490490Surface tension. \times 98003.03Inside radius in cm.ENT.0313.613.6Density of mercury. \times .408980980Gravity. \times .399.84 \div 2.4509803120120Angle of contact.cos4999999 \times -1.2254899Depression of column in cm.

Example: What is the molarity of a solution that con- tains 135 grams of calcium chloride, CaCl ₂ , per liter? Using the formula mass of CaCl ₂ : $1 \text{ Ca} = 1 \times 40.08 \text{ u} = 40.08 \text{ u}$ $2 \text{ Cl} = 2 \times 35.453 \text{ u} = 70.906 \text{ u}$ 110.986 u = 110.986 g/mole						
	lation: number o					
form	mass of CaCl ₂	$\frac{135 \text{ grams}}{112} = \frac{135 \text{ grams}}{110.986 \text{ g/mole}}$				
ioni		1 moles.				
	entration of the s	solution is 1.21 moles				
per liter.	B LOBI IV AVAIL	A				
KEY IN	DISPLAY SHOWS	COMMENTS				
40.08	40.08	Atomic mass of Ca.				
ENT	40.08					
35.453	35.453	Atomic mass of CI.				
ENT	35.453					
2	2					
×	70.906	Atomic mass of Cl ₂ .				
	110.986	Formula mass of CaCl2.				
135	135	Grams of CaCl ₂ .				
х−у	110.986					
÷.	1.2163696	Moles/liter.				

Example: Calculate the percentage by weight of 10 grams of a substance with normality of 0.15 in 45 milliliters of standard solution with mew of 0.03646.

Using the formula:

82

$$\% wt = \frac{(mew) \times N \times V \times 10^2}{W}$$

where: %wt = percentage by weight, mew = millequivalent weight of substance, N = normality of the substance,

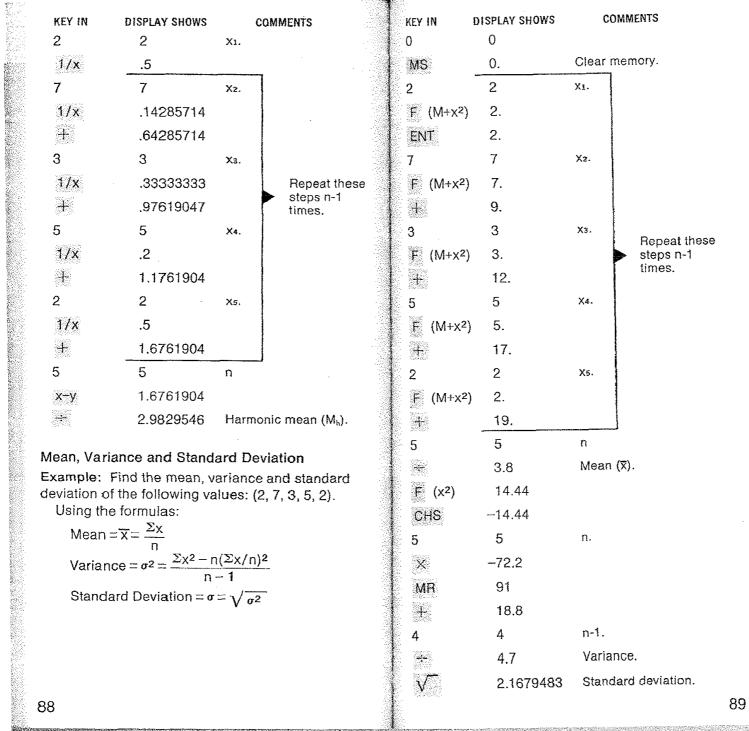
milliliters, and W = weight of sample in grams. Substituting: 0.03646 x 0.15 x 45 x 10² = 2.46105 %wt= 10 KEY IN **DISPLAY SHOWS** .03646 .03646 ENT .03646 .15 ,15 х .005469 45 45 х .246105 10 10 F (x²) 100. Х 24.6105 10

V = volume of standard solution in

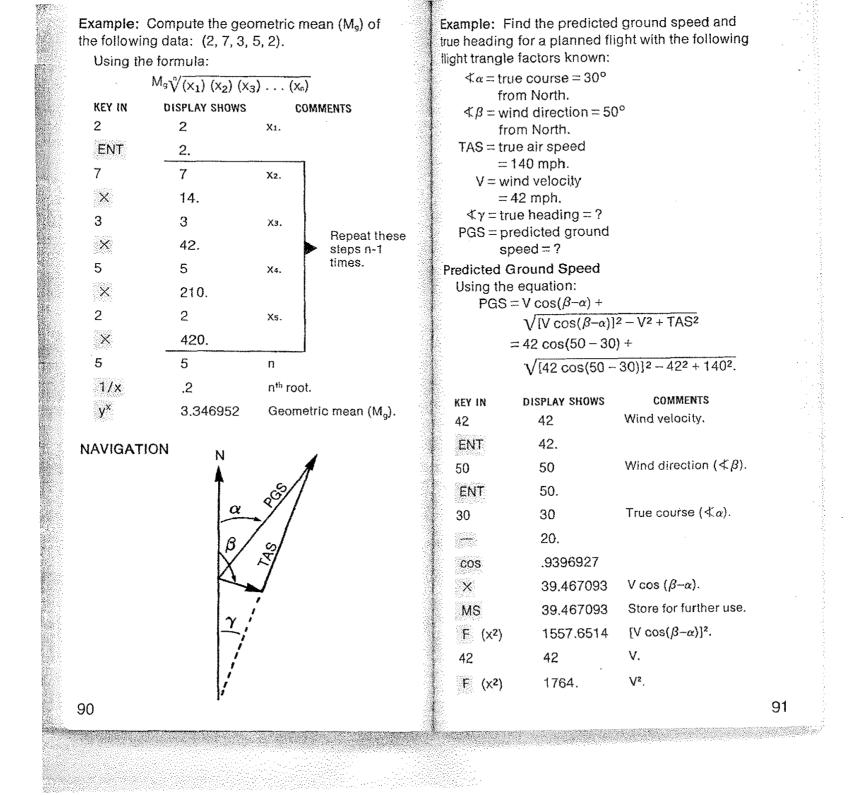
10 2.**461**05

ENGINEERING

Example: What is the equivalent resistance of a 220-ohm resistor, a 145-ohm resistor and a 175-ohm resistor connected in parallel?


Using the equation:

$$R_{eq} = \frac{1}{1/R_1 + 1/R_2 + 1/R_3}$$


KEY IN	DISPLAY SHOWS	COMMENTS
220	220	R1.
1/x	.00454545	1/R1.
ENT	.00454545	
145	145	R2.

america.				1			
	KEY IN	DISPLAY SHOW	S COMMENTS	KEY IN	DISPLAY SHOWS	COMMENTS	
	1/x	.00689655	1/R2.	√	4.0154023	$\sqrt{1 + a^2/16d^2}$.	
	+	.011442		MR	700.	a.	
	175	175	R3.		2810.7816	$a \times \sqrt{1 + a^2/16d^2}.$	
	1/x	.00571428	1/R3.	620	620	Weight (w).	
	+	.01715628		×	1742684.5	$w x a x \sqrt{1 + a^2/16d^2}.$	
	1/x	58.287694	$R_{eq} = \frac{1}{1/R_1 + 1/R_2 + 1/R_3}$	2	2		
			1/01 + 1/02 + 1/03	↓ ÷	871342.25	$\frac{1}{2} \times w \times a \times \sqrt{1 + a^2/16}$	6d².
	where the sp each cable o	an is 700 feet ar	n at the ends of a cable nd the sag is 45 feet if n bridge carries a ?	at 295°K is temperatur	s 1500 psi, what is t re is raised to 303°		
			$2 \text{ wa} \sqrt{1 + a^2 / 16d^2}$		ne formula:	203	
	· W	= tension, = weight (horizo = length of spai				<u>303</u> = 1540.6779 psi.	
		= sag,	l y (1997)	KEY IN 1500	display shows 1500		
		= ½ x 620 x 7 = 871342.25	$00 \times \sqrt{1 + 700^2 / 16 \times 45^2}$	ENT	1500.		
	KEY IN	DISPLAY SHOWS	COMMENTS	303	303		
	700	700	Length of span (a).	X	454500.		
	MS	700.		295	295		
	F (x²)	490000.	a².	÷ .	1540.6779		
	16	16				lent impedance of a	
	ENT	16. 1			resistor and a 15.2- cy of 1500 Hz?	-millihenry inductor at	
	45	45	Sag (d).		he formula: $Z_{eq} = R$	/θ	
	F (x²)	2025.	d².	whore:	$\Theta = \arctan \frac{2\pi fL}{2\pi}$		
	×	32400	16d².	where.	н	xπx1500x.0152	-
	÷.	15.123456	a²/16d².	1	$= \arctan \frac{2}{2}$	325	
	1	1		1	= 23.78739°		
		16.123456	$1 + a^2/16d^2$.		$R = \frac{2\pi fL}{\sin \theta} = 355.17$	7239	
	84						85
all all a				(North Contraction)			

			VEV (N	DISPLAY SHOW	s (OMMENTS	
	DISPLAY SHOWS	COMMENTS	KEY IN	2	X1.	Juminetto	
2	2		ENT	2.	, . <u>.</u> .		
ENT	2.				X2.		
Ħ	3.1415926				1120		
×	6.2831852			9.	X3.		
1500	1500		3	3	A3.	Repeat these	
X	9424.7778		1 +	12.		steps n-1 times.	
.0152	.0152		5	5	X4.		
×	143.25662		+	17.			
MS	143.25662	Since you're going to use $2\pi fL$ again to calculate	2	2	X5.		
		R, store it for further use.	4	19.			
325	325		5	5	n		
	.4407896		 ÷	3.8	Mear	ז (x).	
F (tan-1)	23.78739	θ calculated.	Fxample:	Compute the h	narmonic	mean (M _h) of the	
sin	,4033439			data: (2, 7, 3, 5		•	
MR	143.25662	Recall 2 1 fL.	Using th	ne formula:			
х−у	.4033439	Exchange X and Y regis- ters so you can divide what was last in display by what is now in display.		$M_{h} = \frac{n}{\Sigma 1/2}$	x		
	355.17239	R calculated.					
STATISTICS	2						
		an (\overline{x}) of the following					
data: (2, 7, 3							
Using the	_						
	$\overline{\mathbf{x}} = \frac{\Sigma \mathbf{x}}{\Sigma}$						e a secondaria
	11						
							87
86					a namana ang maka kao dalam kao s		

}

KEY IN	DISPLAY SHOW	NS COMMENTS	KEY IN	DISPLAY SHOW	S COMMENTS	
	-206.3486	$[V\cos(\beta-\alpha)]^2 - V^2.$	F (sin-1)	7.016205	arc sin [V sin $(\beta - \alpha)$ /TA	.s].
140	140	TAS.	MR	30.	α.	
F (x²)	19600.	TAS ² .	х-у	7.016205		
+	19393.652	$[V\cos(\beta-\alpha)]^2 - V^2 + TAS^2.$		22.983795	α -arc sin [V sin (β - α)/	TAS].
$\sqrt{-}$	139.26109	$\sqrt{[V\cos(\beta-\alpha)]^2} - V^2 + TAS^2.$		<i>,</i> •.	North Pole	
MR	39.467093	$\vee \cos(\beta - \alpha).$			\mathbf{i}	
Ŧ	178.72818	$V\cos(\beta-\alpha)$ +			$ \rightarrow $	
		$\sqrt{[V\cos(\beta-\alpha)]^2} - V^2 + TAS^2 =$		α		
		Predicted ground speed.	/b	1	c	
True Headi	ng		San Fra	_	Wash. D.C.	
≪λ=α	e equation: - arc sin [V sin (0 – arc sin [42 si		37.6°N 122.4°W		38.8°N 77.0°W	•
	•					
KEY IN	DISPLAY SHOWS	COMMENTS				
key in 30	DISPLAY SHOWS 30	COMMENTS True course.			t circle route between	
key in 30 MS	DISPLAY SHOWS 30 30,	COMMENTS	San Francis	co and Washing		·
key in 30	DISPLAY SHOWS 30	COMMENTS True course.	San Francis Using the	co and Washing formula:		60
Key in 30 MS	DISPLAY SHOWS 30 30,	COMMENTS True course. Store.	San Francis Using the a = arc o where: a	co and Washing formula: cos(cos b cos c a = 122.4° – 77.0	gton, D.C.? :+ sin b sin c cos α) x 6 0° = 45.4°,	60
KEY IN 30 MS 42	DISPLAY SHOWS 30 30, 42	COMMENTS True course. Store.	San Francis Using the a = arc o where: o t	co and Washing formula: $\cos(\cos b \cos c)$ $c = 122.4^{\circ} - 77.0^{\circ}$ $c = 90^{\circ} - 37.6^{\circ}$	gton, D.C.? : + sin b sin c cos α) x 6 0° = 45.4°, = 52.4°, and	60
KEY IN 30 MS 42 ENT	DISPLAY SHOWS 30 30, 42 42,	COMMENTS True course. Store. Wind velocity (V).	San Francis Using the a = arc o where: a t	co and Washing formula: cos(cos b cos c a = 122.4° - 77.0 b = 90° - 37.6° = b = 90° - 38.8° =	gton, D.C.? ++ sin b sin c cos α) x 6 0° = 45.4°, = 52.4°, and = 51.2°.	60
KEY IN 30 MS 42 ENT 50	DISPLAY SHOWS 30 30, 42 42, 50	COMMENTS True course. Store. Wind velocity (V).	San Francis Using the a = arc o where: a t c a = arc o	co and Washing formula: $\cos(\cos b \cos c)$ $c = 122.4^{\circ} - 77.0^{\circ}$ $c = 90^{\circ} - 37.6^{\circ}$	gton, D.C.? + sin b sin c cos α) x 6 0° = 45.4°, = 52.4°, and = 51.2°. os 51.2	60
KEY IN 30 MS 42 ENT 50 ENT	DISPLAY SHOWS 30 30, 42 42, 50 50,	COMMENTS True course. Store. Wind velocity (V). Wind direction (β).	San Francis Using the a = arc o where: a t c a = arc o	co and Washing formula: cos(cos b cos c) $a = 122.4^{\circ} - 77.0^{\circ}$ $b = 90^{\circ} - 37.6^{\circ}$ $cos = 90^{\circ} - 38.8^{\circ}$ cos (cos 52.4 cos)	gton, D.C.? + sin b sin c cos α) x 6 0° = 45.4°, = 52.4°, and = 51.2°. os 51.2	60
KEY IN 30 MS 42 ENT 50 ENT	DISPLAY SHOWS 30 30, 42 42, 50 50, 30,	COMMENTS True course. Store. Wind velocity (V). Wind direction (β). Recall α.	San Francis Using the a = arc o where: a t c a = arc o + sir	co and Washing formula: cos(cos b cos c) $a = 122.4^{\circ} - 77.0^{\circ}$ $b = 90^{\circ} - 37.6^{\circ}$ $cos = 90^{\circ} - 38.8^{\circ}$ cos (cos 52.4 cos) cos (cos 52.4 cos)	gton, D.C.? ++ sin b sin c cos α) x 6 0° = 45.4°, = 52.4°, and = 51.2°. cos 51.2 cos 45.4) x 60.	60
KEY IN 30 MS 42 ENT 50 ENT MR 	DISPLAY SHOWS 30 30, 42 42, 50 50, 30, 20,	COMMENTSTrue course.Store.Wind velocity (V).Wind direction (β).Recall α . $\beta-\alpha$	San Francis Using the a = arc o where: a t c a = arc o + sir KEY IN	co and Washing formula: cos(cos b cos c) $a = 122.4^{\circ} - 77.0^{\circ}$ $b = 90^{\circ} - 37.6^{\circ}$ $cos = 90^{\circ} - 38.8^{\circ}$ cos (cos 52.4 c) cos (cos 52.4 c) cos 12.4 sin 51.2 c) DISPLAY SHOWS	$(x + \sin b \sin c \cos \alpha) \times 6$ $(x + \sin b \sin c \cos \alpha) \times 6$ $(x + \sin b \sin c \cos \alpha) \times 6$ $(x + \sin b \sin c \cos \alpha) \times 6$ $(x + \sin b \sin c \cos \alpha) \times 6$ $(x + \sin c \cos \alpha) \times 6$	60
KEY IN 30 MS 42 ENT 50 ENT MR Sin	DISPLAY SHOWS 30 30, 42 42, 50 50, 30, 20, ,3420202	COMMENTSTrue course.Store.Wind velocity (V).Wind direction (β).Recall α . β - α Sin (β - α).	San Francis Using the a = arc o where: a t c a = arc o + sir KEY IN 52.4	co and Washing formula: cos(cos b cos c) $a = 122.4^{\circ} - 77.0^{\circ}$ $b = 90^{\circ} - 37.6^{\circ}$ $cos = 90^{\circ} - 38.8^{\circ}$ cos (cos 52.4 cos) cos (cos 52.4 cos) b = 52.4 sin 51.2 cos) DISPLAY SHOWS 52.4	yton, D.C.? ++ sin b sin c cos α) x 6 0° = 45.4°, = 52.4°, and = 51.2°. cos 51.2 cos 45.4) x 60. comments b.	60
KEY IN 30 MS 42 ENT 50 ENT MR — sin X	DISPLAY SHOWS 30 30, 42 42, 50 50, 30, 20, .3420202 17,10101	COMMENTS True course. Store. Wind velocity (V). Wind direction (β). Recall α . $\beta-\alpha$ Sin ($\beta-\alpha$). V sin ($\beta-\alpha$).	San Francis Using the a = arc o where: a t c a = arc o + sin KEY IN 52.4 cos	co and Washing formula: cos(cos b cos c) $a = 122.4^{\circ} - 77.0$ $b = 90^{\circ} - 37.6^{\circ} =$ cos (cos 52.4 cos) cos (cos 52.4 cos) cos (cos 52.4 cos) b = 52.4 sin 51.2 cos) DISPLAY SHOWS 52.4 cos = 6101452	$a + \sin b \sin c \cos a$) x 6 $a^{0} = 45.4^{\circ},$ $= 52.4^{\circ}, and$ $= 51.2^{\circ}.$ $\cos 51.2$ $\cos 51.2$ $\cos 45.4$) x 60. COMMENTS b. $\cos b.$	60
KEY IN 30 MS 42 ENT 50 ENT MR 	DISPLAY SHOWS 30 30, 42 42, 50 50, 30, 20, .3420202 17,10101 140	COMMENTSTrue course.Store.Wind velocity (V).Wind direction (β).Wind direction (β).Recall α . β - α Sin (β - α).V sin (β - α).TAS.	San Francis Using the a = arc o where: a t c a = arc o + sin KEY IN 52.4 cos 51.2	co and Washing formula: $\cos(\cos b \cos c)$ $a = 122.4^{\circ} - 77.0$ $b = 90^{\circ} - 37.6^{\circ} = 30^{\circ} - 38.8^{\circ} = 30^{\circ} = 38.8^{\circ} = 30^{\circ} = 38.8^{\circ} = 30^{\circ} = 38.8^{\circ} = 38.8^{\circ} = 30^{\circ} = 38.8^{\circ} = 3$	$(x + \sin b \sin c \cos a) \times 6$ $(x + \sin b \sin c \cos a) \times 6$ $(x + \sin b \sin c \cos a) \times 6$ $(x + \sin b \sin c \cos a) \times 6$ $(x + \sin b + \sin c \cos a) \times 6$ $(x + \sin b + \sin c \cos b)$ $(x + \sin b + \sin c \cos b)$	60

KEY IN	DISPLAY SHOWS	COMMENTS
52.4	52.4	b.
sin	.7922897	sin b.
51.2	51.2	с.
sin	.779338	sin c.
X	.61746147	sin b sin c.
45.4	45.4	α.
C05	.7021531	$\cos \alpha$.
X	.43355248	$\sin b \sin c \cos \alpha$.
MR	.38231936	Recall memory.
۴	.81587184	cos b cos c
F	.81587184	+ sin b sin c cos α .
(cos-1)	35.32634	arc cos (cos b cos c
60	60	+ sin b sin c cos α).
×	2119.5804	Great circle distance.
	52.4 sin 51.2 sin × 45.4 cos × MR + F (cos ⁻¹)	52.4 52.4 sin .7922897 51.2 51.2 sin .779338 × .61746147 45.4 45.4 cos .7021531 × .43355248 MR .38231936 + .81587184 F .81587184 (cos ⁻¹) 35.32634 60 60

FINANCE

Example: How much do you have to put in the bank for it to be worth \$25,000 in 10 years if the interest rate is 8.5% per year?

Using the formula: $PV = \frac{FV}{(1 + i)^n}$ where: PV = present value,

FV = future value, i = interest rate (in decimal), n = number of years.

Substituting: $PV = \frac{25000}{(1 + .085)^{10}}$ = \$11057.15

KEY IN **DISPLAY SHOWS** COMMENTS 1

i

1.

.085

.085

1

94

ENT

KEY IN	DISPLAY SHOWS	COMMENTS
+	1.085	(1+i)
10	10	n
yX	2.26098	(1+i) ⁿ
25000	25000	
х-у	2.26098	
	11057.152	Present Value (PV).
24.		

Example: What will \$7,000 be worth in 5 years if it s compounded annually at a rate of 8.2% per year? Using the formula: $FV = PV(1 + i)^n$

G (1), G (1)	=7	000 (1 + .082)5
KEY IN	DISPLAY SHOWS	COMMENTS
1	1	
ENT	1.	
.082	.082	1.
÷	1.082	
5	5.	n.
y ^{x.}	1.482982	$(1 + i)^{n}$.
7000	7000	PV.
×	10380.874	Future value (FV)

Example: Compute the annual rate of return (after taxes) on an investment of \$10,000 which after 31/2 years is worth \$12,550 if the tax rate is 38%.

Using the formula:

$$r = \frac{(FV - PV)(1 - tax rate)}{PV} \times n$$

where: r = rate of return, FV = future value, PV = present value, n = number of periods.

KEY IN	DISPLAY SHOWS	COMMENTS	KEY IN	DISPLAY SHOWS	COMMENTS
12550	12550	FV.	1	1	
ENT	12550.		₽ ENT	1.	
10000	10000	PV.	.08	.08	i.
MS	10000.	Save for use in dividing.	1 +	1.08	(1 + i).
	2550.	FV – PV.	10	10	n.
1.	1		🕴 CHS	-10	
ENT	1.		Į γ [×]	.4631941	$(1 + i)^{-n}$.
.38	.38	Tax rate.	CHS	4631941	
	.62	1 – tax rate.	1	1	
×	1581.	(FV – PV) (1 – tax rate).	1 +	.5368059	$1 - (1 + i)^{-n}$.
MR	10000.	Recall PV.	.08	.08	
	.1581	(FV-PV) (1-tax rate)	х-у	.5368059	i
3.5	3.5	PV n.	ļ ÷	.14902965	$1 - (1 + i)^{-n}$
×	.55335	$\frac{(FV - PV) (1 - tax rate)}{X n}$	86000	86000	PV.
		PV PV	X	12816.549	PMT.
100	100	Multiply by 100 to make			or a stack diagram
×	55.335	Multiply by 100 to make into whole percentage = rate of return.	of this exa	ample.	
		- Iaig Ul idium.	Part 2.	1 1	1) what is the remai

Part 1.

What is the annual payment on a loan of \$86,000 taken for 10 years if the rate is 8% per year?

Using the formula:

$$\mathsf{PMT} = \mathsf{PV}\left[\frac{\mathsf{i}}{\mathsf{1} - (\mathsf{1} + \mathsf{i})^{-\mathsf{n}}}\right]$$

where: PMT = payment,

PV = present value, i = interest rate per period (in decimal),

 $\mathbf{n} =$ number of periods.

In the above example (part 1), what is the remaining balance after the 6th payment?

Using the formula:

 $BAL_{k} = PMT \left[\frac{1 - (1 + i)^{k-n}}{i} \right]$

where: k = number of payments made.

key indisplay showscomments11ENT1..08.08

97

KEY IN MS	DISPLAY SHO .08	WS COMMENTS Store for further use.
	1.08	1+i.
6	6	k .
ENT	6.	
10	10	n.
	-4.	k – n.
У×	.7350307	$(1 + i)^{k-n}$.
CHS	7350307	
1	1	
+	.2649693	$1 - (1 + i)^{k-n}$.
MR	.08	Recall i.
	3.3121162	$\frac{1-(1+i)^{k-n}}{i}$
12816.55	12816.55	PMT (from part 1).
×	42449.902	Bal _k .

Appendix B — Part 2:

Hyperbolic and Inverse Hyperbolic Functions The hyperbolic and inverse hyperbolic functions can be found by using the Gudermannian function: $gd x=2 arc tan e^{x} - \pi/2$ (Note: $\pi/2 = 90^{\circ}$).

and the inverse Gudermannian function:

 $gd^{-1}x = \ln \tan [\pi/4 + x/2]$ (Note: $\pi/4 = 45^{\circ}$). In conjunction with the following formulas:

$$\sinh x = \frac{e^{x} - e^{-x}}{2},$$

$$\cosh x = \frac{e^{x} + e^{-x}}{2},$$

$$\tanh x = \frac{\sinh x}{\cosh x} = \sin gd x,$$

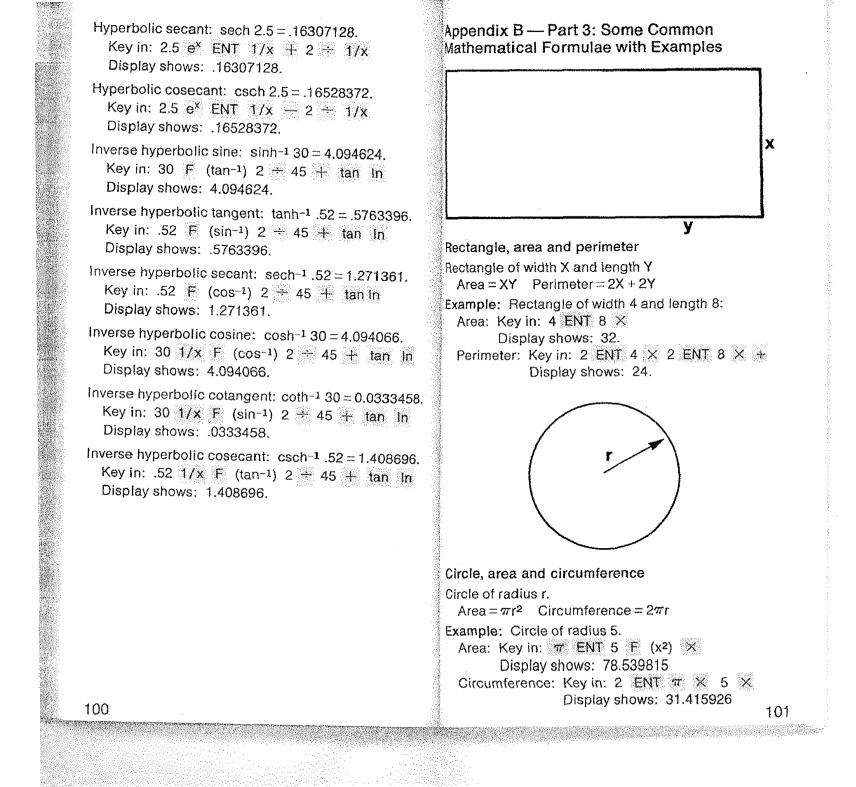
$$\operatorname{coth} x = \frac{1}{\tanh x},$$
$$\operatorname{sech} x = \frac{1}{\cosh x},$$
$$\operatorname{csch} x = \frac{1}{\sinh x}.$$

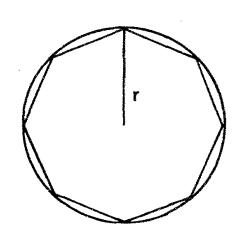
 $\sinh^{-1} x = \ln [x + \sqrt{(x^2 + 1)}] = gd^{-1}(\sin^{-1} x),$ $\cosh^{-1} x = \operatorname{sech}^{-1} 1/x,$ $\tanh^{-1} x = 1/2 \ln [1 + x/1 - x] = gd^{-1}(\sin^{-1} x),$ $\coth^{-1} x = \tanh^{-1} 1/x,$ $\operatorname{sech}^{-1} x = [\ln 1/x + \sqrt{1/x^2 - 1}] = gd^{-1}(\cos^{-1} x),$ $\operatorname{csch}^{-1} x = \sinh^{-1} 1/x,$

Examples:

Gudermannian function: gd 0.225 = 12.7841. Key in: .225 e^{X} F (tan⁻¹) 2 × 90 — Display shows: 12.7841

Inverse Gudermannian function: $gd^{-1} 60^{\circ} = 1.316958$. Key in: 60 ENT 2 ÷ 45 + tan In Display shows: 1.316958.

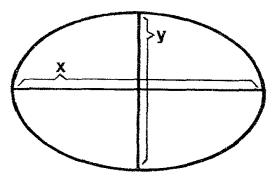

Hyperbolic sine: sinh 2.5 = 6.0502025. Key in: 2.5 e^x ENT $1/x - 2 \neq$ Display shows: 6.0502025.


Hyperbolic cosine: cosh 2.5 = 6.1322875. Key in: 2.5 e^x ENT 1/x + 2 + Display shows: 6.1322875.

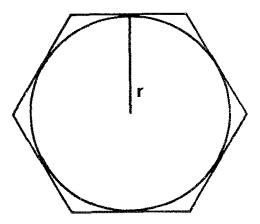
Hyperbolic tangent: tanh 2.5 = .9866143. Key in: 2.5 e^{x} F (tan^{-1}) 2 X 90 - sin Display shows: .9866143.

Hyperbolic cotangent: coth 2.5 = 1.0135673. Key in: 2.5 e^x F (tan⁻¹) 2 X 90 - sin 1/x Display shows: 1.0135673.

98



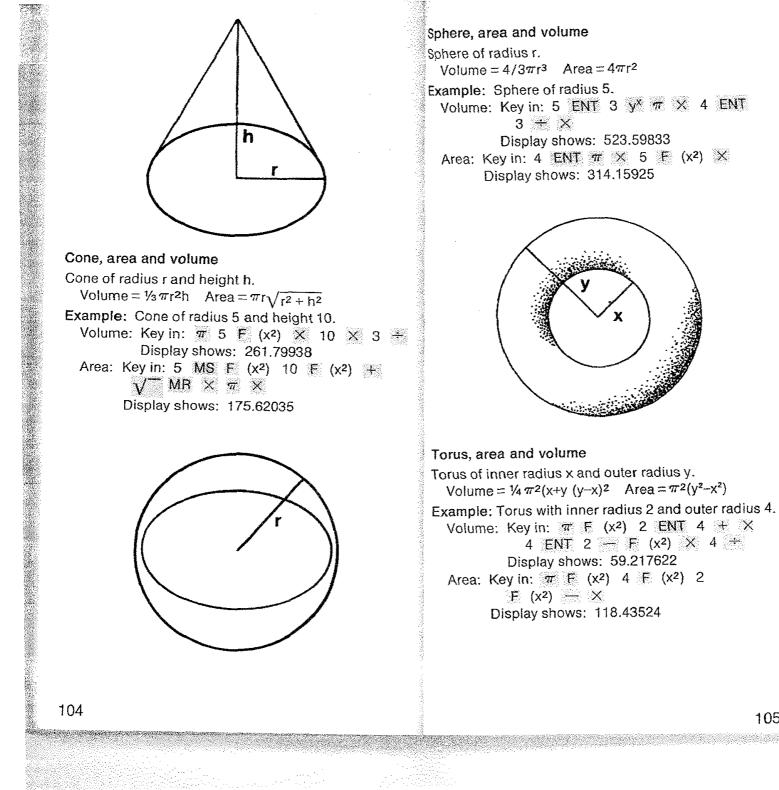
Regular polygon circumscribed in a circle, area and perimeter

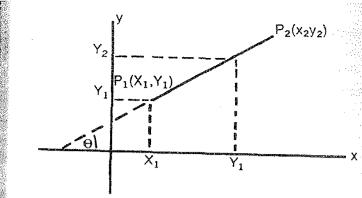

Regular polygon with n sides inscribed in a circle of radius r.

Area = $\frac{1}{2}$ nr² sin 360/n Perimeter = 2nr sin 180/n Example: Polygon with eight sides inscribed in a circle of radius 5.

Area: Key in: 1 ENT 2 \div 8 \times 5 F (x²) \times 360 ENT 8 \div sin \times Display shows: 70.71068 Perimeter: Key in: 2 ENT 8 \times 5 \times 180 ENT 8 \div sin \times Display shows: 30.614672

Ellipse, area and circumference Ellipse of major axis X and minor axis Y. Area = $\frac{1}{4}\pi$ XY Circumference = $2\pi\sqrt{\frac{1}{8}(X^2 + Y^2)}$ Example: Ellipse of major axis 8 and minor axis 4. Area: Key in: 1 ENT 4 - π × 8 × 4 × Display shows: 25.13274 Circumference: Key in: 8 F (x²) 4 F (x²) + 8 $= \sqrt{2} \times \pi$ × Display shows: 19.869175


Regular polygon circumscribing a circle, area and perimeter


Regular polygon with n sides circumscribing a circle of radius 5.

Area = $nr^2 \tan 180/n$ Perimeter = $2nr \tan 180/n$ Example: Polygon with eight sides circumscribing a circle of radius 5.

Area: Key in: 8 ENT 5 F (x²) \times 180 ENT 8 \div sin \times

Display shows: 76.53668 Perimeter: Key in: 2 ENT $8 \times 5 \times 180$ ENT $8 - \tan \times$ Display shows: 33.13708

Distance between two points, P₁ and P₂ Distance d between two points P₁(x₁y₁) and P₂(x₂y₂). $d = \sqrt{(x_2-y_1^2 + (y_2-y_1)^2)}$ Example: Distance between points P₁(3,4) and P₂(5,8). Key in: 5 ENT 3 — F (x²) 8 ENT 4 —

F (x²) + $\sqrt{-}$ Display shows: 4.4721359

Slope and angle of line between points

Slope and angle of line between points P_1 and P_2 . Slope = m = $y_2-y_1/x_2-x_1 = \tan \Theta$

Example:

Slope: Key in: 8 ENT 4 — 5 ENT 3 — \div Display shows: 2. Angle: Key in: F (tan⁻¹) Display shows: 63.43495

Appendix B — Part 4: Stack Diagrams for Some Examples

Stack diagram for: $(2 \times 3) + (4 \times 5) = 26$

	F	REGISTER CON	ITENTS	
KEY IN	X	Y	Z	M
2	2			
ENT	2	2		-
3	3	2		
×	6			
4	4	6		
ENT	4	4	6	
5	5	4	6	
X	20	6		
+	26			

Stack diagram for: $(2+3) \times (4+5) = 45$

Stack diagram for: $X = R \cos \theta$, $Y = R \sin \theta$

		REGISTER CO	NTENTS	
KEY IN	x	Y	Z	М
2	2			
ENT	2	2		
3	3	2		
+	5			
4	4	5		
ENT	4	4	5	
5	5	4	5	
+	9	5		
×	45			

	REGISTER CONTENTS					
KEY IN	Х	Ŷ	Z	М		
θ	θ					
ENT	θ	θ				
Ŕ	R	θ				
MS	Я	θ		R		
xy	θ	R		R		
ENT	θ	θ	R	R		
cos	cos O	θ	R	R		
MR	R	cos O	θ	R		
×	X=R cos θ	Θ	R	R		
х-у	θ	R cos O	R	R		
sin	sin Ə	R cos O	R	R		
MR	R	sin θ	R cos Ø	R		
×	Y=R sin Ə	R cos θ	R	R		

109

·····	agram for:				, 18		agram for: PN	·	
г		REGISTER CO	· · · · · · · · · · · · · · · · · · ·				RE	GISTER CONTE	NTS
KEY IN	X	Ŷ	Z	M		KEY IN	х	Y	Z
6	6				Advertiged	1	1		
ENT	6	6			ah ka ka	ENT	1	1	
ENT	6	6	6		akakaka a	i	i	1	
×	36	6				+	1+i		
8	8	36	6		si ta ta ta ta ta	n	n	1+i	
MS	8	36	6	8	anda takad	CHS	n	1+i	
F	8	36	6	8	an tagt with da	y ^x	(1+i) ⁻ⁿ		A446 (4444)
X ²	64	36	6	8	an dan da	CHS	-(1+i) ⁻ⁿ		
+	100	6		8		1	1	-(1+i) ⁻ⁿ	
\checkmark	10	6		8	ada a ta a ta	.+	1-(1+i) ⁻ⁿ		
х-у	6	10		8	t a statistican de ante	i	i	$1-(1+i)^{-n}$	
MR	8	6	10		and a second	х-у	1(1+i)-¤	i	
x-y	6	8	10			- 	ii		
+	1.33	10					$1-(1+i)^{-n}$		
F	1.33	10				PV	PV	$\frac{1}{1-(1+i)^{-n}}$	
tan-1	53.13					×	$PV \left[\frac{i}{1 - (1 + i)^{-1}} \right]$	1	

М

Appendix C—	- Conditions for Error Indication
FUNCTION	CONDITION (X=contents of register X)
+, -, ×, ÷	X > 99999999
÷, 1/x	X ≤ 0.0000001
\sqrt{x}	X < 0
Yx	Y ≤ 0; 18.42060 < X In Y < -28
LOG X, Ln x	$X \leqslant 0$
e ^x	18.42068 < X < -28
SIN, COS	X≥7 radians, X≥401°
TAN	$ X \ge 90^{\circ}, X \ge 7$ radians
SIN-1, COS-1	X > 1 .
TAN-1	X > 999999999

WARRANTY INFORMATION

The Consumer Products Division of National Semiconductor Corporation is proud to give you the following Warranty on your calculator.

Full 90-Day Warranty

National Semiconductor gives you a full ninety-day Warranty from the date of original purchase on all defects in material and workmanship. Should the calculator prove to have such defects within ninety days of original purchase, National Semiconductor will repair, or, at its discretion, replace it with a new calculator, all without charge, within a reasonable period of time after receipt by National Semiconductor, postage prepaid. This FULL WARRANTY does not apply to defects or malfunctions caused by abuse, accident, modifications, negligence, or any other damage not resulting from defects in materials or workmanship or beyond the control of National Semiconductor. THIS FULL WARRANTY IS IN LIEU OF ANY CLAIM BY THE CON-SUMER FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES and shall apply to the purchaser or the purchaser's transferee, so long as the mailing instructions below are followed.

Limited 275-Day Warranty

National Semiconductor also offers a LIMITED WAR-RANTY in addition to the above FULL WARRANTY which shall apply to any defects in material or workmanship which occur during the 275-day period after the 90-day period covered by the FULL WARRANTY, excluding the battery, which is not a component part of your calculator. Under this LIMITED WARRANTY, National Semiconductor, for a service charge of U.S. \$3.50, and for no additional charge will repair such defects or, at its discretion, replace your calculator with one that is identical or reasonably equivalent, all within a reasonable period of time after receipt by National Semiconductor, postage prepaid. This LIMITED WARRANTY does not apply to defects or malfunctions caused by abuse, accident, modifications, negligence, or any other damage not resulting from defects in materials or workmanship or beyond the control of National Semiconductor. THIS LIMITED WARRANTY IS IN LIEU OF ANY CLAIM BY THE CON-SUMER FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES and shail apply to the purchaser or the purchaser's transferee, so long as the mailing instructions below are followed. THE DURATION OF ALL IMPLIED WARRANTIES ON THIS CALCULATOR WILL BE THE SAME AS, AND NO LONGER THAN, THE 365-DAY PERIOD OF THE FULL AND LIMITED WARRANTIES COMBINED.

Post Warranty Repairs

Even though your Warranty may have expired, if your calculator becomes defective after the 365-day warranty period, National Semiconductor will make repairs for a nominal charge of \$15.50, providing the mailing instructions below are followed. Repair prices during the post-warranty period are subject to change without notice.

Product Service Locations

United States N.C.P.S.—East Coast Commerce Park Danbury, CT 06810

286 Wildcat Road

Ontario M3J-2N5

Canada

N.C.P.S.

Canada

Downsview

Asia NS Electronics.SDN BHD

No Electronics.SDN Bri National Semiconductor Product Service Bayan Lepas Free Trade Zone Penang, Malaysia

Scotland

NS-UK Ltd. National Semiconductor Product Service Larkfield Industrial Estate Greenock PA16 OEQ, Scotland

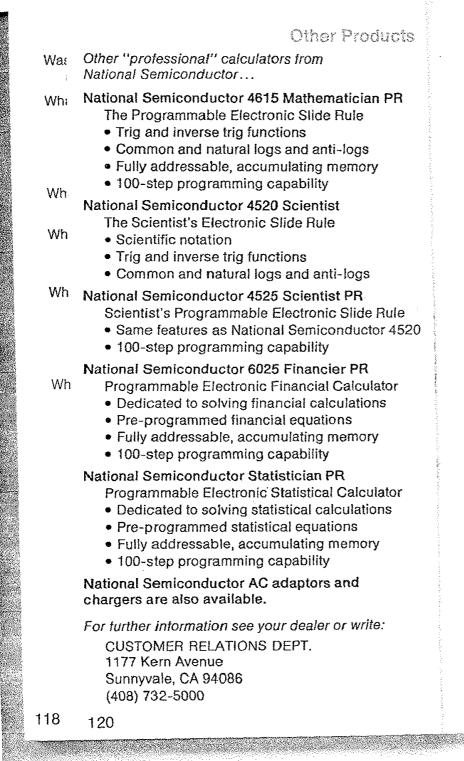
Germany

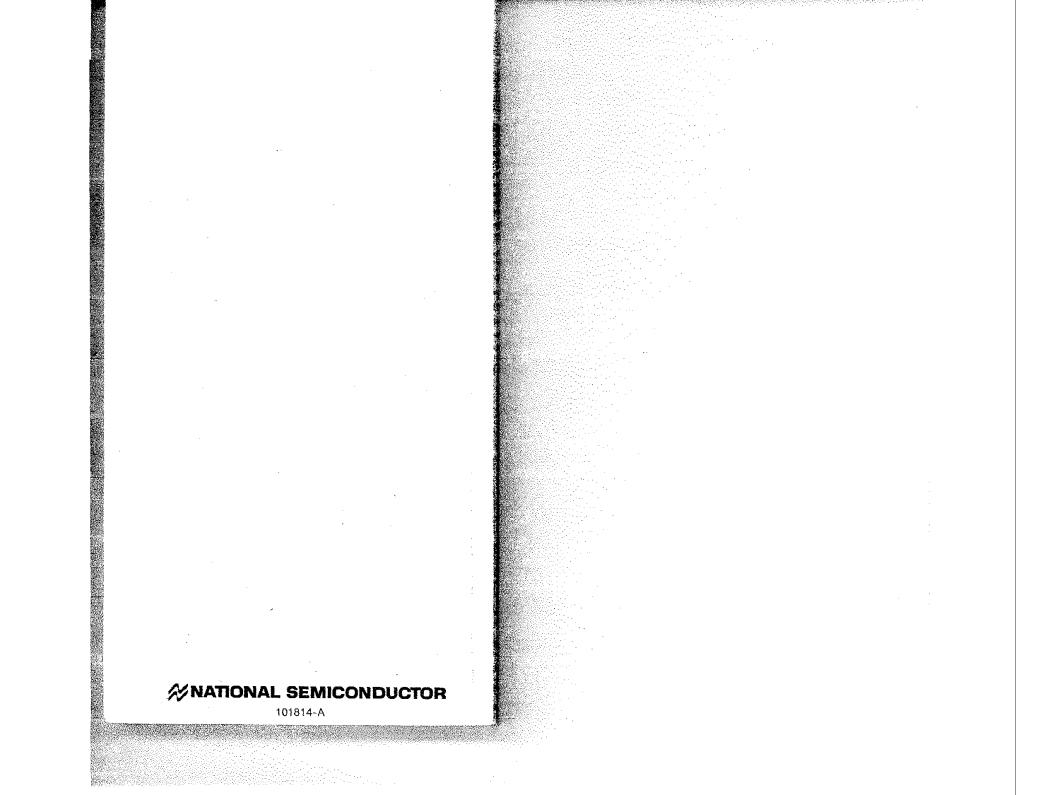
National Semiconductor GmbH Product Service D808 Furstenfeldbruck Industriestrasse 10 Bundesrepublik Deutschland

Mailing Instructions.

Should your calculator need servicing, pack it carefully in a sturdy box for shipping. Proof of original purchase date must be enclosed. Be sure to include your name and return address. The package should be mailed postpaid to the nearest National Semiconductor Service Center. If your calculator is returned for warranty repairs more than ninety days after the original purchase date, you must enclose the appropriate service charge (if the service charge during the POST WARBANTY period has been changed, National Semiconductor will request you to supply the additional amount, if any is needed, or make the appropriate refund, if there is any difference, by check or money order payable to National Semiconductor).

116


Consumer Warranty Registration Certificate


Please put your warranty into effect by completing this form and mailing it within 10 days from date of purchase to the NOVUS service center in your area.

Novus Model 4615

Serial Number
Purchase Date (month/day/year) Purchased from
Address
City, State, Zip
Your Name
Your Address
City State Zin

Was this calculator purchased for: Gift Personal use What is your occupation? Student or Teacher Professional Executive Financial or Commercial Engineering or Scientific Statistical fields Other occupation What is your age group? Under 18 18-34 35-49 50-over Where will you most use your Novus calculator? At home At school At work During travel Where did you learn about the Novus calculators? Magazine Newspaper Television Radio Mail Store salesman Friend Other What most attracted you to your Novus calculator? Appearance Size Reputation Price Features and capabilities	For Your Records
18	119

