
Monroe model 1265

operating and programming
instructions

MONROEI[E
THE CALCULATOR COMPANY

Monroe model 1265

operating and programming
instructions

MONROE [H
THE CALCULATOR COMPANY

© Copyright 1970 MONROE e Orange, New Jersey / Sales and Service Throughout the World

- CONTENTS

Introduction. ceeeecscossscosoososcsossaosssssenosal

- Keyboard LayoUte.sseseeeoseaesssssosonssscssossoed

PS Basic Operating InstructionS..ceescescsscceccsoes3

- Set-Up GEOsms » sas 8 275s 3 50 « wre a ous as wom » ecee, § noi

Keyboards: i oe & sis § 940d wid i 510 8 ain v 51600 9 wim os win 3

_ Basic Function GroUDs.«:scsessssssssosesosscod

Register Control GrOUPe..o..cececescessssasscss/
= Special Function Keye..eeeeereeocoosooacoessd

Error and Overflow ConditionS......cesesssee 10

Introduction to Programming. ..sseceeescessscsass sll
Keyboard Programming.eeeeeescecooccsos all
LEMP Keys and SwitcheS..eeesesoesocoonncscsald

. Print Control Switch and KeyS..eesecossseos «lS

Loading a Keyboard Program, .sesseeessscssss +18

Executing a PrograM..ccecececoscesescssscsss old

Basic Card Programmingeeesssssssecccsccesscossases33

Introduction. .ssssescssssescscnecscasooseesss33
Documentation. cesessscossssosvessosossesess s34

Loading a Punched Card PrograMeec.s.ocesessss «33

Executing a Punched Card Programe..sssssees «37

Basic Machine Instructions...seceessescsccs o37

Set Flag "IF" CommandSseeeoessseossssossses o4l

COMPAre tO ZETOusosoessssssscssosnsassnsssaas sil

CONTENTS

Other Conditional FlagS..e.eeesccscssssssessdl
SKIP CommandSe.«oceesevescsssccssocscnsecesed

Expansion of POWET.iccecsoocoosccsssscsoosesd3

Saving Program StepSeescesscecccssscsossnssdd
TUMPs 400 00 aie 006i 0 0 wie 4 0:50 65656 & @l6i6 8 9026 4 10 ¢ wwe o £3

Keyboard Debugging. . sees em ecocosseesoessvee dd

Verifying a PrograQfiseessssssowvssosssesssossdd

Testing a PrograMesececscocsccsccsscoscssssD3

Programming TechniquesS..cceeecesccccocccses Ib

SUB LOUNGES yw weve o wove wre 5510 0 2wce: & wioie 8 wie o wiwise DO

CONSTANTS gos 0 ves 60:08 0a sees sees ones ensssyedd

LOOPING e ss v6 ss wie s s1600 6 066 4 eae sens snssasesessbO

Summary of Keyboard and LEMP Instructions, 61
Conditional Branchinge.ccecececocccocencccssb7

Data ManipulatioNeeceseeccsesosvossocscssanes/0
DeDUGTINGs o70.5 ¢ wis # wave § #906 § 9.96 976% 5 4 we & im & 5 wwe L&

Advanced Programming .sessevesecesossssvssvosevs’/3I
Advanced Card InstructionS....ccceecceoocsoosarl/7

C Add, C Subiceecssocossssvscensssesencssss80
C MLt; CDiViswoossovosoesivnsnacssvasvssens80

Specialized Programming TechniquesS:....ccco0000085

Flag InstructionSscecccosccosccocscsscssssaB/

Special Programming NoteSseececssooecssscsse 88

Specialized Programming Instructions.......88

INTRODUCTION

The Model 1265 is a compact and versatile electronic programmable cal-
culator with a rapid, reliable printing mechanism. It is a simple

calculator to use, making the transition from an ordinary desk cal-
culator easy.

Keyboard programming with the Learn Mode Programmer (LEMP) eliminates

repetitious operations. All the basic keyboard functions can be

programmed, along with the ability to branch unconditionally, which

allows for subroutines and the storing of more than one program,

Additional programming power and flexibility are achieved with the

optional Monroe CR-1 card reader. The programming commands available
through the card reader permit more powerful programs to be written
and punched on cards, for permanent storage.

The operating controls are logically arranged in groups to provide
the easiest and simplest operation possible.

10©owQcZ02

MONROE ELECTRONIC PROGRAMMABLE
PRINTING CALCULATOR

MODEL 1265

BASIC OPERATING INSTRUCTIONS

Set-up Group

The pre-setting of the Decimal Wheel, Double Zero Switch, Automatic

Summation Switch and the Print Switch provide the operator with flexi-
ble control over the printed output.

ON

8 Power Switch Move to ON position, The calculator is ready

for operation with all registers clear,
PRINT

= Print Switch This switch should be in the UP position for
the printing of all manual operations.

| Decimal Wheel The number of decimal places printed in entries
and results is determined by the setting of the Decimal Wheel. Set-

tings are 0 through 9, The maximum of thirteen decimal digits may be

entered but only nine decimal digits will print,

When adding or subtracting, if the number of decimal digits entered

exceeds the setting of the Decimal Wheel, the excess digits will not
be printed or calculated.

When multiplying or dividing, the 1265 accepts all decimal digit en-

tries and will calculate on a floating basis, but only the number of

decimals selected on the Decimal Wheel will print. All results are

automatically rounded.

The Decimal Wheel may be changed at any time without effecting the

decimal accuracy of any numbers present in the calculator,

00

= Double Zero Round=-off Switch When in the UP position this
switch allows for the printing of results that are rounded off two

places less than the selection on the Decimal Wheel, For example:

with the Decimal Wheel at 4, results are rounded off to two decimal

places; with the Decimal Wheel at 5, results are rounded off to three
decimal places, etc.

Example 125 items @Q 2,45 3/4 ea. = ?

Decimal Wheel at 4 125¢0000 X

.00 Switch UP 24575=
_ 30701900 x

Depress keys 125 x 2.4575

Ex5 Automatic Summation Switch With this switch in the UP posi-
tion, multipliers or dividends are automatically accumulated in stor-
age register 1.

Keyboard The 1265 has a standard 10-key key-
board and decimal point key, Numbers are in-=EN fjo[e) wold

dexed in the same sequence as they are written,: including the decimal point, whenever it appears
in a number,

The maximum entry of decimal digits is 13, with
a combined total of 14 digits of whole and

decimal digits,

Basic Function Group

These keys perform the basic arithmetic functions of addition, sub-

traction, multiplication and division, They are conveniently located

to allow for easy operation.

Plus Key Adds the number in the keyboard to the adding

register; the number may be repeated by repetitive depressions of

the plus key.

| Minus Key Subtracts the number in the keyboard from the add-

ing register; the number may be repeated by repetitive depressions of

the minus key.

Example 5 +7 +3 - = 7? 500 +

_ 700 +
Depress keys 5 +7 + 3 = % 3600 -

900 x

Multiply Key Sets up the number in the keyboard as a multi-

plier. Can be used instead of the equals key for intermediate results
that are to be used as multipliers. The intermediate result will not

print,
1200 X

Example 12 x 13 = 7 13¢00=
15600 x

Depress keys 12 x 13 on

The multiplier is retained to allow for constant multiplication,

Example 12 x 13 = 7? 1200 X

~ 13¢00=12 x 16 = ? 15600
12 x 24 = 2 1600=

19200 *
Depress keys 12 x 13 I 24¢00=

16 3 28800 x

24 %

-] Divide Key Sets up the number in the keyboard as a dividend.
Can be used instead of the equals key for intermediate results that
are to be used as dividends, The intermediate result will not print
unless.

Example 12 + 5 = 2 1200 +
5¢00=

Depress keys 12 + 5 3 2040 %

B Sub-Total Key Prints the total in the adding register but
does not clear the register.

Equals/Total Key After a number has been set up by the multi-
ply or divide key, this key multiplies or divides by the number in the
keyboard to complete the multiplication or division.

The Equals/Total Key also prints the total in the adding register and
clears the register, After a printing of the total this key becomes

inoperable until another operation is performed,

Register Control Group

This group includes the keys that control the flow of data to and from

the storage registers, the automatic accumulation memory keys, and the

clearance keys.

Store Key The seven storage registers are designated as 1

through 7. The depression of this key, followed by a digit key,

will store and print the number in the keyboard followed by the identi-
fication of the selected register, The accumulating memory may also
be used as a storage register by using this store key followed by the

Recall Key Depression of this key followed by the appropriate

digit key will recall the stored number to the keyboard and print it
with the register identification. The contents of the register re-
main unchanged.

Equal Plus Key After a number has been set up by either the

x key or the + key, this key will multiply or divide by the number in

the keyboard to complete the multiplication ox division, print the

individual result and add the result to the accumulating memory. This

key is also used to print the total in the adding register and auto-

matically add it to the accumulating memory.

Example (11 x 13) + (22 x 14) + (17 x 12) =?
Decimal on ''O" OeA

11e X

Depress RESET 13%
143e¢ x

11 x 13 =+ 506 x

_ 14%22 x 14 =+ 3080 x
17 x 12 =+ 170 X

123* 2040 x
655 ex,

[=] Equals Minus Key After a number has been set up by either
the x key or the + key, this key will multiply or divide by the number

in the keyboard to complete the multiplication or division, print the

individual result and subtract the result from the accumulating memory.

This key is also used to print the total in the adding register and

automatically subtract it from the accumulating memory.

Example (11 x 13) + (22 x 14) - (17 x 12) = 2

Decimal on ''O"

Depress RESET

11 x 13 =+

0
11
13

~ 43
22 x 14 =+ soe
17 x 12 =- 14

08
17%*

B Memory Sub-Total Key Prints the total in the accumulating

memory but does not clear it.

Memory Total Key Prints and clears the total in the accumulat=-

ing memory.

Reset Key Clears all registers except storage registers 2

through 7.

Clear Keyboard Key Clears an incorrect keyboard entry.

[0] Special Function Ke This key is used with digit keys 6, 7,

8, and 9 to operate programs that are permanently stored in the cal-
culator, The programs are as follows:

] s 6 is amount and percent change 000A
57909000 +

Exguple 509912+000¢
Ea

This Last Amt, Percent 691 Tee »
Year Year Diff, Change

579090 509912 69178 13.57 Inc. 9663000 +
96630 109063 12433 11,40 Dec. 1090630006

= 1243300 x

Decimal Wheel at 2 = 11640 x

Depress RESET 579090 + 509912 [16
96630 + 109063 [] 6

[] , 7 is Percent Minus 0eQ0A
12550 +

Example $125.50 less 5 - 12,5=$104,32 - 5e(Q0Q0O7

imal Wheel 2
— 6e28 X

Decima eel at 119022 x

Depress RESET 125.5 + 57 12.57 - 12¢5007
- 1490 x

10432 x
104032 X

[] , 8 is Percent Plus

Example $155.00 plus 5% = $162.75 De QO0A

. 155400 +
Decimal Wheel at 2 5e 0002
Depress RESET 155 + 5[]8 %* Te75 %

162075 x
16275 x

[] s 9 is Square Root

Example v/ 625
OeA

Decimal Wheel at O £25609
256 X

Depress RESET 625 9

The Special Function key is also used with digits 0 through 5 for con-

ditional branching, which will be explained in the programming section,

4 Electric paper advance

Error and Overflow Conditions

Illegal keyboard data entries and illegal operations are flagged by an

error or overflow signal, When such a condition occurs, the word

ERROR or OVERFLOW will print on the tape and the keyboard will lock,

inhibiting the entry of any data and execution of any operations. The

error or overflow condition can be cleared by depressing either =
or RESET. Depressing 0 clears only the keyboard; depressing RESET

clears the keyboard and registers O and 1. 000s +

CRROEs esas norss Pp

0e0O0C

123456789900 X

12345678915500=
OVERFLOWeeeoeooe oo

0e00C
10

INTRODUCTION TO PROGRAMMING

The Model 1265 Programmable Printing Calculator, with its ''learn mode

programmer'', offers the advantages of computer-like programming power

while, at the same time, retaining all the calculating ease and key-
board simplicity of the basic calculator. The learn mode programmer,
commonly called the LEMP, ''learns'' how to solve a problem as it is
entered through the keyboard. Thereafter, the same problem may be

solved repeatedly for new values with very little manual intervention,

The learning capability of the LEMP is made possible by the addition
to the basic calculator of 128 programming steps with branching and

looping features, These programming steps are independent of the data
storage registers,

Programming the calculator from the keyboard follows essentially the
same procedures as normal keyboard operation except that a few addi-
tional LEMP keys are used to set the LEMP in operation and establish
the program starting point. Eight starting points, called branch

points, are provided for subroutine programming so that operations
that are used repeatedly can be performed without going through the
entire program sequence each time. The branch points also permit
more than one program to be stored in the calculator at one time,

The addition of the optional card reader expands the programming

power and flexibility of the calculator by permitting access to in-
ternal features that are not represented by keys on the keyboard,

11

KEYBOARD PROGRAMMING

The transition from manual operation to keyboard programming requires
an understanding of the operating registers of the calculator and the

nine LEMP keys and switches. The important features of the operating

registers can be summarized as follows:

E-Register This is the entry register, which receives all
keyboard data input and retains the results of each calculation,

A-Register This is the accumulator register, It is used in all
calculations. Results of arithmetic operations are always placed

in the A-register as well as the E-register,

M-Register This register holds the multiplier during multipli-
cation and the divisor during division; this action allows for
constant multiplication and division.

Registers O through 7 These registers are used to store data

for later use. Register O is the automatic accumulation register,
and register 1 is used for accumulating dividends or multipliers
when the yo switch is in the UP position.

12

PROGRAM MEMORY DIAGRAM#*

Branch Branch Branch Branch
Point Step

| Point Step Point Step|Point Step
0 00 2 32 4 64 6 96

01 33 65 97
02 34 66 98
03 35 67 99
04 36 68 100
05 37 69 101
06 38 70 102
07 39 71 103
08 40 72 104
09 41 73 105
10 42 74 106
11 43 75 107
1.2 44 76 108
13 45 77 109
14 46 78 110
15 47 79 111

—
1 16 3 48 5 80 7 112

17 49 81 113
18 50 82 114
19 51 83 115
20 52 84 116
21 53 85 117
22 54 86 118
23 55 87 119
24 56 88 120
25 57 89 121
26 58 90 122
27 59 91 123
28 60 92 124
29 61 93 125
30 62 94 126
31 63 95 127e4*Program steps numbered consecutively beginning with 00,

13

There are nine LEMP keys and switches, Two of these, TO() and HALT,

are essential in entering any program.

The 128 program steps are divided into eight groups of 16 steps each

as shown in the diagram, and a program may be entered at the first
step in any one of these groups. These entry steps are called branch

points. Numeral keys O through 7 are used to specify which branch

point has been selected,

Depressing this key followed by the depression of a numeral key,

0 through 7, selects the next step to be executed, For example, de =~

pressing TO() key followed by numeral 2, selects step 32 (branch

point 2) as the next step to be executed, TO() followed by 6 selects

step 96 (branch point 6) as the next step to be executed.

This key is depressed when loading a program to instruct the

calculator to stop for a keyboard entry during programmed operation,

Will lock when depressed and puts the calculator in the learn-
mode. Each keyboard depression is recorded as a program step. This

key must be released at the completion of the program loading.

When the LOAD key is released, the calculator is ready to ex-

ecute the program, but actual program execution does not begin until
the RESUME key is depressed after the depression of the TO() and

branch point numeral key; where program was loaded. The program will

operate and stop at the first HALT instruction. RESUME must be depress-

ed after each HALT instruction to advance the program.

14

This instruction is used at the end of a subroutine to return
the program from which the branch was made to the subroutine.

Will lock when depressed and is used for the execution of a

program one step at a time, as when checking or debugging a program,
RESUME is used to advance the program,

— Will lock when depressed. With the P and STEP keys both down,

the Program Monitor Lights will display, in octal code, the number of
the next program step to be executed.

C3 Will lock when depressed. To read a particular instruction,
the STEP, I, and LOAD...keys must be down. The Program Monitor Lights
will display the instruction in octal code.

Will lock when depressed, This key is used only in conjunction
with the card reader.

Print Control Switch and Keys

PRINT8 When in the UP position, all entries and functions will print
on the tape.

When in the DOWN position, no printing will take place in any operation
except as selected by the operator or through programmed selection.

This key is depressed after a HALT in a program to print the
contents of the keyboard with an E symbol,

15

This key is depressed after the completion of a calculation, ox

the recall of data from storage, to print the contents of keyboard

with an A symbol,

This sample problem is programmed as follows:

A xB) -C
D

B = 23.75 a constant, and is part of the program; each digit requires
a program step as does the decimal point,

A, C, and D are variables

The program must start at one of the branch points. For this problem,

the branch point is 0,

On a coding sheet list the functions in the COMMAND column as shown

in Figure 1 (next page). The column labled ADDRESS is used to keep

track of the program steps. This is important when more than one

program is to be entered, to insure that the programs do not overlap.

(The function of the CODE column is explained later under '"DEBUGGING.'')

The TO(), O instruction at the end directs the program back to the

starting branch point, This instruction requires just one program

step.

16

PROGRAM Sample Coding Sheet
(AxB) -C _

D

2£| ADDRESS
J00ymann] cope

om

Figure 1

HALT

PAGE_1 OF1
MODEL__1265

XN
Enter A

Njololo|lrp|lolo|lo|lo|r|lo|o

lo

|o|lo|o

ooo

jo

|&]

Add

dMOIND|an|dv

Olen

dv

[Olo|H

oO

Nd

O|

oN

lolol

Iv

|oldv

oo

|RlOoO|N

©

uN

wd

Ooo

[=

17 Programmed by

Loading a Program

To load the program just written on the coding sheet, the following
procedure is used:

LOAD key must be UP

Depress RESET

Depress TO(), O

Depress LOAD key

Depress HALT

Depress PRNT ENT

Depress x

Depress 2

Depress 3

Depress ,

Depress 7

Depress 5

E11Depress

Depress PRNT ANS

Depress +

Depress HALT

Depress PRNT ENT

Depress =~

E10Depress

Depress +

Depress HALT

18

Depress PRNT ENT

*=
1Depress

Depress PRNT ANS

Depress TO(), O

Depress LOAD key to release

Executing a Program

To execute the program just loaded, apply the following values:

A= 12 12 x 23,75) - 15,5 = 31.893
8.45

Cc = 15,5
D = 8,45

12000E
2850CCA

15¢500E
Be450E

31¢893A

Print Switch DOWN

Decimal Wheel at 3

Depress RESET

Depress TO(), O

Depress RESUME

Enter 12

Depress RESUME

Enter 15.5

Depress RESUME

Enter 8,45

Depress RESUME

The program returns to the first HALT instruction for the entry of

additional variables,
19

When writing a program, it is important to remember the following
characteristics of the 1265:

Storage and recall instructions require two program steps;
$C) % +() X

The TO() X instruction requires only one program step.

X = Numerals O through 7

If registers O and 1 are being used for accumulation, a pro-
grammed RESET will clear these registers. If it is necessary

CLR
to use one of the registers, clear the E-register with KB

and then store O into the desired register,

Writing a program using the ,00 for specific decimal round-off,
with entries that exceed the decimal wheel selection and that
are to be printed and used for calculation, entries should be

stored before the calculation, then recalled and printed.
For example: decimal wheel at 4, .00 UP, and an entry of 5

decimals; if entry is printed first only 4 decimals will re-
main in the E - register for calculation, which will effect the

result; because print out is controlled by the selection of

decimals on the decimal wheel,

The following section contains three sample programs to illustrate the

various techniques involved in keyboard programming.

20

Standard Deviation

Ungrouped Data

Program Loading Procedure

Entry Branchpoint O

Switch Settings y+ UP
x

Print, ,00, DOWN

Decimal Wheel at 4

Depress TO(), O

Depress LOAD

Depress each key as shown in the COMMAND column on pages 1 and 2 of the

program sheet,
Release LOAD key after last key has been depressed.

Formula ¢ = ,/ N(%X?) - X)=
N

Example X, 2

X, 1

Xe 5,6
X 3

Operating Procedure

Depress TO(), O

20000EDepress RESUME 1e0000E
Set 2 depress RESUME 5¢6000E

3¢0000E
prints with E 0e0Q0D00E

2¢9000ASet 1 depress RESUME
5 e9300A

prints with E 1Te7117A

21

Program loops back to start, continue with the balance of the X values,
After last entry, depress RESUME, Program will branch to calculate
mean, variance, and deviation.

22

PROGRAM Standard Deviation NO. PAGE__1 OF_2_
Ungrouped Data

DATE. MODEL__1265

ADDRESS REMARKS
COMMAND ODE

(P COUNT)
¥ EIlA|/M|O]| 1] 2] 3|4|5|6|7|81|9Branch Point

01010
enter

o to byancHpoint 1|if E= 0

s
[=

0
|
o

3
|B

=

+]

aa]

n +
N Sr?

lll

+

|=

[+

[DN

j=

= 85 et

PRT A read mean

Nlojlo|ldhlw|Nn|=lolN|lolaldM

WIN

|OINOOO|DAWIN|=|OINIO|jO|MIWINI=

IO

=]Oo ~~ oOo ~

23
Programmed by

PROGRAM Standard Deviation NO... PAGE__2 OF_2
Ungrouped Data .

«|
ADDRESS|(P COUNT)

4

DATE. MODEL___1265

~
1

2
8
4
5
6
7

0
1

2

3

4
5

6

7]
0
1

2
3
4
5

6
7

0
1

2
3

4
5

6
7

24
Programmed by

Radians To Degrees Conversion

Program Loading Procedure

Entry Branchpoints 0 for Radians to Degrees

2 for Degrees to Radians

Switch Settings Print, .00, 3%, DOWN

Decimal Wheel at 7

Depress TO(), O

Depress LOAD

Depress each key as shown in the COMMAND

column on page 1 of the program sheet

Release LOAD key after last key has been

depressed
Depress TO(), 2

Depress LOAD

Depress each key as shown in the COMMAND

column on page 2 of the program sheet

Release LOAD key after last key has been

depressed
Example Convert ,488692 Radians to Degrees

Convert 28 Degrees to Radians

25

Operating Procedure

Depress TO(), O

Depress RESUME a REE0e4886920E
Set ,488692 Depress RESUME 27e99998BETA

prints with E

Read 27.,9999887 degrees prints with A

Depress TO(), 2

Depress RESUME 28¢(000Q00C00E
Set 28° Depress RESUME 0e4886922A

prints with E

Read ,4886922 radians prints with A

26

1 oF.ZzPAGENO.Radians to DegreesPROGRAM

1265MODELDATE

KS
4

REMAR
21 3

Enter riadidgns

COMMAND] CODEDDRESS
(P COUNT)

27
Programmed by

PROGRAM Degrees to Radians NO. PAGE_2 OF_2

DATE. MODEL__1265
ADDRESS

|.

REMARKS
: Di (P COUNT)

COMMAN Zils EA|M|O 11 2 31451 6|7|8]|9
0 |4 HALT ; i2 0

1

2

3
4
D

6
7

0
1

2

3
4
5

6
7

NO

|©O

Jo

|O|o|o

|o|lojo

|ojo|o

|o

|o

|o|o|o

|»

Hiv

Nd

JO

HO

|N|O|O|F

|OJO|O

0

|=

|O0o|N

[do

NNO

Jo

|O|F

|v

IN

NdiF

baled

Fd

|wlo

|ov

|=

ol6|01234567o ~N

NOW|

—=O

28 -
Programmed by

Present Value of Interest Bearing Loan
(Simple Interest)

Program Loading Procedure

Entry Branchpoint 1

°

Switch Settings Print, .00, %5 DOWN

Decimal Wheel at 4

Depress TO(), O

Depress LOAD

Depress each key as shown in the COMMAND column on page 1 of program

sheet,
RELEASE LOAD key after depressing TO(), 1 on step 007.

Depress TO()s 1

Depress LOAD

Depress each key as shown in the COMMAND column on page 1 starting
with step 020, and page 2 of program sheet,
RELEASE LOAD key after last key has been depressed.

Formulas: 1, MV =P (1 + R, T.)
2, RV = MV

J + R, T,

where

MV = Maturity Value

P = Principal of Loan

R, = Rate of interest on loan

T, = Time on loan
PV = Present Value of loan
R_ = Rate of interest on maturity value (current rate)

29

T, = Time remaining on loan at revaluation date

Example A loan of $1500 at 6% for 60 days is revaluated 30 days later
at 7%

Depress TO(), 1

Depress RESUME

1500«¢0000ESet 1500 depress RESUME 6¢0000E
£€0¢0000E

1215¢0000A
1515¢0000E

prints with E

Set 6 depress RESUME

7«0000ESet 60 d RESUME© cpEess 30+0000E
6 will print with E 1206263 7A

60 will print with E

Read 1515.00 prints with A - Maturity Value

Program will go back to beginning for calculation of Present Value.

Depress RESUME

Set 7 depress RESUME

Set 30 depress RESUME

7 will print with E

30 will print with E

Set 0 depress RESUME

Read 1506.26 will print with A - Present Value

30

PROGRAM Present Value of Interest Bearing NO. PAGE 1 OF _2

Loan, (Simple Interest)
DATE.MODEL__1265

ADDRESS
(P COUNT)

COMMAND

Oo Oo Oo

Nooo

{lWIN|—=|O

Oo =

Nooo

hWIN|

I~

|O

NOW

NI—O

NoOojog|lhlWIN|I—|O

31
Programmed by

PROGRAM Present Value of Interest Bearing NO. PAGE_2__OF_2_
Loan, (Simple Interest)

DATE. MODEL__1265

=|

ADDRESS REMARKS

UE

=

(x
|
k=

[FN]

+

|=|+04|012345670/50
1

2
3
4
5
6
7

o0|6|0123456£0l7 10

1

2
3
4
5

6
7 =o Qcvo

32
Programmed by

INTRODUCTION

BASIC CARD PROGRAMMING

The Monroe Model CR-1 card reader is a separate module which can be

plugged into the 1265 for the automatic entry of programs. The CR-1

transmits codes from punched cards into the program memory of the 12635,

The card reader instructions include not only the keyboard functions,
but also a large repertoire of computer-like machine instructions that

greatly increase the programming power of the system,

Among the additional instructions available through card programming

are: Conditional branches, Single-step store or recall operations for

each register, and the ability to manipulate the contents of the work-

ing registers,

Most card reader programs will make use of the basic card instructions
described in this section,

33

Documentation

Unless the program is very brief, it is best to write it first on a

coding form in the same way that you would write a keyboard program,
Remember, though, that you can intermix both keyboard and machine in-
structions in your program. The instruction codes for the keyboard

instructions are given in Table 1 in the Learn Mode Programmer por-
tion of this manual. Those for the machine instructions are given
later in this section.

The cards used in the card reader are made especially for the Monroe

programmable calculators, A maximum of 40 instructions may be punched
on a card, although it is recommended that 32 instructions be punched

per card, The first 32 columns of the card are sectioned in four groups
of eight columns each, to correspond with the octal addressing of the
program memory, Nine rows of each column are divided #nto three
groups (representing three octal digits) for the octal instruction
codes with three holes per octal digit. With the card oriented with
the guide numbers (4, 2, 1) upright, the row down the left-hand side
under the letter V is used for validating each punched code, A vali-
dation hole must be punched for each code to be read. Adjacent to the
validation row is another set of prescored holes. A punch in this
position causes the cancellation of an instruction, even when the vali-
dation hole has been punched,

Beginning at the left-hand end of the card, punch the octal instruction
codes according to the table of octal codes and octal digits in the
LEMP programming description. A hole represents a 1; absence of a
hole represents a zero,

34

Punch a validation hole for each valid instruction, An octal code of

000 may be entered by punching the validation hole only.

To eliminate an unwanted instruction, punch the hole next to the vali-
dation hole,

To eliminate an unwanted hole you may cover the hole with black masking

tape,

Loading a Punched Card Program

To load a punched card program into the calculator, use the following
procedure:

Depress the RESET key unless important information is stored in
CLR

Register A, M, O, 1, or E, The KB key may be used to clear
the E-register only,

With the LOAD key up, depress the TO() key.

Depress one of data entry keys (0 through 7), depending on the
branch point at which the program is to start.

Depress the LOAD key.

Insert the card in the mouth of the card reader with the leading
edge of the card forward and the printed side up. Move the card

into the slot until the card reader catches the card and slides
it through automatically, If the program is contained on more

than one card, feed the cards in the order in which the program

is to be read into memory.

Release the LOAD key.

35

Its layout was designed to con-Below is a sample Monroe program card,

Darken-form to the address and command coding systems used in the 1265,

ed holes represent sample codes punched in the card.

0
o
+

1

a
Gy

+O

+

mn

=»

£2

0

+

0”

+
0
O°

OT

nn

NM

UO

&
A

Oc

~~

WT

OU

Ow

—

—

O—~

MH

©

T=

OO

TNO

-

OH

0
¢
A

oc=~

>
c

cH

0.C

OO

0.

g
oO

0

oO

gg

0

cc

OM

OUD

OT

&

0
<

£

25

o

0
go

Ou

Eng

3

En

0

&

ve

iC
gC

4
uO

om

0,

oO

0

0,

o

0

O00

ovo

oO

O

0
-~

O

0
-~

es

©

om

HT

qT

CQ

Et

d0O0UA

NO

OO

J

O0g

oo

™W

©

O

CT

Td

O

S895

aw

nO

FO

0

s

ML

0&8

od

©

A

«eM

@

°r

OONOST

OO

IO

=

—~

0+

+p

NT

N+

on

0
&

+

PROGRAM?

CARD

OF

a

—

r

=

—

=.

JR0UEB0OO0000000000000000CO0000000-

00080N00000000000000000000000000,

WOE

108D0ND000000,00000000:0000000:

DoOOoeOODOOOODOOOOOOOOOOOOOO0000

WOOEEROOMODN0DDOMOOOODOOOOOOOO0

Ot

0

0M0N00N000000000000000000000000:

{I

OE00000MO000000OM

0000000000000

Os

OEONONEENN00000:0000000000000000;

EURO

0OOUOOO0O0O0ODO0OOODOOO0OOOn

MONROEH

A

DIVISION

OF

LITTON

INDUSTRIES

Ferme

Tene

rere

ne

>

ERE

EGEE

1512-S

PRINTED

IN

U.S.A.|BH

EIG956

000
001
002
003
004
005
006
007
010
011
012
013
014
015
Ole
017

Address

36

Executing a Punched Card Program
The operating procedure for executing a punched card program is iden-

tical to that of executing a learn mode program:

Depress the RESET key unless important information is stored in
CLR

register A, M, 0, 1, or E., The KB key may be used to clear the

E-register only.

With the LOAD key released and the STEP key up, depress the
TO() key.

Depress one of data entry keys (0 through 7), depending on the
branch point at which the program has been loaded.

Depress the RESUME key. The program will be executed until a

HALT instruction is encountered, At each HALT enter data as

directed in the program instructions and depress the RESUME key.

Whenever the program halts, the RESUME key must be depressed to
continue program execution.

BASIC MACHINE INSTRUCTIONS

The following list gives the command, name, octal codes, and a brief
description of the basic machine instructions that can be used with the

card reader. You may notice that some of the machine instructions ap=-

pear to perform the same functions as certain keyboard instructions;
for example, the Store and Recall machine instructions and the [()

and 4() keyboard instructions. Although you can use either set
of instructions for storing and recalling, the machine instructions
are more efficient, since they require only one program step each in-
stead of two program steps for each keyboard instruction.

37

Certain functions require a combination of codes rather than a single
code, For these functions the combination is listed,

Command Name Code Description
TO () Branch 74X Branches to branch point X, where X

equals 0 through 7, Sets the P-counter
to the address following the branch in-
struction, If the additional program
memory is installed,*the TO () codes
will be 75X for the branch points in
the additional memory.

RCL P Recall P 557 Recalls the P count to return the pro-
gram to the main routine at the end of
a subroutine. Control is transferred
to the program location immediately
following the Branch instruction that
initiated the subroutine execution,

JUMP JUMP 6 XX Causes the program to jump to the ad
dress defined by the digits XX in the
instruction, These digits represent
the two least significant octal digits
in the address; therefore, a Jump in-
struction in locations 000 through 077
takes the program to an address within
that set of 64 steps. For the same rea-
son a Jump in locations 100 through 177
takes the program to a location between
100 and 177,

HALT HALT 401 Stops program execution until the RESUME
key is pressed to restart program ex-
ecution,

No
NOP Operation 456 Causes the program to space through its

address without performing any operation,
Is useful to fill in unused code posi-
tions on the program cards without zero
entry instructions,

* This applies to the Model 1265W-1 which has double the program memory

of Model 1265,

38

Command Name Code Description
STR (0) Store 0 457

STR (1) Store 1 440

STR (2) Store 2 441

STR (3) Store 3 443 Copies the contents of the E-

STR (4) Store 4 444 register into the specified
STR(5) Store 5 445 register, The contents of the
STR (6) Store 6 446 E-register remain unchanged.

STR (7) Store / 447

STR (A) Store A 455

STR (M) Store M 454

RCL (0) Recall Register O 477

RCL (1) Recall Register 1 460

RCL (2) Recall Register 2 461 Recalls the contents of the
RCL (3) Recall Register 3 463 specified register into the E-

RCL (4) Recall Register 4 464 register, The contents of the

RCL (5) Recall Register 5 465 specified register are not changed.

RCL (6) Recall Register 6 466

RCL (7) Recall Register 7 467

RCL (A) Recall A-Register 475

RCL (M) Recall M-Register 474

XCEA Exchange E and A 402 Exchanges the contents of the
E-register and the A-register.

XCMA Exchange M and A 403 Exchanges the contents of the
M-register and the A-register.

CLR A Clear A 424 Clears the A-register to zero.

39

Command Name Code

SHLA Shift A Left 421

SHRA Shift A Right 420

SHRE Shift E Right 422

INXA Increment ex-%* 414
ponent of A

INXE Increment ex- 415
ponent of E

DCXA Decrement ex- 416
ponent of A

DCXE Decrement ex- 417
ponent of E

NORM Normalize 706

Note:

Description
Shifts the numeric portion of the
A-register one digit position to
the left, New digit appearing
on the right will always be zero,
The left hand digit will be lost,
The exponent is not affected, The
value in the register therefore,
is wvsually changed.

Shifts the numeric portion of
the A-register one digit position
to the right, New digit appearing
on the left will always be zero.
The least significant digit will
be lost.
Shifts the numeric portion of the
E-register one digit position to
the right, New digit appearing on
the left will always be zero. The
least significant digit will be
lost.
Increments the exponent of the A-
register by one, Has the effect
of having multiplied the value in
the A-register by ten,
Increments the exponent of the E-
register by one. Has the effect
of having multiplied the value in
the E-register by ten.
Decrements the exponent of the A-
register by one, Has the effect
of having divided the value in the
A-register by ten.
Decrements the exponent of the E-
register by one. Has the effect
of having divided the value in the
E-register by ten.
Equalizes the exponents in the E-
and A-registers. The larger num-
ber retains its original exponent,

The Normalize instruction should generally precede any ''IF!
statement comparing registers E and A,

40

))

* The 1265 operates internally in scientific notation although all printed
figures are automatically converted to the decimal setting. However,

exponents can be controlled utilizing card reader instructions.

Command

* *SFE >A

* *SFA >E

* *SFAZE

%* %*SFE=0

* *SFE <0

* *SFAZO

* *SFA <0

SET FLAG ''IF' COMMANDS

Name Code

Set Flag If E 706
Greater Than A 431

Set Flag If A 706
Greater Than E 430

Set Flag If A 706
Not Equal to E 432

Description
Compares the contents of the E-
register with the contents of the
A-register and sets Flag 1 if the
contents of the E-register are
greater,
Compares the contents of the A-
register with the contents of the
E-register and sets Flag 1 if the
contents of the A-register are
greater,
Compares the contents of the E-
register with the contents of the
A-register and sets Flag 1 if the
two are not equal.

Compare to Zero

Set Flag If E 733
Equals Zero 437

Set Flag If E 733
Zero to Negative 436

Set Flag If A 705
Not Equal to Zero 434

Set Flag If A 705
Zero or Negative 435

41

Sets Flag 1 if the value in the
E-register is equal to zero,
Sets Flag 1 if the value in the
E-register is equal to or less
than zero.
Sets Flag 1 if the value in the
A-register is not equal to zero.
Sets Flag 1 if the value in the
A-register is equal to or less
than zero,

OTHER CONDITIONAL FLAGS

Command Name Code Description
* ¥*SFRo>A Set Flag If Rg 433 Compares the numeric portion of

Greater Than A register O with the numeric portion
of the A-register without regard to
their exponents and sets Flag 1 if
the contents of register O are great-
er,

%* *SFSNS Set Flag on 523 Sets Flag 1 if the SENSE key is
SENSE depressed,

Skip Commands

SFK1 Skip on Flag 1 540 Causes the program to skip
step immediately following

the
if

Flag 1 is set. The flag is reset
by this instruction,

* % Generally, the SKF 1 instructions should immediately follow an
HIP" statement which would set the flag, This is because most of the
mathematical functions automatically reset Flag 1.

SKX=0 Skip If Exponent 535 Causes the program to skip
Zero step immediately following

exponent of the A-register
SKXP Skip If Exponent 536 Causes the program to skip

Positive Zero step immediately following
exponent of the A-register
or positive.

42

the
if the
is zero,
the
if the
is zero

Expansion of Power

The expanded power in basic card reader programming results from addi-

tional functions not available on the keyboard: a more flexible sys-
tem of branching, a reduction in the number of steps required to per-
form certain operations (i.e. storage and recall), conditional branch-

ing operations, and manipulation of data in the E- and A-registers.,

Saving Program Steps

Using the card reader Store and Recall instructions instead of the

equivalent keyboard instructions saves program steps. When a 4() or

y() function is entered, the instruction code takes one program step;
the numeral entry representing the affected register takes another.
In the machine instructions there are separate single codes for Store
0 through Store 7 and for Recall 0 through Recall 7, each instruction
occupying only one program step.

Jump

The Jump instruction in the basic card reader codes allows many more

branching possibilities than the TO () branch instruction. With the

Jump instruction, the program may branch from any address in a 64 step
set (octal 00 through 77) to any other step within that same 64 step
set, regardless of branch points. For example: in the layout below,

a 651 instruction at the octal address 004, (A) causes a branch to

step 051, (B). The same instructian (651) at step 104, (C) causes a

branch to step 151, (D). In each case the two digits following the
6 in the Jump code are the same as the last two digits in the desti-
nation address.

43

“a

om~®

<5

©

Pe

HN

mtn

ONO

HNMm<nwoN|O

~

Lgfo
<r

<n

Ln

NO

ON

N

2
—

|=

~~

ir

|

—

mo
(Ohf==H

0

N

Mm

Aa
OA

Nm

<n

WO

NO

FNM

NONOANMISTLONOAHNMS

NON

3&
oO

oO

ol

|e

Nm

™

2
~~

=

—

|

|

—

|

—~

HH
OBZa

«

0

x
O

AOA

ol!

§

1

a
OHNMm

<SWMWONO

HMO

NOHNMmIWONOHNM

EID

ON

LJa
<t

<
[D

n

No

ON

N

2
o

oo

|O

olo

ol|lo

o

oI
OB

28

o

om

Ol
mA

:

SR

SR

wo

:
|

0
OH

NM

|FINONO

HANMTLWONOANMTOONOANM

LON

Jfa
oO

Qo

ol

|
3

Nm

om

0<<

O

Oo

olo

ojo

ol|lo

©

@

|{

oT

i

OM

|

28

o

~

moOmA

64 STEP SET64 STEP SET

44

Keyboard Debugging
~

You can test your program by executing it with sample values with known

results and checking the calculator result to see that it compares with
the known results, If the results do not agree, you can verify the pro=-

gram to see whether it is stored correctly, or you can execute it step
by step to check each operation,

In order to test and debug a program, you must know the octal numbering

system, because it is used in this manual as a form of shorthand to

refer to program steps and keyboard codes. A short introduction to the

octal system is given here for your review.

Any number written in binary form (ones and zeros) may easily be con-

verted into an octal number by dividing the number into groups of three
and using the following table:

Group Octal Digit
000 o e eo o o 0 o ® 0 0 eo @ 0

001 , & 4 s « # ¢ 4 ¢« # o & 1

010 o 6 ov 0 o ¢ ¢ 0 0 0 « o 2

Oll ¢ ¢ ¢ o ¢ o o o o ¢ o o 3

100 ¢ ¢ 6 ¢ 6 0 0 oo 06 0 « o 4

101 ¢ 4 oo o « 0 oo 0 « « oo 5

110 ¢ 4 4 oo ¢ oo oo ¢ o o 6

111 6 6 6 6 6 6 0 6 0 0-0 o 7

As an example of octal translation, the number

100000001 is divided into groups of three and

written as follows:

45

Stored number 100 000 001

Octal number 4 0 1

Stored
There is a three-digit octal instruction Key Code Number

code for each key on the keyboard, The 2 002 000 000 010

codes for all of the keys on the key- + 060 000 110 000

board are shown in table 1 before the

Exercises at the end of this section,

The eight monitor lights of the LEMP show an octal code. A lighted
indicator represents a 1 and an unlighted indicator represents a O,

Notice that there are two groups of three lights and one group of two

lights, The two groups of three display the two right-most octal digits
in the code. The two left-most lights display the left-most octal digit
with the 4 position omitted for reasons of internal structure of the cal-
culator. For example, the following codes are displayed as shown at the

right. An asterisk represents a lighted indicator and a circle repre-
sents an unlighted indicator.

421 421 421

003 oo 000 ow
056 oo dot Eko

When the P key and the LOAD key are
Instruction Program

depressed, the monitor lights dis- Key Code Step
5 005 000

play the address of the next program PRT ENT 026 001
x 070 002

step, When the I key and the LOAD
6 006 003

key are depressed, the monitor lights PRT ENT 026 004
Z 020 005

display the instruction code of the PRT ANS 027 006

46

current program step, For example,

assume that the preceeding program
has been loaded into memory,

The indicators display the codes shown P

at the right with the P key or the I BI
key depressed, The octal codes are 001

given to make the comparison clear. 002

003
All of the basic keyboard codes have a

004
000 in the left-most octal group; for
example, 000 111 010 (072) for the
+ key, The LEMP keys, however, have

octal codes with 4, 5, or 7 in the

left-hand position, The left-hand 1

is necessarily omitted as shown below.

HALT (Code 401) 100 000 001

TO () 3 (Code 743) 111 100 O11

L

key
depressed

005

026

070

006

00 000 00%

*% *o00 o¥*%k

Each program step has an address identified by three octal digits.
The first step is 000 and, in a 128 step program memory, the last
step is 177.

within the program memory there are three units of grouping steps.
Octals - An octal is a grouping of eight steps.
Sets - A set is a grouping of eight octals or 64 steps. Within

each set the two right hand digits of the addresses will
range from 00 to 77,

Branch Points - A branch point is a starting point for a program
or subroutine. These starting points are spaced
at 16 step intervals,

47

On this page is a program memory diagram showing the octal addresses for
128 steps.

PROGRAM MEMORY DIAGRAM

(Octal Addresses)
Branch Branch Branch
Point Address Point Address Address Point Address

0 0 0 0 2 0 4 0 1 0 © 6 1 4 0
1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 5
6 6 6 6
7 7 7 7
0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 5
6 6 6 6
7 7 7 7

1 0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 5
6 6 6 6
7 7 7 7
0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 5
6 6 6 6
7 7 7 7

64 STEP SET 64 STEP SET

48

The branch points in octal notation are as follows:

Branch Point Decimal Step Octal Step
0 eo a 0 ® ® o 000 a eo ° ® o @ 000

1 wv soos 016 + 4 ooo. 020

2 4 ee ees 032 4... . . 040

3 40 0 eos. 048 060

A wos oo os 064 4 uss so 100

5 ws so oss 080 +4... . 120

6 oo 0 ses 09 4 4... . 140

7 ® ® 0 ® ® ° 112 ® 0 e e e ® 160

Verifying A Program

To verify a stored program, the LOAD and I keys are depressed and the

RESUME key is used to advance the calculator through the program steps
so that the operator may observe the stored instruction codes. The pro-
cedure is as follows:

Depress the RESET key unless important information is stored
in registers A, M, 0, or 1. If the contents of any of these

registers must be saved, the op key may be used to clear
the E-register only.

Depress the I key.

With the LOAD key up, depress TO(), and a branch point
number,

Depress the LOAD key. The monitor lights will display 74(n)

where n represents the starting branch point of the program.

49

Figure 1
1 1PROGRAM

Sample Coding Sheet NO. PAGE_-~- OF_1_

(A x B)-C = 31.893 A=12 ~
D Cc=15.5 1265 _an DATE MODEL_2%°

=|

ADDRESS | REMARKS|ones COMMAND] CODE ST 31a :
|

0 00

50 ~
Programmed by n

Depress the RESUME key. The monitor lights will display
the instruction code in the branch point location of the

program,

Continue depressing the RESUME key, The instruction codes

will be displayed successively in the monitor lights,

As an example of program verification, load the program on the sample

coding sheet in figure 1. After releasing the LOAD key, the pro-
cedure is as follows:

Depress RESET

Depress I

Depress TO ()

Depress 0

This sets the program to branch point 0, (Step 000)

Indicators Octal Code

Depress LOAD * % %* 00 000 74Q%%

Depress RESUME

Verify code in Step 000 00 OOO OOF¥ 401

Depress RESUME

Verify code in Step 001 oo o*o *%o 026

Depress RESUME

Verify code in Step 002 oo * %% o0o0o0 070

Depress RESUME

Verify code in Step 003 oo ooo oO0%o 002

Depress RESUME

Verify code in Step 004 00 OOO oO%%* 003

51

*% The 9th light must be assumed for codes whose left hand digit is a

4, 5, 6, or 7.

Depress RESUME

Verify code in Step 005 oo oo%* o%o 012

Depress RESUME

Verify code in Step 006 Ooo ooo *%% 007

Depress RESUME

Verify code in Step 007 00 ooo *o* 005

Depress RESUME

Verify code in Step 010 oo o* o o0o0o0 020

Depress RESUME

Verify code in Step 011 oo o*o * %% 027

Depress RESUME

Verify code in Step 012 oo *% o ooo 060

Depress RESUME

Verify code in Step 013 00 OOO ©OO0*% 401

Depress RESUME

Verify code in Step 014 oo o*o * %*o 026

Depress RESUME

Verify code in Step 015 oo * *¥ o o*o 062

Depress RESUME

Verify code in Step 016 oo o*o o0o00O0 020

Depress RESUME

Verify code in Step 017 oo ** % o%*o 072

Depress RESUME

Verify code in Step 020 00 000 OO0% 401

52

Depress RESUME

Verify code in Step 021 oo o%o *%*o 026

Depress RESUME

Verify code in Step 022 oo o%*o o0o0oO0 020

Depress RESUME

Verify code in Step 023 oo o%o %*%o 027

Depress RESUME

Verify code in Step 024 *% * oo o0o00O0 740

If at any time you want to check the step number, depress the P key.
The indicators will display the address of the next instruction to be

executed, A program command and its address may not be displayed after
the same depression of the RESUME key because the address indication is
always one step ahead of the command indication,

Testing A Program

To test the operation of a program, depress the STEP key and use the
RESUME key to execute the program one step at a time while you check

the tape for results, The following procedure should be used to test
a program step by step:

Be sure that the LOAD key is off,
Depress the P key.

Depress the RESET key,

Depress the TO () key.

Depress one of the data entry keys O through 7, depending on the

starting location of the program. The LEMP indicators will dis-
play the step number corresponding to selected branch point,

Depress the STEP key,

53

Depress the RESUME key. The instruction at the branch point will
be executed, The LEMP indicators will display the number of the
next step to be executed,

Continue depressing the RESUME key. The instructions in successive steps
will be executed one at a time, For example, see figure 1 when step
001 is displayed in octal lights, enter A, depress RESUME key, Enter
sample values at HALT steps. The tape will show the contents of the E-

register at the end of each instruction, With the P key depressed, the
LEMP indicators will display the step number of the next instruction to
be executed, If the I key and the LOAD key are depressed, the LEMP in-
dicators will display the code of the last instruction executed, Be

sure to release the LOAD and I keys and depress the P key before con-

tinuing with the step procedure,

As an example of testing a program, the program in figure 1 should be

checked step by step as follows, using the sample values: A = 12,

C =15.5, and D = 8.45

Release LOAD

Depress P

Depress RESET

Depress TO()

Depress O

The program is set at branch point (0) or Step 000,

Depress STEP

In stepping through a program, enter each variable at the HALT step.

54

If a program step is found to contain the wrong instruction, you can

change the instruction by using the following procedure:
Make sure that the LOAD key is up.

Depress the P key.

Depress the TO () key.

Depress one of data entry keys O through 7, depending on the
branch point for the program block that contains the step to
be changed. For example, to change Step 045, depress the 2

key, because 2 is the branch point for the program block be-

ginning with Step 040,

Depress the LOAD key.

Depress the RESUME key repeatedly until the address of the step to
be changed appears in the monitor lights,

Depress the key corresponding to the correct instruction to be

stored as a program step. The new instruction is now stored.
Be sure you release the LOAD key before entering a TO ()

A

instruction to execute the program.

As an example of changing a program step, in the program in figure 1,

assume that the + key had been accidently depressed instead of the

first X key during the loading process, thereby storing the wrong in-
struction code in Step 002, Correct the error as follows:

Release LOAD key.

Depress P

Depress RESET

Depress TO () Monitor lights
Depress O O00 OOO OOO
Observe Step 000 in monitor lights
Depress LOAD

55

Depress RESUME

Observe Step 001 in neon indicators 00 OOO OO%

Depress RESUME

Observe Step 002 in neon indicators 00 ooo oO0%o

Depress X

The lights will show after X key is 00 oo0oo0 O%%

depressed
Release LOAD key

Depress TO ()

Depress O 00 OOO OOO

Depress RESUME

Program starts from beginning

Programming Techniques

In order to write effective keyboard programs, you should have a grasp
of three special programming techniques: writing subroutines, using

constants, and looping,

Subroutines

If a function or sequence of steps is common to more than one program,
the sequence may be stored at one of the branch points of the program

memory as a subroutine. A RCL P instruction must be entered as the

end of the subroutine so that program execution will return to the point
from which the branch was made to the subroutine.

Each time the function of the subroutine is required, a TO () instruc-
tion is inserted in the program with a numeral specifying the branch

point where the subroutine is located. During program execution, when

the program encounters the TO (N) instructions, the program jumps to
56

that branch point and executes the subroutine, When the RCL P in-
struction is encountered at the end of the subroutine, the program

jumps back to the step following the TO(N) instruction in the main

program,

An example of a main program and a subroutine is shown in figure 2,

In the program each time a TO(l) instruction is encountered, the pro-
gram branches to the subroutine beginning at Step 020, At the end of
the subroutine, the RCL P instruction causes a jump back to the step
after that TO(l) instruction in the main program. In other words,

the main program takes up where it left off,

In this example, the subroutine, which calculates a constant discount

rate is called on twice in the main program. This eliminates the

necessity of repeating this sequence of steps in the main program,

As sample values use:
Quantity = 10 items

Price = $5,00
10«00E

Constant chain discount rate is less 5% 5e00E
EL 50¢00A

450 12A

Set decimal on !''2',

57

PROGRAM Figure 2 Main Program with Subroutine NO. PAGE_Ll OF_1_
Sample

Invoice Extension with constant chain DATE. MODEL__1265 -

discount rates -

5] ADDRESS REMARKS
COMMAND} CODE 23] 4

Na

ON

NO

NO

OC

INN

IO

PRR

0

FE

oF

OlNNIIFFIoNP

on

lo

lo

=

Fo

(FEN

|

© »

NO|Ol,lWN

|=|OINOO|DWIN

|=

o No

NO

bhwWN|[—|O

Nojo|lbhlwWiIN|—=|O

58
Programmed by _

=©c©Ie
om

Constants

Constants, are stored by the programmer, either manually in a storage
register or by programming the numeric entry.

A constant may be stored in registers 0 through 7 by entering it
through the keyboard and then storing it with §() followed by the

numeral of the desired storage register, Whenever the constant is re-
quired by the program, a 4() instruction followed by the appropriate
numeral returns the constant to the E-register for the desired opera-
Eioh

A constant may be stored in the program memory by entering it as a

subroutine beginning at one of the branch points. The constant must

be followed by an RCL P instruction to return to the program that call-
ed for the constant. For example, the constant 409.83201 could be

stored as follows:

ADDRESS REMARKS
ADDRESS Jconnmano CODE

eT AaTmTol tl 21 3 4l51617 18109

59

=I

OIN|IO|O|Ph|W|IN|=|O

nn

|Ojo|O0O|O|jJO

|O|O

|O

|O

N|HFJIOIN

|Ww|Oo

(Nd

|F|JOo|M

nn

|O|O|O|O|~

|=

|F|O

|0O

Point

$+¢| ADDRESS

4110|Of] HALT

A TO (7) instruction would be entered in the program wherever this con-

stant is required, The RCL P instruction takes the program back to the

step following the TO (7) instruction.

Looping

The looping, or unconditional branching, capability of the LEMP makes

possible the repeated execution of the same program as many times as

desired, A TO () instruction at the end of the program followed by

the number of the branch point where the program began will alwys re=-

start the program as soon as the last instruction is executed. With

HALT instructions inserted in the program, different variables may be

entered each time the program is executed,

The following routine will sum XR for as many values of X as are enter-
ed, After the last X value, depress %, PRNT ANS to print x=,

REMARKS
21 31] 4

CODE

60

Summary of Keyboard and LEMP Instructions

Table 1 summarizes all keyboard and LEMP instructions, It lists each

key, along with its command, instruction code, and functional descrip-
tion,

Key Command[0 o

1

2] 2

3[alBl6]ZlBl
9

=

oi

oo]|

Table 1,

Code

000

001

002

003

004

005

006

007

016

011

0l2

Keyboard and LEMP Instructions

Function

Enters the respective digit into the E-reg-
ister, If a numeric key is the first entry
after the calculator has completed an oper-
ation, the previous is cleared and the alge-
braic sign is automatically set to positive
as the digit is entered. Subsequent numeric

key entries do not alter the sign of the E-

register, Up to 14 digits may be entered,
Each result is calculated to l4-digit accuracy
and rounded to the setting on the decimal

wheel, If too many digits are entered, an

ERROR condition occurs.
The ERROR condition disables the keyboard un-

til CLR KB or RESET is depressed,

Terminates the integer part of a numeric entry
and defines the start of the fractional part,
If the decimal point is the first entry after
the calculator has completed an operation, the
value '"0," is entered into the E-register,

61

Fey
CLR
KB

al

Command

CLR KB

Hl

Code

033

020

021

022

023

Fumetion
Clears the contents of the E-register to 0 and

also resets the overflow and error conditions.
The CLR KB instruction does not terminate a pre-
vious arithmetic or algebraic sequence.

Executes the last entered arithmetic or alge-
braic function and terminates the algebraic se-
quence of operations, The 3; key need only be

used to terminate a particular computational

sequence, The result is printed and stored in
the E-register after decimal point alignment
and may be used as the first entry of a sub-

sequent arithmetic or algebraic sequence.
Multiple = key depressions without interven-
ing data entries or instructions do not perform

any arithmetic operations.

Causes the total of the addition register to be

printed, Does not alter the contents of the
adding register.

Causes the result of a multiplication or div-
ision to be added to the contents of register 0,

Causes the result of a multiplication or div-
ision to be subtracted from the contents of

register O.

62

NE

EEE

[oo]

[=]

Command Code

034

6 006

034

7 007

034

8 010

034

9 0l1

Function

Percent of Change; calculates and prints the

amount and percent of change between any two

numbers,

Percent Minus; calculates the amount to be

subtracted and prints the percent, and amount

in red; prints the new total in black, The

new total remains in the A-register and may be
oHused for additional calculations. The

command should be given if the new total is
not to be used again,

Percent Plus; calculates the amount to be add-

ed and prints the percent, amount, and new

total, The new total remains in the A-registex
and may be used for additional calculations.
The % command should be given if the new total
is not to be used again.

Square Root; calculates the square root of the
number in the E-register.

63

Key Command

RST

Code

036

024

025

Function

Causes the contents of the accumulating

register (0) to be recalled, The contents
are cleared from the accumulator but are
available for further calculations.

Resets the contents of registers E, A, M, O,

and 1 to zero, The RESET key also resets
the overflow and error conditions, If an

algebraic or arithmetic sequence is in pro-
gress when the RESET key is depressed, that
sequence is terminated,

Depressing the [() key followed by a single
digit (0 through 7) transfers the contents
the E-register to the storage register identi-
fied by the numeric entry, The contents of
the E-register remain unchanged.

64

PRNT
ENTa)
[8

PRNT
ANS

Command Code

PRT E 026

PRT A 027

+() 031

M

Oo 032

+ 060

- 062

xX 070

Function

Depressing the PRT E key causes the contents
of the E-register to be printed on the tape.

Depressing the PRINT ANS key causes the con-

tents of the A-register to be printed on the

tape,

Depressing the 4() key followed by a single
digit (0 through 7) transfers the contents of

the storage register identified to the E-reg-

ister, The contents of the storage register
remain unchanged.

Provides for sub-total of the accumulating reg-
ister, The contents of that register remains

unchanged.

Adds the contents of the E-register to the A-

register, Does not terminate an arithmetic
condition set up by a previous operation, The

previous operation will be cleared.

Subtracts the contents of the E-register from

the A-register. Does not terminate an arith-
metic condition set up by a previous operation,
The previous operation will be cleared.

Sets up a multiplication of the contents of the

E-register times the next data entry. Terminates

any algebraic operation previously set up using
the result as the operand.

65

Command

HALT

RCL P

T0 ()

Code

072

401

557

74(n)

_Function
Sets up a division of the contents of the E-

register by the next data entry, Terminates

any algebraic operation previously set up using
the result as the operand,

Stops program execution, The RESUME key is
depressed to restart program execution.

Causes reentry to main program from the end of

a subroutine,

Causes a branch to program step n, where n is
one of the branch points, 0 through 7,

66

Conditional Branching

Conditional branching is the method used to program the calculator to
decide which of two routines to perform, This decision is usually based

on whether or not a certain condition is met, The 1265 card reader codes

provide ample means for setting up the desired test, testing for the

condition and then jumping to the appropriate sequence of program steps,

To effect a conditional branch, codes are available for maneuvering

values into the E and A registers to set up a test; setting a flag if
the condition is met; and skipping a command which is usually a jump to
a different routine,

The Skip instructions; Skip if Flag 1, Skip if Exponent Zero and Skip

if Exponent Positive are usually followed by one or two Branch (6xx)

instructions. The Skip instruction causes the next command to be ig=-

nored if the condition has been met, If the condition has not been

met, the next command is executed,

The following sequence illustrates the branch sequence described above,

The example is taken from a program to calculate the irregular final
payment of a debt, after a series of regular and equal monthly payments.

67

REMARKS
2] 3] a

PointBranch COMMAND} CODE 51671895 ADDRESS
i (PCOUNT)

—T51.

OifN

OY

Ol|hjWIN

—=|O

NN

|»

od

xo

0»

rials

lobo

|r]w

oflv|lo|o|lr|lolo

loo

In step 100, Flag 1 is set if the difference between the Principal and the

Monthly Payment is less than or equal to zero, In this case, the Jump in-
struction is ignored and the Monthly Payment and the Principal are equal-
ized and the balance is set — zero, If Flag 1 is not set, imply-
ing that the Principal is greater than the Monthly Payment, the program
jumps to Step 110 at which point it will return to the beginning to start
a new problem,

The second type of conditional branch employs two successive Jump or
Branch instructions immediately after the Skip instruction. The step
to which the program branches is determined by the skip condition. If
the skip condition is not met, the program performs the first jump step.
If the skip condition is met, the second Jump or Branch instructicn is
executed. This type of conditional branch is illustrated on the next

page,

68

~lolN|lojlo|dlw|N|—

ojo

(tn

[nd

[NS

||»

oh

[aw

N

lo

lo

[0

[on

wd

oN

ju

(Nw

us

No

In order to determine if the total number of payments to be made is equal

to the payment number, the calculation n-N is performed, Flag 1 is set
if n=-N=0. If Flag 1 is set, the Skip step causes the first Jump instruc-
tion to be ignored and the Jump from step 121 is executed. If Flag 1

is not set, the first Jump is executed and the program continues with

Step 122.

The example below illustrates a conditional branch operation in which

two numbers are normalized in order to make a comparison.

= REMARKS
g2|

ADDRESS |, vianpl cope
S&| (PCOUNT)

Njoaojo|RlWNIF|O

The variable x is recalled and placed in the A-register. The vari-=
able a is recalled and left in the E-register. After the exponents have

been equalized by the NORM instruction, the numeric portions of the E-

and A-register contents are compared and Flag 1 set if the E-register
contents are greater, The Skip instruction, SKFl, tests the flag to

69

determine whether the program will jump to the x » a calculation or con-

tinue with the a> x calculation.

The sequence below illustrates the use of the SENSE key to control
branching. The example is taken from a statistical program to compute

a standard deviation.

ADDRESS

0|o0 RST

Branch Point

0

Nook

lw

IN|

~O

AO

|M

|ov

||

||MO

oO

Nov

|w

|>

O

|v

FINN

|W

[Ow

|=

|»

Until the SENSE key is depressed, the program loops back continually
to Step 001, after summing each x and its square. At Step 001 the

next x value is entered. Flag 1 remains reset, and the Jump to Step
33 (Summing Routine) is executed every time data is entered. When all
of the data has been accumulated, the operator depresses the SENSE key,
As the program encounters the SFSNS instruction, Flag 1 is set. The

SKFl instruction causes the Jump instruction to be ignored, and the

program starts operating on the summations to calculate Mean, Variance,
and Standard Deviation beginning with Step 005,

Data Manipulation

Data in the A- and E-registérs can be manipulated with the shift in-
structions, The A-register contents can be shifted one digit position
to the left or right by the Shift A Left and Shift A Right instructions

70

respectively. The E-register contents can be shifted one digit position
to the right by the Shift E Right instruction, These "shift! operations
do not alter the exponent of the affected register, On the other hand,

the ICXE, ICXA, DCXE, and DCXA instructions enable the programmer to

manipulate the exponents without losing significant digits. The value

of this data manipulation capability is not as obvious as that of the
other functions, In writing a program, however, these codes are often
useful in stretching the programming power of the unit,

Debugging

The debugging procedure for punched card programs is the same as the

keyboard program debugging procedure, The TO () key is used to
start the program at the desired branch point, and then the program

can be verified using the LOAD key and the RESUME key or tested using
the STEP key and the RESUME key.

Programming Techniques

Writing a program with card reader instructions involves the same

techniques as those used in writing a program with keyboard instructions,
except that the repertoire of operations is much larger and more effi-
cient, It is good practice, as you write the longhand program, to re-
cord at each stage the contents of all registers used in the program.

Subroutines for card reader programs are written in the same manner

as those for keyboard programs. The subroutines may be stored at any

available branch point in the program memory. As in keyboard programm-

ing, a TO () instruction must be stored at the point where the sub-

routine is needed, and the subroutine must end with a RCLP instruction,

71

Card reader programs requiring more than 32 steps can be punched on more

than one card. When loading a program, the cards are run through the

reader in succession without intervening keyboard operation, Be sure
that you know the layout of the program so that your card reader pro-
gram will not overlay another active program or go beyond the last step.

The SENSE key can be used whenever you want to control manually the path
the program takes at any point, For example, if the program is written
to determine one of two parameters, you can choose the parameter to be

calculated by inserting a Set Flag on Sense Switch instruction at the

point where the decision is to be made, followed by a Skip on Flag 1

instruction and the appropriate Jump or Branch instructions, A HALT

instruction must precede the Set Flag instruction because program ex-
ecution must be stopped to allow for the depression of the SENSE key.
When the program is restarted with the RESUME key, the program will take
either the normal path or the path called for by the Skip instruction.

The addition of the Model CR-1 card reader expands the capability of the
1265 immeasurably, It makes simple programs simpler, long programs

shorter, and many otherwise impossible programs possible.

72

ABVANCED PROGRAMMING

The program examples in this section are given to show you how to use

the advanced card instructions,

The following program sequence is an example of data manipulation using
index 1 and index 2. The program is a subroutine that fills the E-reg-

ister with nines.

ADDRESS
| REMARKS

(P COUNT)

NO

hWINI~|O

no

oon

[11

[1

|i

|O

uN

(NN

(Ww

Ne

No

[Ho

[DN

N-

The first step loads a 9 into index 1 and into digit position 1 of the

E-register. A 2 is automatically loaded into index 2. The XFIE in-
struction transfers a 9 into position 2 of the E-register, as specified
by index 2, The INI2 instruction adds one to the count in index 2.

Since the last digit has not been reached, the second jump is executed

to return to step 121 and load a 9 into digit position 3 of the E-reg-

ister, as specified by index 2. This loop continues until the calcul-
ator recognizes the last digit, Dl14, and then the Jump to step 126 is
executed to print the nines. The RCLP instruction at the end of the

subroutine places in the P-counter the last address that was stored,
thereby branching the program to the instruction following the one

that called for the subroutine,
73

A similar subroutine can be used to enter an identification number into
D1 of the E-register and fill the rest of the register with blanks.
The identification number is printed at the program halt in the sub-

routine to tell the operator what type of data to enter at that point.
An example of this type of subroutine is shown in figure 7.

The entry 1 in step 140 places a 1 in index 1 and in position D1 of the

E-register. The first time through the subroutine, the identifier is 1

because register 7 is empty. During subsequent executions, the identi-
fier is increased by 1 each time with the + RCL(7) operation, Index 2

is reset to 1 in step 146 and increased to 2 in the next step to point
to position D2 in the E-register., Step 150 resets index 1 to 0, and

step 151 decrements index 1, causing it to revert to a count of 15,

The following instructions load 15's from index 1 into the E-register
in the same manner as the 9's were loaded in the previous example. At

the print command displays the identifier in digit 1 and a blank for
every digit position containing a 15 will print,

The use of index 1 to select a storage register is also shown in figure
7. Register 7 contains the identifier in digit 1 and 15's in the re-
maining digit positions, The A-register contains data just entered from

the keyboard. This sequence stores the data in the register selected by

digit 1 of register 7.

The RCL(7) instruction recalls the identifier that has previously been

stored. The STR(M) instruction transfers the identifier to the M- reg-
ister, The data that has been manually entered is transferred to the E-

register by the XCEA instruction. Index 2 is set to 1 by the RSI2 in-
struction, The DLIX instzruction transfers the M-register digit selected

74

by index 2 (digit 1) into index 1. The STRI instruction transfers the

data in the E-register to one of storage registers 0 through 9 as

specified by the number in index 1.

75

PROGRAM Figure 7 NO. PAGE__ OF__

DATE MODEL

REMARKS
2] 3] 4

6

76
Programmed by

ADVANCED CARD INSTRUCTIONS

The following list gives the advanced card instructions, their codes,

and descriptions,

Command

DCI1

DCXA

DCXE

INTL

INIZ

INXA

Name

Decrement Index 1

Decrement Exponent A

Decrement Exponent E

Increment Index 1

Increment Index 2

Increment Exponent A

Code

514

416

417

513

577

414

77

Description
Decreases the count of index 1 by
one, If index 1 equals zero when
the instruction is executed, the
index count reverts to 15

Subtracts 1 from the exponent con-
tents of the A-register. Sets the
overflow flag if the exponent ex-
ceeds =99, If there is no exponent
in the A-register, this instruction
moves the decimal point one digit
position to the left
Subtracts 1 from the exponent con-
tents of the E-register, Sets the
overflow flag if the exponent ex-
ceeds =99, If there is no exponent
in the E-register, this instruction
moves the decimal point one digit
positian to the left
Increases the count in index 1 by
one, If index 1 equals 15 when
the instruction is executed, the
index count reverts to zero
Increases the count in index 2 by
one, A count of binary 14, indi-
cating digit position Dl4, goes
to binary 15, indicating the ex-
ponent tens position. Index 2
counts to 31 before reverting to
zero, Counts of 18 to 31 are
meaningless
Adds 1 to the exponent of the A-
register, Sets the overflow flagif the exponent exceeds 99, If
there is no exponent in the A-
register, this instruction moves
the decimal point one digit posi-
tion to the right

Command Name Code Description
INXE Increment Exponent E 415 Adds 1 to the exponent of the E-

register, Sets the overflow flagif the exponent exceeds 99, If
there is no exponent in the E-
register, this instruction moves
the decimal point one digit posi-
tion to the right

JUSA Justify A 705 Ad-justs the number in the A-
register so that the most signi-
ficant digit appears in the Dl
position, If a right shift is
required, the exponent is in-
creased; if a left shift is re-
quired, the exponent is decreased;
thus, the numerical value of the
data remains the same.

JUSE Justify E 733 Adjusts the number in the E-reg-ister so that the most significant
digit appears in the D1 position.If a right shift is required, the
exponent is increased; if a leftshift is required, the exponent is
decreased; thus, the numerical
value of the data remains the same.

LDDP Load Decimal Point 574 Loads a zero into index 1 if the
data format switch on the keyboard
is in position E, or loads 15 into
index 1 if the switch is in the
s+ position

LDIX Load Index 515 The digit in the position of the
M-register defined by index 2 is
loaded into index 1, The contents
of the M-register remain unaltered

NOP No Operation 456 No operation takes place when this
instruction is executed

PRIZ Preset Index 2 576 Presets index 2 to 15, represent=-
ing the exponent tens position,
D15

RCLI Recall Per Index 1 722 Transfers the contents of one of
registers O through 7 to the E-
register. The selected registeris specified by the contents of
index 1.

78

Command

RSIL

RSIZ2

SKDO

SKIO

SKLD

STRI

XFIE

XFIM

Name

Reset Index 1

Reset Index 2

Skip on Digit Zero

Skip if Index Zero

Skip Except on Last
Digit

Store Per Index 1

Transfer Index to E

Transfer Index to M

Code

512

575

537

533

534

720

517

516

79

Description
Resets index 1 to zero
Resets index 2 to one, represent=
ing the first digit position, D1

Causes the program to ignore the
step immediately following if the
guard digit, position DO, of the
A-register is anything other than
0 or binary 135.

Causes the program to ignore the
step immediately following if in-
dex 1 contains a zero
Causes the program to ignore the
step immediately following if in-
dex 2 contains any count other than
14, which represents the least
significant digit position, D14

Copies the contents of the E-reg-ister into one of registers O

through 7. The selected registeris specified by the contents of
index 1, Uses five storage levels
in the program storage register
Transfers the count contained in
index 1 into the E-register at a
digit position defined by the count
in index 2. If one of digits OC

through 9 is entered in the program
immediately before the XFIE in-
struction, this digit becomes the
index count that is loaded into
the E-register. If index 1 con-
tains a count other than O through
9 at the time this instruction is
given, subsequent arithmetic
operations using the data will be
useless
Transfers the count contained in
index 1 into the M-register at a
digit position defined by the count
in index 2, If index 1 contains a
count other than 0 through 9 at the
time this instruction is given,
subsequent arithmetic operations
using the data will be useless

C Add, C Sub, C Mlt, C Div

The card reader arithmetic instructions are extremely important in ad-

vanced programming of the 1265, Their main purpose is to conserve 14

digit accuracy throughout the program. Keyboard arithmetic instructions,
i, e, +; =; x; +, all go through a print cycle which aligns the digits
for printing according to the decimal setting, and therefore can trun-
cate significant digits. The card reader arithmetic instructions by-

pass this print cycle and are also unaffected by the double-zero round-

off,

When it is necessary for a result to be rounded off, the last instruc-
tion before printing the answer should be a keyboard arithmetic in-
struction,

The limitations for using these instructions are as follows:

Be sure that all information is stored in the correct

register before entering instruction.

Do not use an equals instruction.

If the result is in the A-register, as after the C Add

and C Sub commands; it may be necessary to enter a RCL

(A) (475) instruction before continuing with the program.

The program in figure 8 is included to illustrate the technique of using

card reader commands.

The program is a summation calculation. The input quantities are any

number of positive variables, x and y. The output quantities are 3x,

F%2, IXY, 3ys 5y2s, and the N-count,

80

Load the program at branch point 0 and execute as follows:

Depress TO()

Depress O

Depress RESUME

Enter Xs

Depress RESUME Read Xs

Enter Ys

Depress RESUME Read Ys

(Continue entering x and y values, depressing RESUME after each

entry)
Depress SENSE switch

Line Prints
Read yx

Read 3x?

Read yxy

Read vy

Read 35y=

Read n

Double line prints

81

PROGRAM Figure 8 NO. PAGE OF_3_

DATE MODEL

REMARKS

HINIPINdMIPO

MID

INIDPINdIdMIPIN|PO

IMP

|n

DDD

IMIDd|O

IN

WwW

Ov

|=

(NON

(U1

OAM

IN

Ww

ov

|=

IN

UN

[Ww

[NN

Ub

gov

|=

(Odd

Uo

|F|IdlUh

WO

UiF

|O|L1

OO

|

[NjUW|O|NOM

MnO

WF

|UD

|W

FM

82 Programmed by

PROGRAM Figure 8 NO. PAGE_2 oOfF_3_

DATE MODEL

ADDRESS REMARKS
COMMAND ODE

(P COUNT)
= ElA|M|O]| 1] 2! 3|4|5]6|7|8]09

210 |4

Branch Point

STR 2

RCL M

C MLT

RCL 3

C Add

RCL A

STR 3

XCMA

RCL 4
C Add

RCL A

STR 4
RCL 5

STR A

1

Cc Add

RCL A

JUMP

TO (5)
RCL O

PRT A

2y_|LL
n=cpunt o

) Return to gntey next x
Branch [to Brint line-end of enfrieps

Print Nx

RCL 1

PRT A

RCL

PRT

2

A

RCL 4
A

3

Print yx?

Print yxy

PRT Print Jy
RCL

PRT A

RCL 5

PRT A

TO (5)

Print y=

Print n
NOOB

IWIN

RON

OTA

WIN|2,|OINOOPP

WIN

|=OIN|IODOTDRWIN|=]O

Noho

|dlO|dDlO]IdM

OD

Od

IN

||

IN

[OI

[DID|DIN|DMIMIDID

|IN|IPM|INId|™

Nolo

vd

loo

doy

dod

ov

dd

IND

ON

ww

|olug|ov|d

IN

wo

JO

IN|W|O

FIN

([P

iN

IN

lw

INH

INFINO

NIN

void

JOoO|lRrp

nu

|la|d

uo

|O|djw|w|jun|O|lwW|p>|d|H

83
Programmed by

PROGRAM Figure 8 NO. PAGE_3 OF_3_

5:| ADDRESS
££] (PCOUNT)

4l1|o

DATE MODEL

COMMAND] CODE
REMARKS

Elalm|o] 1] 21 3]l4]5]6]7]8]9Point

o

NOOO

_WN

RF

|ONOO|RlW|IN|=|O

oO

|O|0O|0O

||

|Oofjo|o

|O0

(Oo

|O

=

jt

N]

=

NOojo|hjlwiNd|

—|

lO

= w

OBI

WIN|

—~|O

oO

|lojlnjov

[nbn

Ln

nj

jn

Onn

bn

lO

JOO

|O|O|O|O|O

[OfJO|O

|O|0O|0O|O

(NN

|O

uN

[WNW|WH

N=

|H|F~FHFFP

Ww

O00

O00

|0O|0O

|O

fol

|O|0O|O0|0o|d|N

NO

|HF[No

[MND

WOO

|O|OO

|O|O

|OfJO|O|O|O

|O|O|OC

|

~l

84
Programmed by ~

SPECIALIZED PROGRAMMING TECHNIQUES

General

This section is intended for the programmer with considerable experience
on the calculator. The capabilities of the calculator discussed here are
not ordinarily available to the operator because of the complexities in-
volved. The instructions presented here are used in the permanently
stored programs in the read-only memory and require a knowledge of the

internal workings of the calculator and of the general operation of the

internal programs. The specialized programming instructions must be used

carefully to avoid changing or deleting data essential to the automatic

operation of the calculator. It is also possible for some automatic cal-
culator operations to conflict with a stored program if the specialized
programming instructions are not used with caution,

The features provided by these instructions include: algebraic operations
not available in the basic and advanced card reader instructions, addi-
tional comparison operations, 13 more flags and corresponding skip in-
structions,

The specialized programming instructions can be interspersed with the

basic and advanced card reader instructions to provide more powerful

programs, The instruction codes can be punched in a program card along
with the other card reader instructions and loaded into the LEMP program

memory in the same manner,

A complete list of the specialized programming instructions with their
codes and descriptions is shown at the end of this section,

85

Name Description Set By Reset By

Flag D Transfer E to M flag Keyboard logic Automatic operation
Flag E Transfer E to A flag Keyboard logic Automatic operation

Notes:
1, Flag 1 is set by following instructions: SFAE, SFEA, SFNE, SFRA,

SFNZ, SFAN, SFEN, SFEO, and SFS6,
2. Reset by any automatic function except numeral and decimal point,
3. Reset by any Store, Recall, or Transfer instruction: that is, an

instruction with a second octal digit of 4, 5, 6, or 7,

Table 3, Flag Usage
Flag 8, the align inhibit flag,
may be used to inhibit an auto- Flags
matic alignment process that Function 1 2 34 567 8 ABCDE
normally takes place if the ex- msponent is negative, If flag 8 X X X X

is set, the number is shifted
right to eliminate the negative X X X

exponent, and the exponent is
blanked. X X X

Flags 2 through 7 should not 9 xxxxx x
normally be used when programm-
ing the calculator. The SFLS8

instruction is entered to in-

ix

+

+1

=

°

“151

[E]

hibit some unnecessary internal X X X XXXXXX
operations that use additional
levels in the program storage X X X XXX XXX
register,

X X X XXX XXX
X X X XXX XXX

X

86

Flag Instructions

Fourteen flags are available in the calculator to record certain con-

ditions for testing with Skip instructions, The Set Flag instructions
should be used only by a programmer with a thorough understanding of

flag operation in the internal programs. It is important that at the

beginning of any keyboard function all flags used in that function are
in the correct state.

Each flag has its specific function in automatic calculator operation,
Some of the flags are set or reset automatically by the calculator.
Table 2 shows the function of each flag in automatic operation and

specifies the set and reset conditions for each flag.

Table 3 shows the flags that are used in the automatic execution of each

keyboard function, If you use any of these flags in your program, you

should ensure that the flag usage in your program does not conflict with

the flag usage in any keyboard function that you include in the program,

Table 2, Flag Functions
Name Description Set By Reset By

Flag 1 General purpose flag See Note 1 SKF1l instruction
Flag 2 Decimal point flag SFLZ instruction See Notes 2 and 3

Flag 3 Exponent flag SFL3 instruction See Notes 2 and 3

Flag 4 Exponent and general pur- SFL4 instruction RFL4 instruction
pose flag

Flag 5 Key flag SFLS5 instruction See Notes 2 and 3

Flag 7 Sign flag SFL7 instruction See Notes 2 and 3

Flag 8 Align inhibit flag SFL8 instruction RFL8 instruction
Flag A Equals flag = key Automatic operation

87

SPECIAL PROGRAMMING NOTES

The OFLOW indicator may be used to signify an operator error, The Set

Overflow instruction provides the only means of setting the OFLOW indi-
cator other than when the data to be printed exceeds the capacity of the

calculator. The OFLOW indicator may be reset only by manually depressing
the = or the key.

In the fixed point mode, always enter a Normalize instruction before a

Compare instruction because Compare instructions operate on the numeric

portion of the number,

SPECIALIZED PROGRAMMING INSTRUCTIONS

The following list gives the command, name, octal code, and a brief des-

cription of the specialized programming instructions:

© Command Name Code Description
ADDN Add Numeric 410 Adds the numeric portion of the

E-register contents to the numeric
portion of the A-register contents
and places the sum in the A-regis-
ter. The exponent in the A-regis-
remains unchanged,

ADDX Add Exponents 412 Adds the exponent in the A-register
to the exponent in the E-register
and places the result in the ex-
ponent portion of the A-register,
The numeric portion of the A-reg-ister contents remains unchanged,

ADRP Add Repeat 426 If the contents of index 1 are not
equal to zero, adds the E-register
contents to the A-register contents,
places the result in the A-register,
and subtracts 1 from the contents
of the index register,

88

Command

CADD

CDIV

CHGSGN

CHSX

CLRE

CMLT

CSUB

NOP2

RCL(X)

RCL(Y)

RCL(Z)

RCXA

RFL4

Name

Card Reader Add

Card Reader Divide

Change Sign

Change Exponent Sign

Clear E

Card Reader Multiply

Card Reader Subtract

No Operation 2

Recall X

Recall Y

Recall Z

Recall A Exponent

Reset Flag 4

Code

730

710

404

405

423

714

731

476

471

472

473

407

570

89

Description
Adds the E-register contents to
the A-register contents and places
the sum in the A-register., The
contents of the E-and M-registers
remain unchanged

Divides the M-register by the E-
register contents and places the
quotient in the E-, A-, and M-
registers
Changes the numerical sign of the
E-register contents
Changes the sign of the exponent
in the E-register
Clears the E-register to zero

Multiplies the M-register contents
by the E-register contents and places
the product in the E-and A-registers.
The M-register contents remain un-
changed

Subtracts the E-register contents
from the A-register contents and
places the difference in the A-
register, The contents of the E-
and M-registers remain unchanged

No operation is performed

Recalls the contents of the X-
register to the E-register. The
contents of the X-register remain
unchanged

Same as RCL(X) except that the Y-
register contents are recalled
Same as RCL(X) except that the Z-
register contents are recalled
Transfers the exponent from ex-
ponent store to the A-register,
The numeric portion of the A-reg-
ister contents remains unchanged

Resets flag 4

Command

RFL6

RFLS8

SBRP

SFL2

SFL5

SFL6

SFL8

SFS6

SKF2

SKF3

SKF4

SKF5

SKF'6

SKF7

SKF8

SKFD

SKFE

Name

Reset Flag 6

Reset Flag 8

Subtract Repeat

Set Flag 2

Set Flag 5

Set Flag 6

Set Flag 8

Set Flag on Switch 6

Skip on Flag 2

skip
Skip

skip
Skip

Skip

Skip

Skip

Skip

on

on

on

on

on

on

on

on

Flag

Flag

Flag

Flag
Flag
Flag
Flag

Flag

Code

571

572

427

561

564

565

567

525

541

542

543

544

545

546

547

553

554

20

Description
Resets flag 6

Resets flag 8

If the A-register contents are
equal to or greater than the E-
register contents, subtracts the
E-register contents from the A-
register contents, places the
result in the A-register, and
adds 1 to index 1

Sets flag 2. Programmed in read-
only memory to sense decimal point
conditions during entry
Sets flag 5. Programmed in read-
only memory to sense numeral entry
Sets flag 6

Sets flag 8, Programmed in read-
only memory to inhibit alignment
procedure
Sets flag 1 if the N switch is set
to N

Causes the program to ignore the
next instruction in sequence if
flag 2 is set
Same as SKF2, but tests flag 3

Same as SKF2, but tests flag 4

Same as SKF2, but tests flag 5

Same as SKF2, but tests flag 6

Same as SKF2, but tests flag 7

Same as SKF2, but tests flag 8

Same as SKF2, but tests flag D

set by compiler to indicate trans=-
fers
Same as SKF2, but tests flag E set
by compiler to indicate transfers

Command

SOFL

STR(X)

STR(Y)

STR(Z)

STXA

SUBN

SUBX

Name

Set Overflow

Store X

Store Y

Store Z

Store Exponent of A

Subtract Numeric

Subtract Exponent

Code

531

451

452

453

406

411

413

21

Description
Sets OFLOW indicator
Transfers the contents of the E-
register to the X-register., The
contents of the E-register remain
unchanged, Should be followed by
a NOP instruction if possible
Same as STR(X) except that the con-
tents of the Y-register are trans-
ferred, Should be followed by a
NOP instruction if possible
Same as STR(X) except that the
contents of the Z-register are
transferred, Should be followed
by a NOP instruction if possible
Transfers the A-register exponent
to exponent store, The contents
of the A-register remain unchanged

Subtracts the numeric portion of
the E-register contents from the
numeric portion of the A-register
contents and stores the difference
in the A-register., The exponent
in the A-register remains unchanged

Subtracts the exponent in the E-
register from the exponent in the
A-register and places the result
in the A-register, The numeric
portion of the A-register contents
remains unchanged

CCC

CCCCCCCCCCCCCCecececcccececcocceececococeocox

(
{

Monroe model 1265

operating and programming
instructions

MONROE [H
THE CALCULATOR COMPANY

1513-S Rev. Printed in U.S.A. MONROE: Orange, New Jersey ¢ Sales and Service Throughout the World

