commodore

Models SR8120D SR8140D SR890D

Scientific Electronic Calculators

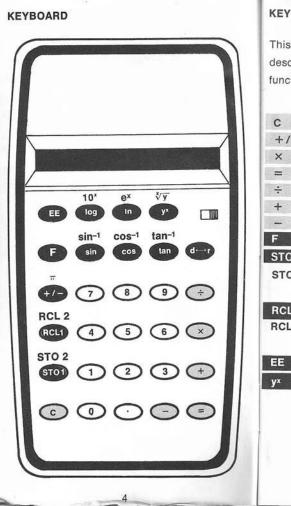

Owner's Manual

TABLE OF CONTENTS

Description	Page
Keyboard Layout	4
Key Index	5
Introduction	6
Display Description	8
Data Entry	9
Clear Key	9
Four Function Arithmetic	10
Chain Calculations	10
Correcting Operations	11
F Key	12
Using the Memory	13
Chain Calculations Using the Memory	14
Exponent Key	15
Power and Root Keys	16
Chain Calculations Involving Power Key	16
Binary to Decimal Conversion	17
Amortization Using Power and Memory	18
Hypotenuse Calculations	19

Description	Page
Radius Calculations Using Pi	20
Transcendental Functions	21
Trigonometric Functions	24
Degree Mode	24
Radian Mode	25
Radian Conversion	26
Appendix A	
Improper Operation	27
Overflow	27
Underflow	27
Appendix B	
Operating Accuracy	28
Appendix C	
Power	
a. AC Operation	29
b. Battery Operation	29
c. Adapter Data	30

Description	Page
Appendix D	
Service Information	
a. Low Power	31
b. Shipping Instructions	31
c. Temperature Parameters	31
Appendix E	
Guarantee	32
Sales and Service Centers	33

KEY INDEX

This index permits quick page location of the description and/or the first use of each function key.

1			
С	9	∛√y	16
+/-	10		
×	10	π	20
=	10		
÷	10	Log	21
+	11	10×	21
	11		
F	12	In	21
STO 1	13	ex	21
STO 2	13	C	
		d/r	24
RCL 1	13 13	sin	24
RCL 2	15	sin-1	24
EE	15	COS	24
Contractor of the local division of the		COS-1	24
у×	16	005-1	24
		tan	24
t		tan-1	24

INTRODUCTION

Thank you for selecting our new scientific calculator.

It represents the finest achievement in solid state large scale integrated/metal oxide silicon technology.

The commonsense logic of this scientific notation calculator is the key to your mastery of it. You are able to enter basic assignments just as you would write them down on paper. For example, $4 \times 5 =$, is entered just as you see it. Higher math arguments are accomplished on your mini-computer by again entering examples as they are commonly written. Thus, the Log of 9- the Log of 4 is indexed: 9 Log-4 Log = .

This emphasis on academic principles is a consistent theme which runs throughout the logic of your new mini-computer.

Students will appreciate the fact that most math concepts have been programmed into the logic system. Among these basic tenets are such principles as any number raised to the zero power equals one; and zero raised to any power (except zero) equals zero. As can be seen, results will be precisely displayed for immediate comprehension.

In short, our Scientific was designed by professionals for professionals and students alike. It has been developed as an easy-tounderstand, easy-to-operate machine. Please read through the pages of this manual carefully. Become familiar with the keyboard and its characteristics. Work through the examples. They have been designed to give you a thorough understanding of all functions. Proficiency is gained by practice. Once you discover how easy your mini-computer is to operate, it will become an essential, enjoyable aid to you in every area of computation.

A special note concerning display capacity and machine logic.

This book has been prepared to illustrate the operation of a 14-digit machine.

In the event you have selected a machine with a 12- or 9-digit capacity, you are of course restricted to an entry limited by the number of digits in the mantissa and results will be truncated in accordance with the capacity of the display. This in no way alters the accuracy of your machine as the extra digits are retained within the unit's logic for continued computation. Thus, you can work all of the problems in this manual.

The treatment of numbers between +1 and -1 differs among models. In all instances both entry and result are accurate. However, some models will express these values in scientific notation.

	Enter:	Read:
Example A.	.002 X	203
Example B.	.002 X	0.002

Both results are identical.

NUMERICAL ENTRY

- through 9 EE 0 +/-Sign Exponent Mantissa sample display: Sign of Mantissa of Exponent (14 diaits): 0.123456789 90 102.34578 99 (12 digits): 99 (9 digits): 123.45
- sign mantissa: or + , blank on display implies a positive number
- mantissa: 10 digit maximum in 14-digit display

8 digit maximum in 12-digit display.

5-digit maximum in 9-digit display.

Special Case: A result between 1 and -1 which has an exponent -01 is displayed in floating notation with a leading zero. This affects the display only. The logic of the calculator realizes the true 10-digit result and the ten digit accuracy is retained in the machine.

Enter: S

See Displayed: 0.6666666666

= 0.0

Subsequent chain calculations will be computed using the true result retained internally in scientific notation:

6.666666666 -01

- sign of exponent: or +, blank implies positive
- · exponent field: two digits maximum

Entry: A number (the mantissa) is entered just as written using the keys **0** through **9**. The sign of the mantissa can be entered at any time during a numerical entry by pressing the change sign key +/-. The sign of the exponent can be changed by pressing the change sign key after the **EE** key (enter exponent key) has been pressed. The exponent field is blank until **EE** is entered.

С

The clear entry/clear key. Pressing the **C** during or immediately after a numerical entry will clear the display. Only prior entries are retained intact. Pressing the **C** key in all other cases clears your calculator: Memories are not cleared.

In the above example, we wished to add 2 and 4 but entered 3 by mistake. Pressing C and entering 4 corrects the error and allows further computation. The final C clears the calculator.

FOUR F	UNCTION	ARITHMET	IC	Enter:	Read:	Explanation:	
+ -	- ×	÷		÷	2.4	The result of t	he division
Example	e:			interes.		12 ÷ 5 is disp divide is enter	layed and
Enter:		Read:	Explanation:				
3 +/-	- × -	- 3.	Enter - 3 and	.3	0.3	Enter .3	3 × 4
			multiply	=	8.	The result of	$\frac{5}{5} \div .3$
1.2 EE	+/- 2	1.2 - 02	Enter 1.2 \times 10 ⁻²			which is 8 in c	lisplay
=		- 0.036	Perform multipli- cation and				
			display result	CORRE	CTING (OPERATIONS	
CHAIN	CALCULA	TIONS		Example	e: Calcu	late 3×4	
Example	e:			Enter:	Read:	Explanation:	
Calcula	te $\frac{3\times4}{5}$	÷ .3		3 +	3.		vish to multiply + by mistake.
Enter:	Read:	Explanation	on:	×	3.	Enter the cor	rect function key
3 ×	З.	Enter 3 ar	nd multiply	4	4.	Now enter 4	
4	4.	Enter 4			12.	The result of	3×4 is displayed
÷	12.	performe	plication 3×4 is d, the result, 12, ed and divide is	(+ - >	< ÷)ca	n be over writt	r function'' keys ten by another; d. For example:
5	5.	Enter 5					
				Enter:		Read:	Explanation:
				3 ×	+		
				÷ -	4 =	- 1.	The last function pressed, (-) is executed.
		10				11	executed.

.

Use of the Function Key.

Your mini-computer has 29 keys, one of which is a special function key marked "F." The application of this key enables you to increase the feature range of your machine by releasing twelve additional operations.

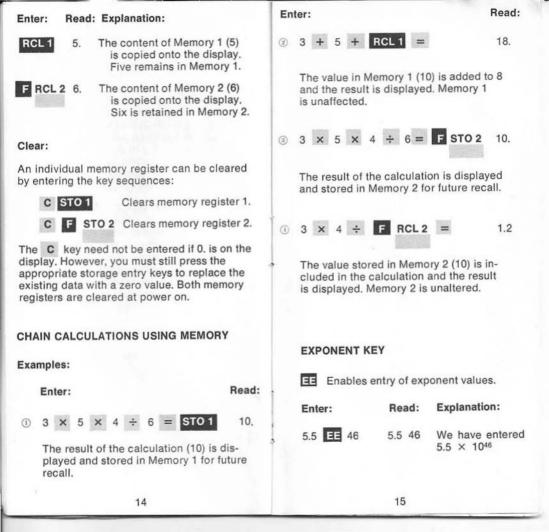
Nine of the 29 keys are inscribed with upper case functions. If any one of these keys is pressed the lower case function is executed. However, if the F key is indexed immediately prior to pressing one of the "double function" keys, the upper case function is performed.

Example:

Enter:	Read:	Explanation:
a. 2 y × 3 =	8.	Raise 2 to the third power.
b. C 8 F ^x /y 3 =	2.	Obtain the cube root of 8.

USING THE MEMORY

Store: STO 1 STO 2


The store keys refer to the two memory registers and they store data for future use. When STO1 is pressed, the value currently on the display will be copied into Memory Register 1. Similarly, when the E key is entered as a prefix to the memory key STO 1, the displayed data is copied into Memory Register 2. Any data stored in the register prior to pressing the respective STO key will be lost. This is referred to as "writing over."

Recall: RCL1 and RCL2

These keys are used to recall data stored in their associated memory registers. The value stored in memory is copied onto the display; the value on display prior to recall is lost while the value stored in memory is unaltered. To recall data in STO 2 , Press key sequence F RCL 2.

Example:

Enter:	Read:	Explanation:
5	5.	Enter 5
STO 1	5.	Copies 5 into memory register 1
6	6.	Enter 6
F STO	2 6.	Copies 6 into memory register 2

With the power key, a number raised to any power (or root) can be calculated. The base is entered first, then the power key, and finally the power (or root) to which the base is to be raised. Powers are calculated using the formula $y^x = e^{(x \ln y)}, \quad \sqrt[Y]{y} = e^{\left(\frac{\ln y}{x}\right)}.$ Therefore, negative bases are not permitted. Any attempt to raise a negative base to a power will result in an error condition. In addition to performing all commonly encountered powers and roots accurately and quickly, your calculator will correctly perform these calculations:

 $0^{0} = 1, x^{0} = 1, 0^{x} = 0$ for $x \neq 0$.

 Chain calculation involving y^x key Calculate $3x^5 - x^3 + 4$ for x = 4Enter: Read: Explanation: Enter 3 and multiply 3 X 3. 4 yx Enter 4 as the base 4. 5 5. Enter 5 as the power 3072. Calculate and display 3 (4)5 ---and enter subtract 4 y× Enter 4, the base 4

16

Enter: Read: Explanation:
3 3. Enter 3, the power
+ 3008. Calculate and display 3 (4)⁵ - (4)³ enter add
4 = 3012. 3 (4)⁵ - (4)³ + 4 = 3012.

② Binary to decimal conversion:

Convert the binary number 11011 to decimal. 11011 in base 2 is equal to $2^4 + 2^3 + 2^1 + 2^0$ in decimal.

En	ter:	Read:	Explanation:
2	у×	2.	Enter 2, the base
0	+	1.	Calculate & display 2º and add
2	у×	2.	Enter 2, the base
1	+	3.	Calculate & display 2 ⁰ + 2 ¹ and add
2	y× [∶]	2.	Enter 2, the base
3	+	11.	Calculate and display 2 + 2 + 2 and add
2	у×		
4	=	27.	Terminate calculation & display result
		11011	base 2 = 27 base 10
			17
100 C			

What are the monthly payments on a \$20,000 mortgage at 9% annually extending over 20 years?

formula:

$$PMT = \frac{PVI}{1 - (1 + I)^{-n}}$$

Where PV is the Principal (present value) of the mortgage I is the monthly interest expressed as a decimal n is the number of months PMT is the monthly payment

Enter:

Read:

.09 ÷ 12 +

0.0075

Calculate the monthly interest (9% for 12 months)

= y×

1.0075

Calculate (1 + I) and enter it as the base

240 +/-

- 240.

0.833587156

Enter the number of months, change the sign, calculate $(1 + I)^{-n}$ and subtract 1

STO 1

Store 1 - $(1 + I)^{-n}$ in memory

Read:

0 0075

.09 ÷ 12 ×

Calculate the monthly interest and multiply

20000 ÷

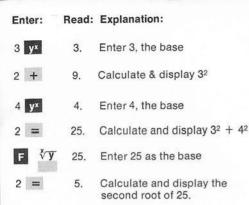
150.


Calculate PV Enter divide

RCL1 =

179,945191

The dollar amount necessary to amortize a \$20,000 mortgage in 20 years at 9% annual interest


Hypotenuse Calculations

Given a right triangle, three meters on one side and four on the other, find the hypotenuse. The equation is:

 $R = \sqrt{A^2 + B^2}$ A = side 1 B = side 2

Find R, if A = 3 and B = 4

Enter: Read: Explanation: F $\sqrt[x]{y}$ 511.842297 Enter $\frac{3V}{4\pi}$ as the base 3 = 7.999178546 Calculate the cubic root of $\frac{3V}{4\pi}$ and display result

The sphere has a radius of approximately 8 meters.

TRANSCENDENTAL FUNCTIONS

Example:

Find the radius of a sphere whose volume is 2144 cubic meters.

Equation: $R = \sqrt[3]{\frac{3V}{4\pi}} R = radius V = Volume$

Enter:	Read:	Explanation:
2144 ×	2144.	Enter the Volume multiply
3 ÷	6432.	By 3 divide
4 ÷	1608.	By 4 divide
F =	511.842297	Ву π

Your scientific calculator will perform common and natural (Naperian) logarithmic and inverse logarithmic functions. It also calculates the three trigonometric functions and their inverses. Each of these keys operates on the value currently on display.

Logarithmic Functions log Calculates the common logarithm (log₁₀) of x. 10^x Calculates the common antilogarithm of x. In Calculates the natural logarithm (log_e) of x.

Examples:

 Natural logarithm In and inverse natural logarithm function, ex Calculates e^{In2+In3}

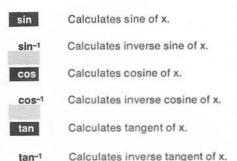
Enter:	Read:	Explanation:
2 In +	0.69314718	Calculate In 2 and enter +
3 In	1.098612289	Calculate In 3
-	1.791759469	Display result of In ² + In ³
Fex	6.	Calculate the inverse function.

The above calculation demonstrates the equation $\ln (a) + \ln (b) = \ln (ab)$ To calculate the hyperbolic arc tan of .5:

(a) Equation:
$$\arctan X = \frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)$$

	Enter:	Read:	Explanation:
ıl	RCL 1 =	З.	Calculate (1+.5)
	In 1.	098612289	Calculate In [(1+.5)/(15)]
	÷ 2 = 0.9	549306144	Calculate $\ln \left[\frac{(1+.5)}{(15)} \right]$
е	③ Calculate	e the hyperbo	lic sine of .5
e	Equation	$\sinh x = \frac{e}{2}$	$\frac{x-e^{-x}}{2}$
	Enter:	Read:	Explanation:
	.5 F e ^x -	1.648721271	Calculate and dis- play the exponen- tial function of .5, e. ⁵ and enter -
	.5 +/- F e	× 0.606530659	Calculate and dis- play the exponen- tial of5
	÷	1.042190611	Perform subtraction, display result, and enter ÷
.5),	2 =	0.521095305	Divide by 2 and dis- play the result,

the sinh of .5


23

22

Explanation: Store (1-.5) in Memory 1

Calculate (1 + enter divide

Trigonometric Functions

Your calculator will find the sine, cosine, tangent, arc sine, arc cosine and arc tangent of any number on display in either degrees or radians. The calculator is in degree mode when turned on. Pressing the **d/r** key shifts your calculator to radian mode, lights a decimal point in the exponent field, and converts the value on display from degrees to radians. Pressing **d/r** again shifts the calculator back to degree mode and converts the display in degrees.


Input range for sine, cosine and tangent is $\pm 0.360^{\circ}$

Example: Degree Mode

Enter:	Read:
30	30.
sin	0.5
F sin ⁻¹	30

Enter:	Read:
120	120
cos	- 0.5
F cos-1	120
45	45.
tan	1.
F tan-1	45

Example: Radian Mode

Conversio	n to radian			APP
1				Erro
Enter:	Read:		Explanation:	An
С	0.			ope
120	120.			an o abs
d/r	2.094395102	•	$\frac{120^{\circ}}{3}$ converted to $\frac{2\pi}{3}$ rad. Radian mode initiated	Whe is d Pres
cos	- 0.5	•		Imp
F cos-1	2.094395102	٠		х -
d/r	120.		Convert back to	Υ×
and the second s			degrees. Initial	v√y
			degree mode	In 3
2				log
Enter:	Read:		Explanation:	sin
45	45.	·		cos
d/r	0.785398163	•	45° converted to	
			$\frac{\pi}{4}$ rad. Radian	Over
			4 mode initiated	Occi
				the c
tan	1.	٠		Und
F tan-1	0.785398163	•		Occ 1.0 x
d/r	45.		Convert back to degrees and initiate degree mode	
		26		

APPENDIX A

Error Condition

An error condition results when an improper operation is performed or when the result of an operation overflows or under flows the absolute range of the calculator.

When an error condition occurs the letter "E" is displayed.

Press the clear key C to clear the error condition.

Improper Operation:

X ÷ Y	where $Y = 0$		
Υ×	where $y < 0$		
x√y	where $\rm X < 0$		
In X	where $X \leq 0$		
log X	where $X \leq 0$		
sin-1 X	where \mid X \mid >1		
cos-1 X	where X >1		

Overflow

Occurs when a computed result is greater than the display capacity of your machine.

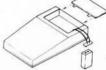
Underflow

Occurs when a computed result is less than 1.0 x 10^{-99}

APPENDIX B

OPERATING ACCURACY

The precision of your calculator depends upon the operation being performed. Basic addition, subtraction, multiplication, division and reciprocal assignments have a maximum error of \pm one count in the tenth or least significant digit. While countless computations may be performed with complete accuracy, the accuracy limits of particular operations depend upon the input argument as shown below.


Function	Input Argument	Mantissa Error (Max.)
In x		1 count in D_{10}
log x		1 count in D_{10}
ex		3 counts in D_{10}
У×		1 count in D_9
sin ϕ	$0^\circ \leq \! \phi \leq \! 360^\circ$ or $0 \leq \! \phi \leq \! 2\pi$	8 counts in D_{10}
$\cos\phi$	$0^\circ \le \dot{\phi} \le 360^\circ$ or $0 \le \phi \le 2\pi$	8 counts in D_{10}
tan ϕ	$0 \le \phi < 89^{\circ} \\ 89^{\circ} \le \phi \le 89.95^{\circ}$	4 counts in D_9 1 count in D_6
sin-1 x	$10^{-10} \le x \le 1$	$E < 5 \times 10^{-8}$
COS-I X	$10^{-10} \le x \le 1$	E<5×10-8
tan⁻' x		E<5×10-8

Dn = Nth display digit assuming a left justified 10 digit result.

APPENDIX C

Disposable Battery Model (D)

Your calculator uses a standard nine-volt battery type 006P available at most drug, department and camera stores. To operate, disconnect the adaptor cord and turn power switch "ON" (an interlocking switch in the AC socket will prevent battery use if the plug remains connected). When the battery weakens, display will dim.

Experience has proven that batteries packed with machines age considerably. To protect your calculator, we have omitted the battery from the package. Please ask your dealer for a fresh, new power cell. In the event your brand new machine does not function, please check the battery first.

Please note, machines with disposable batteries will not recharge. See battery replacement details above.

AC Adapter Operation

It is recommended that you unsnap and remove the battery from your machine before inserting the adapter jack.

APPENDIX C

Use proper Commodore/CBM adapter for AC operation.

Adapter 640 or 707 North America

Adapter 708 England

Adapter 709 West Germany

APPENDIX E

Guarantee

Your new electronic calculator carries a parts and labor guarantee for one year from date of purchase.

We reserve the right to repair a damaged component, replace it entirely, or, if necessary, exchange your machine.

If you own a portable calculator which uses an AC adapter, the adapter must be returned with your machine when service is required.

In order to receive free service under this guarantee at a Commodore Service Center, you are required to pay all postage, shipping and insurance charges when returning your calculator to the Commodore Service Center and enclose a check or money order for \$2.50 to cover handling charge, return postage and insurance.

This guarantee is valid only when a copy of your original sales slip or similar proof of purchase accompanies your defective machine.

This guarantee applies only to the original owner. It does not cover damage or malfunctions resulting from fire, accident, neglect, abuse or other causes beyond our control.

The guarantee does not cover the repair or replacement of plastic housings or transformers damaged by the use of improper voltage. Nor does it cover the replacement of expendable accessories and disposable batteries.

The guarantee will also be automatically voided if your machine is repaired or tampered with by any unauthorized person or agency.

This guarantee supersedes, and is in lieu of, all other guarantees whether expressed, or implied.

Commodore Business Machines, Inc. 390 Reed Street, Santa Clara, California 95050

Commodore Business Machines, (Canada) Ltd. 946 Warden Avenue Scarborough, Ontario

CBM Business Machines Limited Eaglescliffe Industrial Estate Stockton on Tees Cleveland County T516 OPN England

Commodore Buromaschinen GmbH 6079 Sprendlingen Robert-Bosch-Str. 12A West Germany

Commodore Japan Ltd. Taisei-Denshi Bldg. 8-14, Ikue 1-Chome Asahi-Ku, Osaka 535

Commodore France S.A. Zone Industrielle Departmentale M 14 06510 Carros, France

Commodore Switzerland S.A. Bahnhofstr 29-31, 2 Stock Postfach 666, 5001 Aarau

