commodore

Model F4146R Financial Electronic Calculator

Owner's Manual

TABLE OF CONTENTS

Section Description Page
I. Understanding Your Calculator
Keyboard Layout 4
Key Index 5
Introduction 6
II. Basic Applications
Standard Keys 10
Working With Memory Bank 11
Chain Calculations 13
Inverse Functions 13
Mark Up/Mark Down 15
Tax Add-On 16
Chain Discounts 17
Percentage Difference 18
Financial Keys 20
III. Reference Guide To Financial Applications 25
IV. Financial Applications
Compounded Amounts 30
Annuities 39
Mortgage Calculations 53
V. Scientific Applications 69
VI. Glossary Of Terms 71
VII. Appendices
Appendix A AC Operation 78
Battery Operation 78
Battery Charging 78

VII. Appendices

Appendix BLow Power80
Temperature Range 80
Shipping Data 80
Appendix C
Guarantee 81

KEYBOARD INDEX

Description

Standard Keys	Page	Financial Keys	Page
C	10	PV	20
CE	11	FV	20
STO 1	11	PMT	20
STO 2	11	I	20
RCL 1	11	PER	20
RCL 2	11	SEMII	21
S1	12	QTR	21
$+$	12	MTH	21
-	12	WEEK	21
\times	12	DAY	21
\div	12	day	21
$=$	12	N	22
1/x	13	DP.	22
+/-	14	INT	22
\%	15	$x \rightarrow y$	22
د\%	18	CMP	23
$\mathbf{y}^{\text {x }}$	68	DIS	23

Introduction

Your new financial calculator represents the imagination, craftsmanship and dedication of hundreds of people in every division of our company. Incorporating the latest systems architecture and the most advanced solid state technology, it is perhaps the finest achievement in the field of portable electronic computing equipment.
Programmed within its logic component are volumes upon volumes of interest and financial tables commonly used in everyday business activities. This vast amount of knowledge is now at your fingertips combined with many calculating advantages exclusive to your new machine.
Let's consider, for a moment, the "Down Payment (DP)" key. A basic example which asks, "What will a savings account with an initial deposit of $\$ 2000$ be worth after 3 years if $\$ 300$ monthly deposits are made to it? The account earns 7% compounded monthly" requires a preliminary calculation without the (DP) key. With it, the key sequence is an easy, direct entry operation:

Enter:

Read:
14444.88138

The result is delivered in less than a second, but more importantly, two significant features of the machine's logic are illustrated:

1. Easy, direct problem entry
2. Algebraic logic permits you to enter a problem in just about any logical sequence

We have seen how the direct entry feature is enhanced by the performance of the (DP) key. The method of addressing any problem is half the battle of solving it and the commonsense algebraic logic of your new calculator greatly increases the ease by which examples may be indexed into it.

The sequence we chose to enter the above example commanded the machine to:
Multiply monthly payment: 300 PMT by the compounded monthly interest 7 PER MTH I then by 36 months: $3 \times 12 \mathbf{N}$ and then multiply this by the principal or initial deposit: 2000 DP and finally compute CMP the Future Value FV 14444.88138.
The statement is: PMT 1 N DP CPT FV
But, remember algebraic logic? It lets you enter an example just as you would write it on paper and \mathbf{N} PMT I DP CMP FV is just as logical a key sequence as our earlier entry. So, if you had preferred this entry mode, your result would have been the same. In this example, the compute key CMP tells the calculator to solve for future value. It must be pressed immediately before the key is entered.

Another advantage of your new machine is the DIS Display key. It enables you to recall any entry at any time during a problem for review.

In our original example we had entered:
300 PMT 7PER MTH ■ $3 \times 12 \mathbf{N}$ 2000 DP. If, after having made the last entry, we now wisn to check the number of months we entered, we need only press: DIS \mathbf{N} | the display would read: 36 . What was our monthly payment? Press DIS PMT , read: 300 .

Display capacity is yet another outstanding feature. Your machine is able to handle results as small as $1.0 \times{ }^{-99}$ (that is a 1 with 99 zeroes to its left and a decimal point at the very front of this super miniscule number, up to $9.999999999 \times 10^{99}$ (that is a number 1 followed by 99 zeroes and a decimal point at the very end. In dollars that's considerably more than the national debt).

We should not overlook the fact that your financial calculator can handle an extensive range of routine arithmetic, memory and percent calculations. And they are easy to perform. Please read this book thoroughly. Become familiar with the keyboard. Work through each application, as they have been designed to give you a complete understanding of every function. Practice. Once you discover how easy your calculator is to operate, it will become an enjoyable daily assistant in almost every area of general and business computation.

Here are just some of the many calculations you can solve with ease on your financial calculator.

- Combined Compounded Amount and annuity problems
- Mortgage Calculations
- Effective yield calculations
- Add-on interest to effective yield conversion
- Amortization (depreciation, finance charges)
- All present value, future value and effective rate calculations
- All percent calculations
- All simple and compouna interest assignments
- Depreciation calculations
... and more

GETTING TO KNOW YOUR CALCULATOR

Keyboard Description and Operating Fundamentals

Power "ON" Switch.

When unit is turned on the display will read:

0.

All registers are automatically cleared in preparation for the first example.

Number Keys

0 to 9 -
Enter digits in the very same manner as you would when writing them on paper.

Clear Keys

C

The C key is a CLEAR ALL key. It should be used to clear your entire machine before beginning a new example. It is important to note that the C key MUST be pressed before beginning a new financial example.
The C key will not clear the memory registers. Clearing the memories is an automatic process. Please refer to the explanation on, "writing over existing data," covered in the paragraph on Memory Bank operations. Also see paragraph, "To Clear Memory Registers."

CE

The CE key is a clear entry key. If pressed immediately after a numerical entry, it will clear or "erase" that entry so that you can correct an entry error by entering another number without beginning all over again.
If pressed twice, it will clear the entire calculator except for the memory register.

Working With The Memory Bank STO 1 STO 2

The Storage 1 and Storage 2 keys identify the two independent memory registers.
You can use the memories for all standard computations. The unit uses them automatically when performing financial calculations.
The memory keys,STO 1 and STO 2 save data for future use. When pressed, the value currently on the display will be copied into the desired memory register. Any data presently being held in that memory will be automatically erased and the new data stored. This is referred to as "writing over" existing data.

RCL 1 RCL 2

Memory Recall 1 and Memory Recall 2 . These keys respectively serve their independent storage registers.
When pressed the recall key copies the data in memory onto the display. It does not clear that memory. Thus, the stored data is unaltered and may be recalled later.

≥ 1

Thiskey is the summation key. When pressed, it adds the number on the display to the value stored in Memory 1. In this manner you are able to accumulate either negative or positive values. It is good practice to clear the Memory 1 with the key sequence C STO 1 before using the ≤ 1 key, unless the value currently in Memory 1 is to be included in the summation. The summation key applies only to Memory 1. Memory 2 is not accessible for accumulation.

To Clear Memory Registers

Values stored in a memory register are not affected by either the CE key or the C key. Removal of stored data may be accomplished by "writing over" the present contents; that is, by simply storing a new number. When a machine is turned off, then on, all registers, including memories, are automatically cleared. To clear the memories without entering a new number, the key sequence is: C STO 1 or

C STO 2 .

Arithmetic Keys

$$
+-\times+=
$$

These are the basic four function and result keys. Each key commands the calculator to perform its respective function. Calculations are entered and executed with common sense, algebraic logic.

Chain Calculations

The subtotal of $4+5$ is displayed and the calculator is ready to multiply it by the next entry.
e.)
f.) 6
6. 54.

During chain calculations, as $4+5 \times 6$, function keys prepare the calculator for the next entry and display the running subtotal at the same time, as illustrated in step " d " above. Pressing the result key $=$ derives the answer and automatically clears the calculator for the next example.

Inverse Key 1/x

The reciprocal or inverse function key computes the inverse of a number on the display and instantly displays the result.

Example: Find the inverse of 41.

Enter:	Read:
41	41.
$1 / \mathrm{x}$	$2.43902439-02$

The reciprocal or inverse function key instantly computes the decimal equivalent of a fraction. What is the reciprocal of 25 (or $1 / 25$)?

Enter: Read:

25
25.

1/x

0.04

Note any fraction multiplied by its reciprocal equals one.

Thus: $.04 \times 25=1$.

Change Sign Key +/-

Changes the sign of a number in the display from + to - or - to + . If no sign is displayed, the number is positive $(+)$. This key can only be used immediately after a numerical entry is made.

Let's raise 3 to the 15 th power. $3^{15}=$?

Enter:	Read:
3	3.
$\mathbf{y}^{\mathbf{x}}$	3.
15	15.
$=$	14348907.

Percent key
 \%

Percent key displays a number entered as a percentage in decimal form. The key sequence:
10% will be displayed as 0.1 which is the decimal equivalent of 10%.

Example: To find 6\% of 112:
Enter:
$6 \% \times 112=6.72$
The percent key can be used with any of the four function keys $+\mathbf{x} \div$ to accomplish mark-up and mark-down percentage calculations.

Mark up/Mark down and Tax Add-on

This calculation finds the cost of an item given the selling price and a percentage mark up or mark down.

Examples:

(1) A buyer is prepared to purchase a unit at 7 cents each. He is offered a 30% discount on the cost of each unit if he purchases 20,000 units per month. What is his cost per unit and his net cost per month?

Enter:	Read:	Explanation:
.07	0.07	Enter the unit price and subtract the dis- counted amt. per part.
-30%	0.021	0.049The total price per unit
$=20000=980$.	At 20,000 units per month the buyer will pay $\$ 980 /$ mo.	

(2) Tax Add-On

An automobile you are thinking of buying retails for $\$ 4980$. But you are considering how much more it will cost when sales tax is added. What is the dollar amount of tax at a rate of 6% and what is the total cost of the car?

Enter:	Read:	Explanation:
4980	4980	Enter the price

$+6 \%$ 298.8 The dollar amount of tax is $\$ 298.80$

5278.8 The total cost of the auto is $\$ 5278.80$

Chain Discounts

As a buyer you have been offered a 30% / $15 \% / 10 \%$ discount on a 10 cent item due to the quantity you plan to purchase. What is the cost per unit after this discount?

Percentage Difference

$\Delta \%$

The Percentage Difference key, $\Delta \%$ calculates the percentage difference between a base, entered first, and any other number. It displays the result as a percentage (\%) of the base. For example, calculate the percentage difference between 70, the base, and 350:

Enter: Read:
$70 \quad 70$.
$\Delta \% \quad 70$.
$350 \quad 350$.
$=\quad 400$.
The percentage difference between 350 and 70 is 400%.

Example:

To determine markup as a discount from retail. A retailer sells an item for $\$ 12.00$. His cost is $\$ 9.00$. What is his percent of markup?

Enter:	Read:
12	12.
$\Delta \%$	12.
9.00	9.00
$=$	-25.

The shopkeeper's markup is 25% shown as a discount (-) from retail.
Let's check it using the add on/discount percent key

12	12.
$\Delta \%$	12.
25	25.
$\%$	3. (dollar amount of markup)
$=$	9. cost

The reciprocal key not only permits us to instantly determine profit expressed as a discount from retail, it also permits computations to show the markup on cost. The latter is also the method to quickly compute a return on investment.

Example:

A man invests $\$ 9,000$ in the stock market. Several weeks later he sells his stock for $\$ 12,000$. What is the return on his investment?

Enter:	Read:
9000	9000.
$\Delta \%$	9000.
12000	12000.
$=$	33.33333333

The investor has realized a 33\% return on his money.

Financial Keys

PV Present Value key, used to enter a present value or initial investment for computation. To enter a present value of $\$ 5000$, the key sequence is: 5000 PV

FV Future Value key, used to enter a projected future value for computation. For example, to enter a Future Value of $\$ 10,000$, the key sequence is: 10000 FV

PMT Payment key, used to enter the periodic payment amount for computation. To enter a $\$ 75$ periodic payment, the key sequence is: 75 PMT

I Interest key, used to enter the amount of periodic interest. Interest is entered as a percentage per compounding period.

PER Per Period key. This key is used as a preface to enter a specific time key. The time key works in conjunction with the I key to provide quick reduction of an annual interest rate to the correct periodic payment.

Examples:

N Number of periods. Used to enter the number of compounding and/or payment periods for computation.

DP Down Payment. Enters a down payment or an initial balance for calculation. While financial entries may be made in any order, the DP key is a special entry and must always be made just prior to the compute, CMP key. The key sequence must be: DP CMP

INT Dollar Amount Interest Key. This computational key is used with the CMP key to perform discounted note and accrued interest calculations.
$\mathbf{x}-\mathbf{y}$ Exchange Register Key. This key replaces the number previously entered with the number currently on the display. It is used in financial applications which have two results. In this instance the first result is displayed and the second one is recovered by pressing the exchange key. Refer to the following calculations for application:
(1) Discounted Note
(3) Accrued Interest
(3) Add on interest to annual percentage rate conversion.

CMP Compute Key. Triggers the calculation of the Present Value PV , Future Value FV , Payment [PMT, Interest 1 or Number of Periods \mathbf{N} when entered just prior to one of these keys.

DIS. Display Key. Recalls an entry for examination. It may be pressed at any time prior to pressing the CMP key without disturbing previous entries.

Note: If the DIS key is pressed immediately after the CMP key, as in CMR DIS PV, it will display the earlier entry. However, to continue the calculation you must reenter the compute CMP key.

Note 2: Recall of prior entries after computation has been executed is permissible under certain conditions. Please refer to "Compounded Amount of Interest Earned," example, page 34.

IMPORTANT

1. All financial calculations automatically employ the memory registers to solve computations. Therefore, any data previously stored in memory prior to a financial calculation will be lost.
2. Your financial calculator must be cleared before a financial calculation is entered. Failure to clear the machine may result in an error signal "E" apppearing on the display, but more commonly yields an erroneous result. Your calculator will perform accurately and quickly when cleared properly. This is accomplished by pressing the \mathbf{C} key.

REFERENCE GUIDE TO FINANCIAL APPLICATIONS
This handy key sequence summary is provided to help you recall a particular detail, erral column.
Then, compu First press these keys . . . (In any order)* มnsəュ ə̨nduos 'ueบ 1

әлduex Page

 (Dashes in key sequence denotes numerical entries)
First press these keys ...
(In any order)* \quad Then, compute result $\begin{gathered}\text { Example } \\ \text { Page }\end{gathered}$

Example
Then, compute result Page

Periods for a Compound Amount	(Dashes in key sequence denotes numerical entries)			
	FV PV I	CMP	N	33
Compound Interest Earned (in dollars)	$\begin{array}{ll} \text { PV I } \\ - \text { DIS } \end{array}$	CMP	V	34
Interest on Annuity (Savings)	PMT FV N	CMP	1	40
Interest on Annuity (Loans)	PMT PV N	CMP	1	44
Rate of Interest: Compound Amt.	FV PV N	CMP	1	32
Effective \nearrow Nominal Interest Rate Conversion	FV I N	CMP	1	37
Nominal \nearrow Effective Interest Rate Conversion	PV 1 N	CMP	I	36

| You want to find |
| :--- | | First press these keys... |
| :--- |
| (In any order) | Then, compute result | Example |
| :---: |
| Page |

Financial Applications

The following calculations illustrate how easy it is to handle your financial calculator. Work through each exercise. Building confidence in your ability to handle your new machine is only a matter of practice. Verify your results with those shown on the following pages. Should your calculator fail to perform any of the examples precisely as illustrated, be certain you are keying in the problem accurately. Remember to clear your machine by pressing the C key before beginning a new example. Failure to clear the machine will cause an " E " error symbol to appear or yield an erroneous result.

Compounded Amounts

Future Value of a Compounded amount.
\square PV 1 N CMP FV

This calculation finds the future value $\mathbf{F V}$ of a present value PV compounded at a periodic interest rate $\$ for \mathbb{N} periods. Enter in any order:
PV I IN CMP FV and compute the future value of your investment.

Example 1: If you invested $\$ 1000$ at 7% interest compounded annually what would your investment be worth in 3 years?

Enter:
C $\quad 1000$ PV 7 I 3 N \mathbf{N} CMP FV
Read: \$1225.043
Example 2. Suppose the same sum is invested at 5.75% compounded daily on a 365 day/ year basis, what would it be worth after 3 years?

Enter:

C 1000 PV 5.75 PER DAY I
3×365 N CMP FV
Read: 1188.255674

Present Value of Compounded Amount

FV I N CMP PV

This calculation finds the amount you would need to invest today to reach a desired future amount when computed at a given periodic interest rate.

Enter in any order: FV I N and compute the present value CMP PV

Example: What sum of money must be deposited in a long term savings account at an 8% annual interest rate compounded daily on a 365 day/year basis for 3 years to accumulate $\$ 10,000$?

Enter:

Read: \$7866.48547

Rate of Interest for a Compounded Amount

FV PV N CMP I

This calculation finds the rate of interest per period necessary to amass a desired future value from an initial investment (present value) over a number of periods, \mathbf{N}. The annual percentage rate is found by multiplying the interest per period, the result of this ealculation, by the number of periods per year.

Enter in any order: PV FV N and compute the interest rate per period CMP I

Example: What annual percentage of interest is necessary for an initial investment of $\$ 500$ to grow to $\$ 1000$, if the sum is compounded monthly over 3 years?

Enter:

C	500 PV 1000 FV
12×3	\mathbf{N}

Read: 1.944064367 , the interest rate per mo.

$$
\times 12=
$$

Read: 23.3287724, the annual rate of interest necessary.

Number of Periods for a Compounded Amount

FV PV 1 CMP N

This calculation finds the number of periods necessary to amass a desired future value from an initial investment (present value) at a given periodic rate of interest.

Enter in any order: FV PV I
and compute the number of periods necessary
CMP N

Example: You now have $\$ 1000$ in a savings account which earns 7.75% compounded daily on a 365 day/year basis. How long will it take to reach $\$ 1,000,000$?

Enter:

Read: 32536.75305, days
Enter: $\div 365=$
Read: 89.14178918, years

Compounded Amount of Interest Earned: PV 1 N CMP FV - DIS EV =

This calculation finds the interest earned (actual amount) on an investment when the rate of interest and number of periods are known.

Enter in any order: PV I N
and compute the future value CMP FV then subtract the initial value to find the total amount of interest earned - DIS PV =

Example: What is the total amount of money earned as interest on an investment of \$1000 compounded annually for 3 years at an annual interest rate of 7% ?

Enter:

C 1000 PV 7 I $13 / \mathbf{N}$ CMP FV

Read: 1225.043, total amount massed
Enter: - DIS PV =
Read: 225.043, total amount of interest accrued

Note how the DIS key is employed to recall an earlier entry. To determine the amount of interest earned we must subtract the present value from the final amount. Therefore, once the FV has been obtained, we simply press - DIS PV $=$ and the computation is performed in logical sequence.

Nominal Rate Converted to Effective Annual Rate of Interest
 PV 1 N CMP 1

This calculation finds the effective rate of interest when the nominal annual rate of interest and the number of compounding periods are known.

Enter in any order: PV I N and compute the effective annual rate of interest CMP I

Note: The PV key is used here purely to signal the Nominal Rate to Effective annual rate of interest; no numerical value need be entered with the PV key, though an error will not result if a number is keyed in with the PV key.

Example: What is the effective annual rate of interest on a savings account if the stated nominal rate of interest is 5.75% compounded daily?

Enter:

C PV 5.75 I $365 \times \mathbf{N}$ CMP I
Read:
5.918047306 , effective annual rate of interest

Effective annual rate of interest to

 nominal interest rate conversion
FV I N CMP I

This calculation finds the nominal interest rate when the effective annual rate of interest and the number of compounding periods are known.

Example: By law the maximum legal interest rate on a long term loan is 18% annually. What nominal rate of interest does this represent?

Enter:

C FV 18 , $\mathbf{I} \quad 12 \mathbf{N}$ CMP 1

Read: 16.66611638 , \% nominal interest rate

Add-On Interest to Annual percentage rate conversion 1 N CMP I

This calculation finds the annual percentage rate and the monthly payment factor given an add-on interest rate and the number of periods. The monthly payment can be calculated by multiplying the principal by the monthly payment factor.

Enter in any order: 1 N
 Compute the annual interest rate CMP 1 and enter the exchange key to display the monthly payment factor $\mathbf{x} \cdot \mathbf{y}$

Example: What is the true rate of interest on a 36 month, 7\% add-on loan? What would the monthly payment be on a $\$ 3000$ principal?

Enter:		Read:
C $\quad 71$	36 N CMP I	12.82788631
$\mathrm{x} \longrightarrow \mathrm{y}$		3.361111111-02
$\times 3000$	$=$	100.8333333
Answers:	12.83\% Annually . 034 Monthly Pay $\$ 100.83$ Monthly	ent Factor ayment

ANNUITIES

Future Value of an Annuity (Sinking Fund) PMT \quad I N CMP FV

This calculation finds the future value of an amount to be accumulated at the end of a given number of periods where the following facts are known:

Given: Number of payment periods Value of the payments Periodic rate of interest Initial balance: 0

The algebraic logic of your machine enables the \mathbf{N} PMT and 1 entries to be made in any order you wish.

Example: You want to buy a house and have no money for the down payment. If you start a fund, today, in which you will save $\$ 300$ per month and your savings earn 6\% compounded monthly, how much will your down payment fund be worth at the end of three years?

Enter:

Read: 11800.8315
After three years of frugality you will have saved $\$ 11,800.83$.

Rate of Interest for Sinking Fund (Savings)
 PMT FV N CMP 1

This application finds the rate of interest necessary for a sinking fund to amass a future value.

Given: Desired future value	FV
Number of payment periods	
Value of payment	
Initial balance: 0	

Example: In three years a man must repay a debt of $\$ 14,000$. He is able to save $\$ 350$ per month towards this debt. What annual rate of interest will he require to reach the $\$ 14,000$ goal?

Note: The result will be the rate of interest per period. In this example: I per month. After we solve for I we must multiply the result by the number of periods in one year to determine the annual interest rate.
This calculation is iterative, or one which solves the problem by applying cycles of operations. For this reason, execution time requires approximately 10 to 20 seconds.

Enter:

C $\quad 350$ PMT 14000 FV
3×12 N CMP 1

Read: . 593035837
(This is monthly rate of interest.)
Since the problem calls for the annual rate we must now multiply by 12 . Thus, $\times 12$

Read: 7.116430045
(This is annual rate of interest.)

Payment for Sinking Funds (Savings)

FV I N CMP PMT

This calculation finds the periodic payment necessary to reach a desired future value.

Given: Future value Number of payment periods Periodic interest rateInitial balance: 0
(Remember, you may enter $\mathbb{F V} \mathbb{N}$ and \boldsymbol{I} in any order.)

Example: Your girl is a contemporary lady with old-fashioned values and wants a \$5,000 diamond ring when you both become engaged one year from now. You plan to save each month towards the ring. The best rate available is 6% compounded monthly. How much must you save each month to buy the ring?

Enter:

Read:

C 5000 FV 6 PER MTH 1

12 N CMP PMT
 405.3321485

Rounding off the displayed result reveals a monthly savings payment of $\$ 405.33$.

Present Value of Annuity

PMT I N CMP FV

This calculation determines the principal of present value of an annuity.

Given: Number of pay periods Interest rate per period Periodic payment
 Initial balance: 0

Example: You intend to buy a car and wish to secure a three year loan to do so. You can afford to repay the loan at a rate of $\$ 150$ per month. If the annual interest rate is 9% compounded monthly, how much can you afford to borrow?

Enter:

Read:

4717.020789

Periodic Payment of an Annuity.

 (Direct reduction of loan)
PV I N. CMP PMT

This calculation determines the periodic payment necessary to amortize a principal.

Example: A man takes out a $\$ 4,000$ home improvement loan with an annual interest rate of 9%. The life of the loan is $21 / 2$ years. What will the monthly payments be?

Enter:

Read: 149.392643

Therefore, the monthly payment is $\$ 149.39$.

Interest Rate on Loans

PMT PV N CMP 1

This computation finds the rate of interest per period.

\section*{Given: Principal or present value Number of pay periods Periodic payment | PV |
| :---: |
| N |
| PMT |}

Example: What is the annual interest rate on a $\$ 4000$ principal which is amortized in 36 monthly payments of $\$ 140$ each?
The result obtained must be multiplied by the number of periods per year to determine the annual rate.
As in the sinking fund example which seeks to find the interest rate, this solution is also iterative using numerical analysis techniques. Thus, execution time will be several seconds.

Enter:

4000 PV 140 PMT 36 N CMP 1

Read: 1.306793134

The above result is the monthly interest rate.
-o determine the annual rate we now multiply by $12: \times 12=15.68151761$
Therefore, the annual interest rate is: 15.68%

Future Value of Annuity

PMT 1 N DP CMP FV

In our annuity problem on Page 39 we asked for the amount of a down payment accumulated in a 3 -year fund with monthly investments of $\$ 300$ and earning 6% interest compounded monthly. This problem presumed that there was no initial deposit on account.
The DP Down Payment key permits you to compute assignments in which an initial deposit does exist without first encountering a preliminary computation.
Let us suppose that in our earlier problem there had been an existing deposit of $\$ 5000$ on account. How large a down payment could you now afford if you elected to save $\$ 300$ per month for 3 years and your savings earned 6% compounded monthly?

Enter:

C	300 PMT 6 PER MTH I
$3 \times 12 ~ N ~$	5000 DP CMP FV

Read: 17784.23412
Thus, you could now afford a down payment of $\$ 17,784.23$.

Example: What annual rate of interest must be obtained to save $\$ 15,000$ in three years if you have an initial balance of $\$ 1,500$ and you plan to deposit $\$ 300$ per month?

1.795758481 is the monthly interest rate. To obtain the annual interest rate we must continue our calculation and multiply by 12. Therefore: $\times 12=21.54910177$
An annual rate of 21.5% is what's needed.

Payments on Savings with Inital Deposit (Savings)

FV PER MTH I N DP CMP PMT

In the last example we illustrated how, with the use of the DP key, annuity problems which began with an initial balance could be accomplished in one direct key sequence. This basic formula holds true in the case of sinking funds.

Example: A parent has a thirteen year old and wishes to save enough money to put the youngster into college four years from now. The parent has $\$ 2000$ presently in his savings account and needs a total of $\$ 10,000$ by the time the child is 17 years old. The account pays 7% interest compounded monthly. What are the monthly deposits required to reach this goal?

Enter:

Read: 133.236624
Monthly deposits of $\$ 133.24$ are required

Present Value of an Annuity
 PMT N PER MTH I DP CMP PV

Earlier in this manual we handled a present value example in which an auto loan was required. Without any starting balance on hand, the amount of the loan determined the cost of the car you could buy.

Given: a) $\$ 150$ monthly payments
b) A 3-year period of investment
c) An annual rate of 9%

You were asked to determine the present value of the loan.
If the same facts existed, but you now had $\$ 2000$ with which to make a down payment, you could afford a larger loan to purchase a more expensive car. How much would you now be able to spend?

Enter:

Read: 6717.020789
Answer: \$6717.02

Payments on Loans with Initial Down Payment

 (Direct reduction Ioan)
PV MTH PER I N DP CMP PMT

Example: Mr. Jones plans to purchase a new boat for $\$ 7,000$. He is prepared to make a down payment of $\$ 2000$ and finance the balance at 9% over a 3-year period. What will his monthly payments be?

Enter:

C	7000 PV 9 PER MTH 1
3×12	$\mathbf{N} 2000$

Read: 158.9986632
Mr. Jones will have to pay $\$ 159.00$ per month.

Deposit for Savings

PMT FV PER MTH 1 N CMP DP

This calculation determines the deposit required in a savings account to accumulate a desired future amount after a certain period of time, at a given interest rate.

Given: | Future value | FV |
| :--- | :---: |
| Periodic deposit | PMMT |
| | Number of periods |
| | Periodic interest rate |

Example: A man plans to go abroad in two years. The trip will cost $\$ 7500$. He can afford to save $\$ 150$ per month towards the trip. If his bank pays 6% interest compounded monthly, how much of an initial deposit must the man make in order to save enough to make the voyage?

Enter:

Read: 3269.462582
Answer: \$3269.46

Down Payment on Loans

PV PMT MTH PER I N CMP DP

This calculation finds the down payment necessary to finance an item at a desired interest rate and monthly payment for \mathbf{N} periods.

Example: How large a deposit must you make on a $\$ 100,000$ plane to finance the balance at a 9% annual interest rate for 10 years with payments of $\$ 500$ per month?

Enter:

Read: 60529.15366
Answer: \$60,529.15 down payment.

Accrued Interest

PV N 1 CMP INT $\mathrm{x} \cdot \mathrm{y}$

This calculation finds the total accrued interest (dollar amount) due on a short term loan.

Given: | Present value | PV |
| :--- | :---: |
| | Number of periods |
| | Periodic interest rate |

Example: What is the accrued interest on a $\$ 1000$ loan at 20% annual interest rate for 100 days on a 360/365 day basis?

Enter:

C 1000 PV $100 \mathrm{~N} \quad 20 \mathrm{I}$ CMP INT
Read: 55.55555556
Based upon a 360 day/year the accrued interest is $\$ 55.56$

Exchange key $\mathbf{x} \cdot \mathbf{y} \quad \$ 54.79452055$
Based upon a 365 day/year the accrued interest is \$54.79

Discounted Note

This calculation finds the discounted amount (interest) and the amount yield on a note for both 360 and 365 day basis.

Example: What is the discounted amount on a $\$ 10,000$ note maturing in 160 days at 6% ?

Enter:

C 10000 FV 160 N 6 I CMP INT

Read: 266.666667
The discounted amount on a 360 day/year is 266.67

$x_{i} \rightarrow y$

Effective annual yield is determined on a 360 day/year basis: 6.164\%
6.164383562

CMP INT
263.0136986

The discounted amount on a 365 day/year is 263.01

$x \cdot y$

6.079939952

Effective annual yield determined on a 365 day/year basis: 6.08%

MORTGAGES CALCULATION:

Payments on a Mortgage: This calculation finds the monthly payments necessary to amortize a mortgage, and the total accurate dollar amount of interest paid on the mortgage. Bob and Molly are thinking of buying a house and financing $\$ 40,000$ of the purchase price. Thirty year mortgages are currently available and their real estate agent has quoted a 9% annual interest rate if they chose to finance the house through him. What will the monthly mortgage payments be and how much money will they pay in interest on the mortgage?
Enter in any order: PV I N compute the monthly payment CMP PMT multiply the monthly payment by the number of months during which payment is made to find the total cost of the mortgage $x-=$ and subtract the mortgage amount from this total - DIS PV =

Enter:

C $\quad 40000$ PV 9 PER MTH I
 $30 \times 12 \times \mathbf{N}$ CMP PMT

Read: 321.8490468, the monthly payment

$\times 30 \times 12=$| 115865.6568 |
| :---: |
| $=$ |

- DIS PV $=\quad \quad 75865.65683$
$\$ 75865.00$ is the amount of money paid as interest on a \$40,000, 30 year, 9% mortgage.
Bob knows that he can secure a 30 year $83 / 4 \%$ mortgage with his bank. How much less will this mortgage cost Bob and what will his monthly payment be?

Enter:
C 40000 PV 8.75 PER MTH I
$30 \times 12 \mathbf{N}$ CMP PMT

Read: 314.6801623, the monthly payment at 8.75% annually.

$$
\begin{array}{r}
\times 30 \times 12-\text { DIS PV }=73284.85843 \\
\text { the total amount of interest } \\
\text { paid at } 8.75 \%
\end{array}
$$

| STO 1 | 73284.85845

 store this value |
| :--- | :--- | :--- |
| $75865.65683-$ RCL1 $=\quad 2580.798402$ | |

Find the difference in the amount of interest paid on the mortgages.
Bob will save $\mathbf{\$ 2 5 8 0 . 8 0}$ by securing the mortgage at his bank.

Depreciation Examples

Straight-Line Method

In this method, the annual depreciation allowance is uniform throughout the life of the property and is computed as shown below:
annual depreciation
allowance

$$
=
$$

cost of property-salvage value useful life (in years)

Key Sequence

1. Enter depreciable amount. Depreciable amount is the cost of the property less salvage value if any. Enter STO 1
2. Press \div and enter the useful life (in years), then enter - to get the annual depreciation.
3. Press STO 2 RCL $1 \quad x \cdot y$ then - to get depreciable amount after first year.
4. Continue pressing RCL 2 - to obtain depreciable amounts for each subsequent year.

Example 1:

Calculate the depreciable value at year 1 and year 2 of a 5 -unit apartment building costing $\$ 90,000$ (exclusive of land) depreciated over 25 years with no salvage value.

Enter:	Read:	Explanation:
1. 90000 STO 1	90000.	Depreciable value
2. $\div 25-$	3600.	Annual depreciation
$\text { 3. STO } 2 \text { RCL } 1$	86400.	Depreciable value at year
4. RCL 2 -	82800.	Depreciable value at year 2

The depreciable value at the end of a particular year can be obtained without computing the balance of each preceding year.

Key Sequence

1. Enter depreciable amount. Press STO 1
2. Press \div, enter useful life, then press \mathbf{X}
3. Press STO 2 , enter number of year for which depreciable value is desired, then press -
4. Press RCL $2 \quad x \rightarrow \mathbf{y}$ - to obtain depre-
ciable value for given year.
5. Press RCL 2 - to obtain depreciable value for each subsequent year.

Example 2:

Using example 1 again, what is the depreciable value at year 10 and year 11 ?

Enter: Read: Explanation:

1. 90000 STO 190000 . Depreciable value
2. $\div 25 \times 3600$. Annual depreciation
3.STO $210-36000$. Total depreciation for 10 years

RCL 1	54000.	Depreciable value
$x \longrightarrow y$		at year 10
RCL 2	50400.	Depreciable value at year 11

Declining Balance Method

Unlike the straight-line method, this method allows for more depreciation in the earlier years and less depreciation in the later years of the property. This is done by taking a constant percentage of the depreciable amount for each year to find the depreciation.
The following examples show calculations to find the depreciation and the remaining depreciable value for each year given the following: declining factor, life expectancy, cost and salvage value.

Note: Since a factor is applied each year to the depreciable value, full or partial year holding of the asset in the first year affects the first year depreciation.
The following two examples show full first year holdings:

Key Sequence

To find depreciation and remaining depreciable value for successive years.

1. Enter declining factor

Example: 1.5 for 150% declining balance
2.0 for double declining balance, etc.
Press \times
press \div
2. Enter useful life, in years, press - STO 2
3. Enter cost of property. Do not deduct salvage value. Press $\mathbf{x} \longrightarrow \mathbf{y} \%$ to get first year depreciation.
4. Press - to get depreciable value at year 1.
5. Press RCL 2% to get depreciation at year 2.
6. Repeat step 4 to get remaining depreciable value for succeeding years.

Note: Since the salvage value was not deducted from the cost in the calculations, the book value is the remaining depreciable value. This is not true for the straight-line method and sum-of-the-years'-digits method of calculation. There the salvage value is deducted from the cost initially, and therefore, the book value is the sum of the depreciable value and salvage value.
Also, in the declining balance method, the book value can never go below the salvage value. When the remaining depreciable value is less than the salvage value, the previous depreciable value should be used in calculating the final year's depreciation, that is, the difference between that and the salvage value.

Example:

Calculate the depreciation and remaining depreciable value at years 1 and 2 for the 5 -unit apartment building in example 1 (straight-line method section) using 200\% declining (double declining) balance.

The depreciation allowance and remaining balance for a particular year can be calculated without computing values for each preceding year.

Key Sequence

1. C enter year for which depreciation and remaining balance are desired. Press - , enter 1, press \mathbf{N}.
2. Enter declining factor, press \mathbf{X}, enter 100 , press \div, enter number of years of useful life, press $=$ STO 2
3. Press $+/-\mathbf{I}$
4. Enter cost, press PV CMP FV to obtain remaining depreciation at beginning of specified year.
5. Press - RCL 2% to obtain depreciation for specified year.
6. Press - to obtain depreciable value at end of specified year.
7. Press RCL 2% to obtain depreciation for successive year.
8. Repeat items 6 and 7 for values on following years.
9. To skip to another year, press $=$ then, enter specified year, press - , enter 1 , press \mathbf{N} CMP FV.
10. Press - FCL 2% to obtain depreciation for that year.
11. Press - to obtain remaining depreciable value.

Example 2:

Find the depreciation and remaining depreciable value at years 10, 11 and 15 for the same property in example 1.
Enter:

1. \mathbf{C}

$$
10-1 \mathbf{N}
$$

2. $2 \times 100 \div 25=$ STO 2Read:
3.
4. $+1-1$ -8.
5. 90000 PV C'MP FV 42494.5227
Remaining depreciable value at year 9
6. - RCL 2 \% 3399.561816
Depreciation at year 10
7. - 39094.96088
Depreciable value at year 10
8. RCL 2% 3127.596871
Depreciation at year 11
9. - 35967.36401
Depreciable value at year 11
10. $=15-1 \mathbf{N}$ CMP FV 28007.35475
11. - RCL 2 \%2240.58838Depreciation at year 15
12. - 25766.76637
Depreciable value at year 15

If the property is held for less than twelve months in the first year, the following key sequence must be used:

Key Sequence

1. Enter declining factor, press \mathbf{x}, enter 100 , then pres's \div.
2. Enter useful life in years, press \times STO 2
3. Enter number of months held in first year, press \div, enter 12 , press -
4. Enter cost, press $\mathbf{x} \longrightarrow \mathbf{y} \%$ to get first year's depreciation.
5. Press - to get remaining balance at first year.
6. Press RCL 2% to obtain second year's depreciation.
7. Repeat items 6 and 7 for successive years.

Example 3:

Find the book value of a 20 month old car originally costing $\$ 4500$ using 125% declining balance. The car is held for 8 months during the first year of ownership. Expected life is 8 years.

Sum-of-the-Years' Digit Method

This method is similar to the declining balance method in that more depreciation is allowed in the earlier years and less depreciation in the later years of an asset's life. To compute the depreciation for a year, use the formula:
$\frac{\text { remaining life in years }}{\text { sum of years of useful life }} \times$ depreciable value

Key Sequence

1. Press \mathbf{C}, enter life in years, press + $1 \times$, life, $\div 2 \mathbf{x} \cdot \mathbf{y} \times$.
2. Enter depreciable value, press STO $1 \times$ STO 2 enter life, press $=\mathbf{N}$; this gives the depreciation at year 1.
3. Press - RCL $1 \mid x \cdot-\mathbf{y}=$ STO 1 to obtain depreciable value after year 1 .
4. Press DIS $\mathbf{N}-\mathbf{R C L} \mathbf{2}=\mathbf{N}$ to obtain depreciation at year 2.
5. Repeat item 3 to obtain depreciable value at year 2.
6. Continue items 4 and 5 for successive years.

Example 1:

Compare values of depreciation and depreciable values at years 1 and 2 between this method and both straight-line and declining balance.

Enter:

Read:
(1) $25+1 \times 25-2$ Sum of useful years of life.
(2) $\mathbf{x} \rightarrow \mathbf{y} \times$
$1 /$ sum of year of useful life.
(3) 90000 STO $1 \times$ STO 276.9230769

Store initial value in Memory 1 and multiply by result in Step 2.
(1) 25
25.

Index number of useful years remaining.
(ㄷ) $=\underset{\text { Solve for First year }}{\text { depreciation. }}$
(6) - RCL $1 \mathbf{x} \cdot-\cdot \mathbf{y}=$ STO 183076.92308 Subtract Step 5 from initial value stored in Memory 1 (exchange key permits this) to obtain Depreciable Value year 1. Store this in Memory 1.
(3) Dis $\mathbf{N}-\mathbf{R C L} 2=\mathbf{N} \quad 6646.153846$

Recall first year depreciation 【N .
Subtract from data in Memory 2 to obtain second year depreciation. Store this result in \mathbf{N} register.
(8) - RCL $1 \boldsymbol{x} \leftrightarrows \mathbf{y}=$ STO $1 \quad 76430.76923$

Same procedure as Step 6 to obtain Depreciable Value Year 2.

Key Sequence

1. Press C , enter life, press STO 2
2. Press + , enter 1 , press \mathbf{X}, enter life in years, press $\div 2 \boldsymbol{x} \leftrightarrows \mathbf{y} \times$.
3. Enter depreciable value, press \times RCL 2 STO 1 enter specified year minus 1, press + I- V1 RCL $1 \times$. This gives the depreciation for given year.
4. Press RCL 2 STO 1 enter specified year, press + /- $\mathbf{X 1}$ RCLI $\div 2=$ to get remaining depreciable value.

Example 2:

Compare again for year 10 only.

Enter:

1. 25 STO 2

Read: 25.
Life in years
2. $+1 \times 25 \div 2 \mathbf{x} \longrightarrow \mathbf{y} \times$
3. $90000 \times$ RCL 2 STO $19+/-$ E1 RCL $1 \times$

Read: 4430.769231
Depreciation at year 10
4. RCL 2 STO 110 + /- $\mathbf{~} 1$ RCL $1 \div 2=$

Read: 33230.76923
Remaining depreciable value at year 10 .

In addition to being a financial mini-computer, your F4146 is a powerful 2-memory exponential calculator with an x to the y power key, a percent key and a memory summation key.

Power Key $\mathbf{y}^{\mathbf{x}}$

The power key raises a base number to a power. Operating this function is simply a matter of entering the base first, then the $\mathbf{y}^{\mathbf{x}}$ key. Next, the desired power and finally, the result key $=$.

The $\mathbf{y}^{\mathbf{x}}$ key and the $1 / \mathbf{x}$ key are used to solve root combinations and sum-of-squares calculations.
(1) $\sqrt{144}=$?

Enter:	Read:	Explanation:
144	144.	Raising a base to a fraction
$\mathbf{y}^{\mathbf{x}}$	144.	power is the same as taking a root of the base. (2 1/x computes the square root)
$=$	0.5	12.

(3) $\sqrt{517.3}=$?

Enter:	Read:	
517.3	517.3	
$\mathbf{y}^{\mathbf{x}}$	517.3	
$21 / \mathrm{x}$	0.5	
=	22.74423004	
(3) $\sqrt[3]{74088}=$?		
Enter:	Read:	Explanation:
74088	74088.	$31 / x$ computes the cube root.
$\mathrm{y}^{\mathbf{x}}$	74088.	
$31 / \mathrm{x}$	0.333333333	
=	42.	

Sum-of-Squares

Chain calculations are possible with the $\mathbf{y}^{\mathbf{x}}$ key. Thus, solving a sum-of-squares argument as a hypotenuse calculation is an easy procedure.
(1) $(19)^{2}+(14.1)^{2}+(8)^{2}=$?

Enter: Read: Explanation:

19 19. | Calculate the square of 19 |
| :--- |
| and prepare machine to add |

$\mathbf{y}^{\mathbf{x}} 2+361$.
14.1 14.1 Calculate the square of 14.1, add it to the square of 19
$\mathbf{y}^{\mathbf{x}} 2+559.81$ and prepare machine to add
8
8. Calculate the square of 8, add it to the previous sub-
$\mathbf{y}^{\mathbf{x}} 2=623.81$ total and determine the final result

Finding the square root of a sum-of-squares is accomplished by raising the sum-of-squares value to the power. 5 (2 $1 / \mathrm{x}$ power).

In the above example the displayed result is 623.81. To find the square root of this answer:

Enter:
$\mathbf{y}^{\mathbf{x}} 2 \mathbf{1 / x}=24.97618866$

GLOSSARY OF FINANCIAL TERMS

A
Accrued Interest Interest which has been earned but not collected.

Add-on Interest Rate In consumer finance, an expression used to describe a type of finance charge. When a loan is made a year's simple interest is "added-on" to the principal amount for each year of the life of the loan.

Amortization A planned, fixed reduction of an amount over a period of time. This expression includes a number of specific practices such as depreciation, depletion, write-off of intangibles, prepaid expenses and deferred charges.

Annuity A series of equal payments made at regular intervals, i.e., monthly, yearly.

Annual Percentage Rate (APR) True cost of a loan expressed as the annual percentage rate of the loan. This is now required by U.S. Federal Reserve truth-in-lending law.

B

Bond A long-term promissory note by a company or institution.

Book Value The book value of a company refers to the total assets that company has minus its total liabilities.

C

Chain Discount A series of discounts expressed as percentages.

Compound Interest Interest which results from the addition of simple interest to a principal amount applied at periodic intervals. The new total (Principal plus Interest) now becomes the new principal upon which the next period's interest is computed and applied.

D

Declining Balance Depreciation A means of determining the yearly charge for depreciation. Depreciation is obtained by applying a predetermined percent factor to the diminishing balance of an asset. It is the balance after subtracting the prior period's depreciation.

Declining Factor This is the determinant of the percent factor to be applied to the Declining Balance Depreciation method. The percent or rate of depreciation is found by dividing the declining factor by the asset's life in years and converting this result to a percentage.
(Result $\times 100=\%$).

Depreciation A gradual reassessment of an item to reduce its value over a predetermined period of time. (Refer to declining balance depreciation; sum-of-the-digits, amortization, declining factor.)

Direct Reduction Loan Any loan whose periodic payment is determined by calculating the interest for the period on the amount of the principal outstanding for that period. The new principal is found by subtracting the remaining amount of the loan payment that had not been designated as interest.

Discount A reduction made from a regular or list price. (See Mark Down.)

Discounted Note An instrument of future indebtedness which has been negotiated for an amount of present value less than its face value. The difference between its face value and its present value is the interest or discount payment.

E

Effective Rate The effective rate is that percentage of interest computed against the current market value of an original investment. It is commonly stated as an annual percent.

Effective Yield (See Effective Rate.)

F

Finance Charge The cost of a consumer loan expressed in dollar amount. It can be found by subtracting the amount originally borrowed from the actual amount to be repaid.

Future Value A total derived from the repeated compounding of a predetermined periodic interest rate on a present value over a specific number of periods. (See Compound Interest.)

M

Markup This is the percentage or dollar amount that is added to the cost of goods to determine a selling price.

Markdown That amount discounted from the original selling price. It may be expressed in dollars or as a percentage. (See Discount.)

Maturity Termination of the period that an obligation has to run.

Mean A value which represents the average value between two or more quantities. It is obtained by adding the quantities and dividing the total by the number of quantities.

Mean Deviation The average of the absolute values of the numerical differences between the numbers of a set (as in statistical data) and their mean.

Mortgage A conveyance of property (as security for a loan) on condition that the conveyance becomes void on payment or performance in accordance with stipulated terms.

N

Nominal Rate A rate of interest commonly divided by the number of periodic payments for compounding to thus yield a higher effective rate.

Note A written promise to pay a debt on a given date.

P

Percent (Part of a hundred) Derived by multiplying a decimal fraction by 100.

Percentage (Part of a whole expressed in hundredths) Derived from multiplying any number by a percent.

Periodic Payment The discharge of a monetary obligation through a series of payments made on a prescribed schedule.

Present Value The current worth of property, commodity or pecuniary obligation. Given a compound interest rate and the life of an obligation, the present value of future obligation can be obtained.

Principal A capital sum placed at a given interest rate; as in a debt or investment.

R

Rate (See Compound Rate, Nominal Rate, Percent)

Rule of 78's A method of computing the unearned interest or finance charges at any point in time, using sum-of-the-digits as a base. (See Sum-of-the-digits Amortization). It is generally used to compute the interest or finance charge rebate when the borrowing is repaid prior to maturity date.

S

Simple Interest A one time interest rate charged to the principal amount of a loan. (See Compound Interest.)

Sinking Fund A fund set up with money invested at regular intervals for paying off a particular debt when it falls due; i.e., the settlement date.

Standard Deviation That degree of difference around a mean. (See mean deviation.)

Sum-of-the-Digits Amortization A periodic reduction of any fixed amount based on the number of periods over which amortization is to be taken. The remaining balance at the end of each period is computed by multiplying the original amount by a fraction consisting of the sum of the total periods as the denominator and the sum of periods remaining as the numerator. Assuming a 10 year life, the annual amortization is computed using a denominator of 55 (the sum of $10,9,8,7$, etc.) and a numerator of 10 for the first year, 9 for the second, etc.

APPENDIX A

Rechargeable Battery

AC Operation

Connect the charger to any standard electrical outlet and plug the jack into the Calculator. After the above connections have been made, the power switch may be turned "ON." (While connected to AC, the batteries are automatically charging whether the power switch is "ON" or "OFF.")

Battery Operation

Disconnect the charger cord and push the power switch, "ON," an interlock switch in the calculator socket will prevent battery operation if the jack remains connected. With normal use a full battery charge can be expected to supply about 2 to 3 hours of working time.
When the battery is low, figures on display will dim. Do not continue battery operation, this indicates the need for a battery charge. Use of the calculator can be continued during the charge cycle.

Battery Charging

Simply follow the same procedure as in AC operation. The calculator may be used during the charge period. However, doing so increases the time required to reach full charge. If a power cell has completely discharged, the calculator should not be operated on battery power until it has been recharged for at least 3 hours, unless otherwise instructed by a notice accompanying your machine. Batteries will reach full efficiency after 2 or 3 charge cycles.

APPENDIX A

Use proper Commodore/CBM adapterrecharger for AC operation and recharging.
Adapter 640 or 707 North America

Adapter 708 England

Adapter 709 West Germany

APPENDIX B

Low Power

If battery is low calculator will:
a. Display will appear erratic
b. Display will dim
c. Display will fail to accept numbers

If one or all of the above conditions occur, you may check for a low battery condition by entering a series of 8 's. If 8's fail to appear, operations should not be continued on battery power. Unit may be operated on AC power. See battery charging explanation. If machine continues to be inoperative see guarantee section.

CAUTION

A strong static discharge will damage your machine.

Shipping Instructions:

A defective machine should be returned to the authorized service center nearest you.
See listing of service centers.

Temperature Range

Mode	Temperature $^{\circ} \mathrm{C}$	Temperature $^{\circ} \mathrm{F}$
Operating	0° to 50°	32° to 122°
Charging	10° to 40°	50° to 104°
Storage	-40° to 55°	-40° to 131°

APPENDIX C

Guarantee

Your new electronic calculator carries a parts and labor guarantee for one year from date of purchase.

We reserve the right to repair a damaged component, replace it entirely, or, if necessary, exchange your machine.

If you own a portable calculator which uses an AC adapter, the adapter must be returned with your machine when service is required.

In order to receive free service under this guarantee at a Commodore Service Center, you are required to pay all postage, shipping and insurance charges when returning your calculator to the Commodore Service Center and enclose a check or money order for $\$ 2.50$ to cover handling charge, return postage and insurance.

This guarantee is valid only when a copy of your original sales slip or similar proof of purchase accompanies your defective machine.

This guarantee applies only to the original owner. It does not cover damage or malfunctions resulting from fire, accident, neglect, abuse or other causes beyond our control.

The guarantee does not cover the repair or replacement of plastic housings or transformers damaged by the use of improper voltage. Nor does it cover the replacement of expendable accessories and disposable batteries.

The guarantee will also be automatically voided if your machine is repaired or tampered with by any unauthorized person or agency.

This guarantee supersedes, and is in lieu of, all other guarantees whether expressed or implied.

Commodore Business Machines, Inc.
390 Reed Street,
Santa Clara, California 95050
Commodore Business Machines, (Canada) Ltd.
946 Warden Avenue
Scarborough, Ontario
CBM Business Machines Limited
Eaglescliffe Industrial Estate
Stockton on Tees
Cleveland County
T516 OPN
England
Commodore Büromaschinen GmbH
6079 Sprendlingen
Robert-Bosch-Str. 12A
West Germany
Commodore Japan Lid.
Taisei-Denshi Bldg.
8-14, Ikue 1-Chome
Asahi-Ku, Osaka 535
Commodore France S.A.
Departmentale M14
Zone Industrielle 06510 Carros, France

Commodore Switzerland S.A.
Bahnhofstr 29-31, 2 Stock
Postfach 666, 5001 Aarau

