TRS
323200
115 FERRY RO
SOUT HPART

CANON CANOLA SX-300 SERIES

Conmier affini sfllies.

$$
(140 \mathrm{~min}(x 15 \mathrm{~m})
$$

CONTENTS

Chapter 1 Quick Guide to Programming

1. Specifications 1
2. List of Program Instructions 2
3. Table of Character Codes 5

* 4. Manual Calculation 6
Exercise (1) 8
* 5. What is Programmed Calculation? 9
* 6. Program Input and Output 11
** 7. Data Input and Output 14
* 8. Execution Procedure of Programmed Calculation 15
* 9. Finding Programming Errors 16
*10. Correction of Program 17

11. When the Capacity is Extended over One Page 19
Chapter 2 Program Examples

* 1. Straight Line Program 23
Head of a Program and End of a Program
Usage of Memories
Rounding
Input of Constants
Exercise (2) 26
* 2. Program with Branching 27
Conditional Jump Instructions (IF <0, Instruction)
Conversion of Degree Minute Second to Decimal Degree
Unconditional Jump Instructions (GOTO, BRANCH Instructions)
Exercise (3)33
** 3. Program with Iterative Routine 34
IFE Instruction
Splitting a Memory in Two
Method of Counting the Number of Data
IF $\neq 0$ Instruction
Exercise (4) 42
** 4. Program with Subroutines 43
Subroutine

5. Array 45
INDIRECT Instruction
Method of Making Tables
*** 6. Making Tables 50^{-}
Exercise (5) 53
Answers to Exercises 54^{-}
Table for Comparison of Two Numbers 60
*marks given in the Contents and the Text indicate the following grade: * stands forelementary grade; ** middle grade; and *** high grade.
-әреля ч8!

CHAPTER

QUICK GUIDE TO PROGRAMMING

1. Specifications

1. Digits

\quad Display
Memory (Full)
Memory (Short)

Mantissa part 14 digits and sign
Mantissa part 14 digits and sign
Mantissa part 6 digits and sign

Exponent part 2 digits and sign Exponent part 2 digits and sign Exponent part 2 digits and sign

2. Capacity

Internal expansion: Up to 100 data memories and 1000 program steps
External expansion (Maximum capacity): 500 data memories and 4000 program steps

3. Cartridge tape capacity

D-100 \qquad 100 data memories or 1000 program steps

D-500 500 data memories or 5000 program steps

2. List of Program Instructions

Program instruction	Print symbol	Brief explanation	Key operation (omitted $n n$)
$+,-, x, \div$	$+,-, x, \div$	Addition, subtraction, multiplication, and division	$\square \square]\left[\begin{array}{l}\text { ¢ }\end{array}+\right.$
(,)	(,)	Parentheses (Up to double parentheses)	(,\square
$=$	$=$	Completion of calculation	\pm
0-9	0-9	Figure	$0-9$
.	.	Decimal point	$\square^{\text {® }}$
EXP	EXP	Designation of exponents	EXP
SC	SC	Conversion of signs	
e	e	Denotes constant e	$\text { arc } e^{x}$
π	π	Denotes constant π	arc arc
CE	CE	Clear buffer register	CE
E	E	Input of data	ENT
SIN	SIN]	sin
COS	COS	\} Find trigonometric functions *	\cos
TAN	TAN)	tan
ASIN	ASIN		arc sin
ACOS	ACOS	$\}$ Find inverse trigonometric functions $*$	arc cos
ATAN	ATAN]	arc tan
DEG	DEG	Conversion of degree, minute, and second into decimal degree	$a^{\circ} \stackrel{\square}{\square}$
DMS	DMS	Conversion of decimal degree into degree, minute, and second	arc $a^{\bullet} \rightarrow$
CMA	$f 1$	Clear all memories	INST $\mathrm{F}, 1$
SM	SM	Store in a memory	SM
RM	RM	Recall memory contents	RM
CM	CM	Clear a memory	CM

\% Input and output are designated by the Angle Form Slide Switch.
Set to the Degree mode normally.

Program instruction	Print symbol	Brief explanation	Key operation (omitted $n n$)
$\Sigma \mathrm{M}$	$\Sigma \mathrm{M}$	Accumulation in a memory	SM
R	R	Designates right half of a memory	RIGHT
L	L	Designates left half of a memory	LEFT
IND	IND	Indirect memory addressing	INDIRECT
SP	SP	Denotes starting program	SP
EP	EP	Denotes ending program	EP
G0T0	GT	Unconditional jump	GOTO
GTSP	GS	Unconditional jump to subroutine	GOTOSP
$I F * 0$	IFNZ	Jump if not zero	IFGOTO]
IF 20	IF+	Jump if zero or positive	IFGOTO +
IF <0	IF-	Jump if negative	IFGOTO -
IFE	IFE	Jump if data input has been done	IFGOTO ENT
IFER	IFER	Jump if an error has occurred	IFGOTO CE
FLG	FLG	Destination of jump instruction	FLAG
BRANCH	IOf	U.conditional jump to destination step	I / O \square
\uparrow	FIX9	Round-up	FIX 9
5/4	FIX5	Round-off	$\begin{array}{\|l\|l\|} \hline \text { FIX } & 5 \\ \hline \end{array}$
\downarrow	FIX0	Round-down	FIX 0
e^{x}	e^{x}	Find exponential function to the base e	e^{x}
10^{x}	10^{x}	Find exponential function to the base 10	10^{x}
a^{x}	$\boldsymbol{a}^{\boldsymbol{x}}$	Find exponential function to the base $a, a\left[a^{x}\right] \times \square^{*}$	$a^{\boldsymbol{x}}$
LN	LN	Natural logarithm	\ln
LOG	LOG	Common logarithm	log
$\sqrt{ }$	$\sqrt{ }$	Square root	$\sqrt{ }$
1/a	1/a	Reciprocal	$\frac{1}{a}$
a^{2}	a2	Square	a^{2}
$\|a\|$	$\|a\|$	Absolute value	INST 86
N!	N!	Factorial	$n!$

※ \quad 回 $\boldsymbol{\square}$ will do.

Program instruction	Print symbol	Brief explanation	Key operation (omitted nn)
INT	INT	Take out integer only	INST 88
FRC	FRC	Take out decimal fraction only	[INST 8 7
\bigcirc	\bigcirc	Print	I/O 0
LF	LF	Feed paper by one line	LINE
COL	COL	Print the figure in designated digits. No paper feeding.	COL PRINT
CHA	CHA	Put before and after character output	CHARACTER PRINT
SPC	\cdots	Space by designated digits	SPACE
SED	$f 9$	Continue calculation in an error state	INST [F] 9
RED	$f 7$	Nullify SED instruction	INST F 7
SE	$f 5$	Set error state	INST F 5
RE	$f 3$	Release error state	INST $\sqrt{\text { F }} 3$
DATA.Pn	$7 n$	Designates page for data	INST 7 n
PROG-Pn	$9 n$	Designates page for program	INST 9 n
NOP		No-operation instruction	INST 0,0

3. Table of Character Codes

	0	1	2	3	4	5	a	b	c	d
0			¢	0	@	P	*	1		
1			1	1	A	Q	-			
2			\bigcirc	2	B	R	r			
3			\#	3	C	S	-			
4			\$	4	D	T	π			
5			\%	5	E	U	x			
6			\&	6	F	\checkmark				
7			£	7	G	w	$\sqrt{ }$			
8			1	8	H	X	\times			
9			1	9	1	Y	\div			
a	LF		*	:	J	z	a			
b			+	\longrightarrow	K	Σ	b			
c			,	$<$	L	\#	c			
d			-	=	M	9	d			
e			-	>	N	h	e			\cdots
1			1	$?$	0	i	f			-

Arrangement of Character Keys

4. Manual Calculation (Round- off to six decimal places)

By depressing the keys following algebraic expressions, the calculator will automatically execute the calculations. The order of calculation priority is as follows:

1. Parentheses (Up to double parentheses)
2. Functions
3. Multiplications and Divisions
4. Additions and Subtractions

0
o $4 \times(-3)=-12.000000$
$9 \boxed{-} 6 \boxed{+} 3$

The $\begin{gathered}\text { SIGN } \\ \text { CHG }\end{gathered}$ key converts the sign of displayed figure. Hereafter, the $\begin{aligned} & \text { SIGN } \\ & \mathrm{CHG}\end{aligned}$ key is expressed as $\mathbf{S C}$.
o $\sqrt{625}=25$ $625 \sqrt{ }$
o $\frac{36}{1+2+3}=6.000000 \quad 36 \square \div 1 \square 2 \square 3 \square \square$

- $\quad 5^{2}=25$
$5 a a^{2}$
$2^{8}=256$
$2 a^{2} a^{2} a^{2}$
o $\quad 5^{-3}=0.008000$
$5 \longdiv { a ^ { x } } 3 \boxed { S C } \square$
o $\quad \log 5=0.698970004336$
$5 \longdiv { \operatorname { l o g } }$
$0 \quad \sin 25^{\circ} 30^{\prime} 15^{\prime \prime}=0.430576733524$
Set switch to DMS mode
25.3015 sin
o $\quad 30+4 \times\left(1.56 \times 10^{2}-50 \times \cos 30^{\circ} 36^{\prime}\right)=481.851595$
Set switch to DMS mode
$30 \boxed{+} 4 \times 1.56 \mathrm{EXP} 2 \square 50 \times 30.36 \mathrm{cos} \mathrm{x} \square$
o $\quad 81 \div 9+27 \div 9+36 \div 9=16.000000$
$81 \div 9 \square 0 \mathrm{SM} 0+27 \div \mathrm{RM} 00+36 \div \mathrm{RM} 00 \mathrm{O}$.
Let the figure 9 memorize into address 00 by key operation of $\operatorname{SM} 00$. Then recall it by RM 0 where 9 is needed.
- $\pi \times 3^{2}=28.274334$

π (pi) can be found by depressing [arc keys twice as arc] arc] .
\star Print of characters $\dot{\alpha}$
- CANON
CHARACTER
PRINT
c
A
0
N
CHARACTER
PRINT

* Exercise (1)

(Decimal Point Selector Dial 6, Round Form Slide Switch 5/4)

1. $456+789=1245.000000$
2. $56.78-88=-31.220000$
3. $-2.7 \times 7.89=-21.303000$
4. $(7890+192) \times\left(3.84 \times 10^{3}-512\right)=26896896.000000$
5. $0.1 \div 2 \times\left\{1+2 \times\left(2.7282+34595 \times 10^{-4}\right)+0.5\right\}=0.693770$
-9×10^{-8} is input by key operation of 9 SC EXP 8 SC
6. $\frac{63.6 \times 0.328}{5.87^{2}}=0.605417$
7. $\sqrt{3^{2}+4^{2}}=5$
8. $\cos 15^{\circ} 30^{\prime}=0.963630453209$
9. $\tan 12.34^{\circ}=0.218766692332$
10. $\sin ^{-1} 0.2221157789=12.8333333279$
11. $e^{1 A}=4.05519996684$
12. $e^{-2.5}=0.0820849986239$
13. $3.6^{1.3}=5.286805$
14. $1.4^{3 / 7}=1.4^{(3+7)}=1.155118$
15. $\log 3=0.47712125472$
16. Obtain x when $\log x=0.6020599914$. $x=4.00000000066$. Use 10^{x} key.
17. $\ln 5=1.60943791243$
18. Obtain x when $\ln x=-1.203972804$. $x=0.300000000098$. Use e^{x} key.
19. $y=3 x^{3}+2 x^{2}-x \quad$ Calculate y by letting $x(x=2)$ memorize in address 10 .

$$
y=30.000000
$$

20. Print your name.

5. What is Programmed Calculation ?

Calculation executed automatically according to the calculation procedure memorized in the calculator memory is called Programmed Calculation.

5-1 How to Program

Example 1:

$$
\text { Calculation of the area of a circle } \quad S=\pi r^{2}
$$

Let's explain the programming with a simple example.

1) Flow chart

The flow chart arranges the processing procedure of a problem in a readily visible diagram. Writing a flow chart will help you understand the calculation procedure more clearly than analyzing it only in your head.

Symbol	Usage and meaning
	Start or end of a program ((START) , END).
	Decision. The condition for branching is written inside the figure as
	Output of computed result.
\square	Process Side and connected with same symbol.
\square	Flowlines. Denotes direction of calculation procedure.
\square	

2) Perform manual calculation according to flow chart and check whether procedure is right.

Manual operation
$2(=r)$
a^{2}
x
arc arc ($=\pi$)
E

Operation by an ordinary calculator is shown on the left side. To program this,

1. Put SP $n \quad n$ at the start of the program and EP n n at the end.
2. Change to the ENT instruction where variable r is entered.
3. Enter \diamond (print instruction) where the result is printed out.

Thus the program is completed.

```
Program
SP
00
(E)*
a
x
\pi(= arc arc )
=
\diamond
EP
00
```


6. Program Input and Output

To let the calculator memorize the program somehow is called program input, and to have the memorized program printed out is called program output.

Input is done from keyboard or from the cartridge tape. Output methods are the printing out on roll paper and the transferring to the cartridge tape.

6.1 Program Input

1) Input Procedure Through Keyboard
(1) Depress the LEARN key
(2) Depress keys $\left.\mathbb{C} \begin{array}{|c}C \\ A L L\end{array}\right]$ (Note 2)

All the programs stored will be cleared. Depress the $[\mathbf{C}$ key alone when you do not wish to clear them.

(3) If necessary, depress STEP SET n, n, If this procedure is omitted, a program will be input from the 000 step. But when a program is to be input from a certain step (for example, 1223 step), depress as | STEP | $\begin{array}{l}\text { STET } \\ \text { SET }\end{array}$ | 1 | 3 |
| :--- | :--- | :--- | :--- |

(4) Depress keys corresponding to program instructions. List of program instructions and their corresponding keys are given on page $2-4$.
(5) Depress the OPE key.

Correcting program instruction during input When you notice any miss operation of keys during input of program in above operation (4), correct the instruction in the following manner.
(1) Go back to the step whose instruction is wrong by depressing the

STEP STEP
BACK BACK many times as required.
(2) Input right instruction over prior one. (Note 1)
(3) Depress the S key to put the step to the original position. One depressing the S key makes one step go forward.
(Note 1)
The following procedure shall be taken to amend only $n n$ parts of the character code, symbol, address, and print instructions.
(Example)
To change RM 10 to RM 11, go back to the step where 10 is input and depress INST 1 . 1 .
(Note 2) Working of C] ALL.

Mode	Memory contents	Program contents	Program step
OPE	All cleared	Remaining	Back to step 000
LRN	Remaining	All cleared	Back to step 000
CHECK	Remaining	Remaining	Back to step 000
DEBUG	Remaining	Remaining	Back to step 000

2) Input Procedure from Cartridge Tapes

The transferring can be performed in all the modes.
(1) Confirm that $\begin{aligned} & \text { DATA } \\ & \text { rians }\end{aligned}$ is not locked.
(2) Depress C ALL in the LEARN mode to clear all the program stored. When you do not wish them to be cleared, depress the C key alone.
(3) Depress \qquad $\square \square \square$, if necessary.
If this procedure is not taken, a program will be input from the 000 step, but when you especially wish them to be input from a certain step (for example, 123 step), depress $\left.\begin{array}{|c|c|}\hline \boldsymbol{S T E P} \\ \mathrm{SET} \\ \mathrm{SET} & 1\end{array}\right]$.
(4) Set the cartridge to the unit.
(5) Depress the LOAD key.

The MCR Lamp stays on while the tape is running. If a program does not end within one cartridge, return to Step (4).
(6) When LOAD ends, switched to the OPE mode automatically.

6-2 Program Output

1) Procedure of Printing out Program on Roll Paper
(1) Depress the C key.

When you wish to print out from a certain step (for example, 123 step), depress STEP | SET | 1 | 2 |
| :--- | :--- | :--- |

(2) Depress the $\begin{aligned} & \text { PROG } \\ & \text { PRINT }\end{aligned}$ key in the CHECK mode. When there is no program instruction (strictly speaking, when 2 blank steps are read sequencially), program printing is automatically stopped.
(3) Depress the C key to stop the printing in process. (In this case, a mode must be set anew to shift to the next operation.)
(4) Put the print head to the end by depressing the C key.
2) Procedure of Recording Program on Cartridge Tapes

(1) Confirm that the | DATA | |
| :--- | :--- |
| TRANS | key is not locked. |

(2) Depress the C key.

When you especially wish to transfer a program from a certain step (for example, 123 step), depress $\underset{\substack{\text { STEP } \\ \text { SET }}}{\mathrm{SET}} 3$.
(3) Set the cartridg 10 the unit.
(4) Depress the RECORD key.

The MCR Lamp stays on while the tape is running. At the end of recording, the last step of the recorded program is displayed. If more recording is necessary, return to Step (3).

7. Data (Constants) Input and Output

Data or constants are sometimes memorized in memories before program execution. To memorize data in this manner is called data input, and to put out data memorized in memories is called data output.

7-1 Data Input

1) Procedure of Data Input by Keys
(1) Depress the OPE key. (If all the status indicating lamps are turned out, it is all right.)
(2) Enter data.
(3) Depress SM n n to store data in the $n n$ address.
2) Procedure of Data Transfer (LOAD) from Cartridge Tapes

This can be performed in all modes. The end of LOAD leads automatically to the OPE mode.
(1) Lock $\begin{aligned} & \text { DATA } \\ & \text { TRANS }\end{aligned}$ key.

The leading address of the memory group to be input (for example, address 12) is set as follows: Depress

STEP
SET

[1) 2 .
(2) Set the cartridge to the unit.
(3) Depress the LOAD key.

The MCR Lamp stays on while the tape is running. If the data does not end within one page, return to Step (2).
(4) Release the locked $\begin{aligned} & \text { DATA } \\ & \text { TRANS }\end{aligned}$ key.

7-2 Data Output

1) Procedure of Data Transfer (RECORD) to Cartridge Tapes
(1) Lock the $\begin{aligned} & \text { DATA } \\ & \text { TRANS }\end{aligned}$
(2) Set the leading address of memory group to be transferred (for example, address 12) as follows: Depress $\underset{\substack{\text { STEP } \\ \text { SET }}}{\substack{2}} 10$.
(3) Set the cartridge to the unit.
(4) Depress the RECORD key. The MCR Lamp stays on while the tape is running. At the end of recording, the last address of the recorded data is displayed. If more recording is necessary, return to Step (3) .

(5) Release the locked | DATA |
| :---: |
| TRANS |

8. Execution Procedure of Programmed Calculation

(1) Depress the OPE key. (All status indicating lamps are turned out.)
i Depress the C key.
2-1 When a program starts at steps other than the 000 step (for example, 123 step), depress the key in the following manner instead of depressing the C key:
STEP
SET
(1) 23

2-2 Because the beginning of the program is SP $n n$, depressing $\left.\begin{array}{c}\text { GoToSP } \\ n n\end{array}\right] n n$ instead of depressing the C key is available.

2-3 When the beginning of the program is SP $8 a$ depress	PROG
SELECT	A instead of the C key.

* In the case of $8 \mathrm{~b}, 8 \mathrm{c}, 8 \mathrm{~d}$, and 8 e , they correspond to the B, C, D, and E keys, respectively.

3. When it is necessary to enter the numerals after 2-1, enter the data according to one of the following operations and start the calculation by depressing the $\leq *$ key. When not, depress the S key only and execution will be started. Furthermore when it is necessary to enter the numerals in the above
 after entering numerals. If not, depress these keys as mentioned in 2-2, 2-3 and execution will be started.

- [S; abbreviation of START key hereinafter.
(4) Start with Operation (3) when calculations from the second time are made by the same program.

9. Finding Programming Errors

When correct answers are not obtained after program execution, errors can be found in the following manner.

1) Check that a right program is input by printing out the program contents on the roll paper in accordance with the procedure given on page 13.
2) Calculation and execution step by step You can find the place where errors exist by executing the program step by step in the following manner.
(1) Depress the DEBUG key.
(2) Depress the C key.

When you wish to start with any step other than the 000 step (for example, 123 step), depress	STEP
SET	

(3) If the S key is depressed, instruction of that step is executed and advance to the next step.
(4) When the entry lamp is lit half-way, input variable (data).

10. Correction of Program

When errors in the program input are found, correct them in the following manner.

1) When changing it to different instruction
(1) Depress the CHECK key.
(2) Set the step to a place where the correction is to be made.
(3) Input the right instruction. (Note 1)
2) When addition (insertion) is made
(1) Depress the CHECK key.
(2) Set the step to a place where the insertion is to be made.
(3) Lock the [INSERT] key.
(4) Input instructions to be added or inserted through the keyboard. $\left.{ }^{(N o t e} 1\right)$ (You can insert as many instructions as you require, and all the stored programs are moved backwards successively to be protected, automatically.)
(5) Release the locked INSERT key.

Key operation	Display
CHECK	
(e) $\begin{aligned} & \text { STEP } \\ & \text { SET }\end{aligned}$	
0, 2	022
INSERT (Lock)	
	022
FIX 5	
	023
$\begin{array}{\|c\|c\|} \hline \text { INSTT } \\ n n & 0 \end{array}$	
	024
INSERT (Unlock)	

Before insertion	
0020	RM
0021	01
0022	\bigcirc
0023	LF
After insertion	
0020	RM
0021	01
0022	FIX 5
0023	02
0024	\bigcirc
0025	LF

(Note 1)
When $n n$ parts of the character code, symbol, address, and print instructions are changed or addec n n must be input as $[\mathrm{INST}] \square$ as shown in the example.
3) When deletion is needed
(1) Depress the CHECK key.
(2) Set the step to a place where the deletion is to be made.
(3) Depress the DELETE key.

The trailing istruction will advance in turn.
(4) If you want to erase more than one step, depress the DELETE key as many times as required.

Key operation
CHECK
STEP SET 0 DELETE 0 7 DELETE

Before deletion		After deletion	
0005	RM	0005	RM
0006	01	0006	0
0007	FIX 0	0007	\bigcirc
0008	05	0008	LF
0009	\bigcirc		
0010	LF		

Because the program step moves with the correction, and without program printing it is difficult to know the step numbers of the instructions following the corrected parts, it is more convenient to correct instructions from the end of the program, as follows:

It is more convenient to make correction from the end, i.e., in order of (3), (2), (1).
INSERT (1)
DELETE (2)
INSERT (3)

11. Rules When the Capacity is Extended over One Page

The capacity of one page is as given below.

$$
\begin{aligned}
& 1 \text { data page ... } 100 \text { memories } \\
& 1 \text { program page } \\
& 100 \text { steps }
\end{aligned}
$$

Follow the rules given below when the capacity is extended over one page.

1. Ordinary calculation

Use a 3 -digit number as manual input or output for a memory.
[Example] Storing a certain number in the address 123 (Address 23 of Page 1).

$$
\text { SM * } 1
$$

* $\mathrm{CM} \mathrm{\Sigma M} \mathrm{RM}$ should be handled similarly.

2. Programmed calculation

2-1 Use a 4-digit number for the step set.
[Example] Setting to the step 1234 (Step 234 of Page 1).

2-2 Use the DATA-Pn instruction for storing or recalling the data.
[Example] Storing a datum in the address 123 (Address 23 of Page 1)

This DATA-P1 remains effective until the next DATA-Pn instruction comes.

2-3 When memories after Page 1 are specified by the INDIRECT instruction, DATA-Pn instruction is unnecessary. Even pages are specified by indirect addressing.
3. Near page boundary

3-1 If you come to a new page during program loading by keys, begin the new page with a step set and continue loading.
(A program is automatically loaded on the next page during cartridge loading.)
3-2 During program printing, interrupt printing at step 999 of each page (by depressing the C key), begin a new page with the step set and continue printing.

3-3 Instructions are moved by inserting or deleting within one page alone.
3-4 Use an unconditional jump instruction when a program runs over to the next page.
[Example]

FLG $\left.\begin{array}{l}\text { CE } \\ \text { CE }\end{array}\right\} \rightarrow\left\{\begin{array}{l}\text { We recommend to enter some meaningless instructions. They may be } \\ \text { lost, when some additional instructions are inserted and the program } \\ \text { instructions at the end of the page would overflow. Do not enter } 0 \text { 's } \\ \text { here as a meaningless instruction. If you do, recording will be stopped } \\ \text { here during recording to a cartridge. }\end{array}\right.$
Page 1
4. Jumps

The symbols related to jump instructions are effective within one page alone.
Specify a page with the PROG-Pn instruction for a jump to another page.
Since the step to jump is specified by a 4-digit number in the case of the absolute address system (BRANCH), there is no need for specifying a page with the PROG-Pn instruction.

41 Conditional jump

42 Subroutine jump

43 Returning to the $\operatorname{SP} n \boldsymbol{n}$ instruction from the EP $n \boldsymbol{n}$ instruction.

$\substack{\text { SP } \\ 77 \\ \text { PROG-P0 } \\ \text { EP } \\ 77}$	(Page 0)
(Page 1)	

CHAPTER 2

PROGRAM EXAMPLES

* marks given in examples and exercises in the text indicate the following grade.
*, **, and *** means elementary, middle, and high grade, respectively.

1. Straight Line Program

This is a program for which a flow chart is drawn on a straight line without branching or repeating a ertain process.

${ }^{\text {E Exmple }} 1$ Calculation of area of a triangle

Find S in $S=\frac{1}{2} a h$
where h is the length of the base of the triangle and a is height.

Study Points: 1. Head of a program and end of a program.
2. Usage of memories.
3. Rounding
4. Input of constants

1. Head of a program and end of a program

Put SP $n n$ at the head and EP $n n$ at the end. SP $n n$ (n represents numbers from 0 to 9) has ENT function at the same time for inputting variable.

SP $n n$ and EP $n n$ shall be handled in combination in one program as SP12 and EP12.

2. Usage of memories

There are the following instructions about memories.
CMnn : Clear the contents of the memory of the $n n$ address.
SMnn : Store the contents of the buffer register (strictly speaking, changing them into scientific; floating values) in a memory of the $n n$ address.
$\Sigma \mathrm{Mnn}$: Accumulate the contents of the buffer register into a memory of the $n \boldsymbol{n}$ address.
RMnn : Recall the contents memorized in a memory of the $n n$ address to the buffer register.

3. Rounding

Decimal Point Selector Dial and Round-Form Slide Switch do not work during programmed calculations. Therefore the values are printed out with exponents unless the following instructions for rounding are given.

	Key operation		
Designation of round-form.....................	Round-up	(4)	FIX
	9		
	Round-off	$(5 / 4)$	FIX

Designation of decimal digits \qquad Number of digits below the decimal point is desig. nated as $n n$.

Example Round-off, to 4 decimal places

$$
\begin{array}{lll}
\hline \mathrm{FIX} & 5 & 0 \\
\hline
\end{array}
$$

Round down below the decimal point

4. Input of constants

To enter constants in a program, simply depress the numeral keys (including decimal point and EXP) according to the expression.

Operation procedure

1. LEARN
2. C] $\underset{A L L}{C}$
3. Input the program.
4. OPE
5. ©
6. $\quad a \quad\left[\begin{array}{ll}5\end{array}\right.$
h S
$S \diamond$
Repeat operation 6.
$(a=2 h=3 S=3.000)$

8TEP	$\begin{array}{\|l} \text { Instruc- } \\ \hline \text { tion } \\ \hline \end{array}$	Remark	Key 0	ation
000	S P		SP	
1	10	Input A		1,0
2	SM		8M	
3	10	A		1 10
	E	Input H.	ENT	
5	SM		SM	
6	11	H		$1 \quad 1$
7	RM)	RM	
8	10	A		1, 0
9	\times		\times	
010	RM	$S=\frac{1}{2} \mathrm{~A} H$	RM	
1	11	H		1,1
2	\div		\div	
3	2	!	2	
4	$=$		-	
5	5/4		FIX	5
6	04			0.4
7	\bigcirc	-	\diamond	
8	EP		EP	
9	10			1,0
0		:		
1		Furthermore, this calculation can be made by		
2		the following simple program.		
3				
4		-		
5				
6		-		
7				
8				
9				
000	SP		8 P	
1	11	Input a		1, 1
2	\times		\times	
3	E	IInput h	ENT	
4	\div		\div	
5	2		2	
6	=		-	
7	5/4		FIX	5
8	04			0,4
9	\diamond		\bigcirc	
010	EP		E P	
1	11			1,1
2				
3				
4				
5				
6		-		
7		!		
8				
9		!		

Exercise (2)

(Straight line program)

* (21) Find the area S by the following Helon Formula by giving the length of triangle sides a, b, c.

$$
S=\sqrt{s(s-a)(s-b)(s-c)}
$$

$$
\begin{aligned}
& s=\frac{a+b+c}{2} \\
& (a=3 \quad b=4 \quad c=5 \quad S=6.000)
\end{aligned}
$$

*(22) Find x and y of the following system of two linear equations after giving coefficients.

$$
\begin{aligned}
&\left\{\begin{array}{l}
a x+b y= \\
l x+m y=
\end{array}\right. \\
& \qquad n=\frac{c m-b n}{a m-b l}
\end{aligned} \quad \begin{aligned}
& y=\frac{a n-c l}{a m-b l} \\
& \\
& (a=1 \quad b=2 \quad c=5 \quad l=2 \quad m=3 \quad n=8 ; x=1.000000 \quad y=2.000000)
\end{aligned}
$$

* (23) What will be the amount ($\$ S$) after n years on annual interest i if a certain amount of $\$ \mathrm{R}$ is saved at the end of a year?

$$
\mathrm{S}=\mathrm{R}\left[\frac{(1+i)^{n+1}-1}{i}\right]
$$

$$
(\mathrm{R}=10,000 \quad i=0.07 \quad n=5 \mathrm{~S}=71,533)
$$

* (24) Find the area S by giving two sides length of a triangle, b and c, and angle A (in degree, minute, and second mode).

$$
\mathrm{S}=\frac{1}{2} b c \sin \mathrm{~A}
$$

$$
\left(b=2 c=3 \mathrm{~A}=20^{\circ} 15^{\prime} \mathrm{S}=1.038\right)
$$

2. Program with Branching

This type is a program of which the calculation procedure is branching in two depending on the condition.

Example 2-1 Decision of comparing two figures

Here, we are dealing with the decision of comparing two figures. At that step, one way of the two is selected after judging if the data is greater (or less) than the given value.
Arrange the program such that the result of addition of two angles (both are represented in Degree, Minute, Second Mode.) becomes the answer just as it is when the calculated value does not exceed 360°. When it exceeds 360°, the answer is the value obtained when 360° is subtracted from the calculated value.

Study Points;
I. Conditional jump instructions (IF <0, IF $\neq 0$)
2. Conversion; Degree, Minute, Second Mode \rightleftarrows Decimal degree Mode

1. Jump instructions

The function to process the thinking pattern of "If, do", when the program is branched to fixht flow or left flow calcul tions, is called a decision function. As the calculation flow jumps in a flow chart, this is also called a jump function. And the jumps of which destination change depending on the conditions as explained above are the conditional jumps, while those that jumps unconditionally without regarding the conditions are called the unconditional jumps.

This calculator has the following versatile jump functions.
(I) Full of various kinds, IF <0, IF $\neq 0$, IF $\geqq 0$, IF ENT, and IF ER, for conditional jumps.

1?) There are almost limitless usable combinations of destination symbol $n \boldsymbol{n}$ (about 100 pairs)
(3) However much complicated jumps may be arranged, there is no problem. What is to be noted is that FLG $n n$ as a destination must be only one in one program page (including main and subroutine programs).
(4) An absolute address system jump instruction, (BRANCH), that allows unconditional jump to a specified step is, added to the symbol system jump instruction, GO TO $n n$.

IF <0: (Key operation: IFGOTO \square)
Program jumps to FLG $n n$ if the sign of the figure in the buffer register is negative or continues if it is zero or positive. As to the comparison of two figures, see the table attached at the end of this manual.

Other jump instructions will be explained in each section of study.
2. Conversion of degree minute second to decimal degree

As angles are often represented in degree, minute, and second mode, they must be calculated after conversion into the decimal degree mode when the ordinary,,$+- x$, and \div operations are performed in the program.

For this purpose there are conversion instructions as follows:
Degree, minute, second \rightarrow Decimal degree (key operation;

$123^{\circ} 45^{\prime} 67.8^{\prime \prime}$ is dealt with as 123.45678 .

Decimal degree \rightarrow Degree, minute, second (key operation; arc | 0 | 1 | 1 |
| :--- | :--- | :--- |
| a | \rightarrow | |

Operation procedure

1. LEARN
2. C C $\underset{A L L}{C}$
3. Input the program.
4. $O P E$
5. Set the Angle Form Slide Switch to the DEG position.
6. C
7.

A S
B S
$P \quad \diamond$
Repeat operation 7.
$\left(\begin{array}{l}A=123^{\circ} 12^{\prime} 34^{\prime \prime} \\ B=300^{\circ} 23^{\prime} 45^{\prime \prime} \\ P=63^{\circ} 36^{\prime} \\ \hline 19^{\prime \prime}\end{array}\right)$

STEP	Instruc tion		Remark	Key operation	
000	S P			S P	
1	21		! Input angle A^{*}		21
2	DEG		Convert degree, minute, and second mode intodecimal degree mode.	$a^{0}{ }^{\text {T }}$	
3	SM			SM	
4	05	A			0.5
5	E		Input angle B*	ENT	
6	DEG		© Converi derree. minule, and ' second mode ínto decimal- denree mode.	$a^{0 \cdot}$	
7	SM			SM	
8	06	B			0 6
9	RM			RM	
010	05	A			$0 \quad 5$
1	$+$			+	
2	RM			RM	
3	06	B			0 6
4	=			\%	
5	SM			SM	
6	07	P	$P=A+M$		0,7
7	(RM)			H.M	
8	(07)	P			07
9	-			-	
020	3			3	
1	5			6	
2	0			0	
3	$=$			$=$	
4	(SM)			SM	
5	(08)	P-360			0, 8
6	$1 \mathrm{~F}<0$		When P-360 is negative,	IFGOTO	-
7	01		mamely, A + B is less		0,1
8	(RM)		! than 360°, it jumps to	R.M	
9	(08)	P-360	FLG 01 (Step 32).		0.8
030	SM			SM	
1	07				0,7
2	Plon			FI,AO	
3	01				0.1
4	RM		:	RM	
5	07	P			$0 \quad 7$
6	DMS		Convert decimal dearee mode int idonree, minute, and second mode.	arc	$a_{\rightarrow}^{0^{11}}$
7	$5 / 4$		Round-off to 6 decimal	FIX	5 ,
8	06		places.		0,6
9	\bigcirc			\bigcirc	
040	F. ${ }^{\prime}$			EP	
1	21				2,1
2					
3					
4			* $150^{\circ} 12^{\prime} 34.5^{\prime \prime}$ is		
5			dealt with as		
6			150.12345		
7					
8			\vdots		
9			:		

This program can be shortened by omitting step 17,18 (RM, 07), step 24,25 (SM, 08), and 28,29 (RM, 08).

** Example 2-2 The roots of quadratic equation

This is the case where a calculation flow changes according with positive or negative of a certain value (value of discriminant in this case.)

Write a program to find the roots by giving coefficients of the following quadratic equation, a, b, and c. (Program classification No. X1-1090)

$$
a x^{2}+b x+c=0
$$

Study Point: Unconditional jump instructions (GOTO, BRANCH)
Way of thinking: Discriminant

$$
\mathrm{D}=b^{2}-4 a c
$$

IF denoted as $A=\frac{-b}{2 a}, \quad B=\frac{\sqrt{|\mathrm{D}|}}{2 a}$
Real roots; $\mathrm{A} \pm \mathrm{B}$
Imaginary roots; $\mathrm{A} \pm \mathrm{Bi}_{i}$

In this example, the discrimination between the real and imaginary roots is made by printing 111 in the case of the real root and 999 in the case of the imaginary root before printing out the answers.

Unconditional jump instructions

GOTO: (Key operation; GOTO)
Program jumps to FLG $n n$ unconditionally, at this instruction.
(Symbol system)
BRANCH: (Key operation: INST $1 / \mathrm{O}$)
The number immediately preceding this instruction is interpreted as a step number and unconditional jump to this step takes place. Since the step number and the page number is specified by a 4 -digit number, a jump to another page is possible.
(Absolute address system.)

Operation procedure

1. LEARN
2. C $\triangle C$
3. Input the program.
4. OPE
5. C
6.

$$
\begin{array}{ll}
a & \text { S } \\
b & S \\
c & \text { S }
\end{array}
$$

In the case of the real root

$$
\begin{array}{rl}
11 & 1 \diamond \\
& x_{1} \diamond \\
& x_{2} \diamond
\end{array}
$$

In the case of the imaginary root

$$
999 \diamond
$$

Real part A \diamond
Imaginary part $B \diamond$
Repeat operation 6.

$$
\left(\begin{array}{lll}
a=2 & b=7 & c=3 \\
x_{1}=3.000 & x_{2}=0.5000
\end{array}\right)
$$

STEP ${ }^{\text {In }}$ It	Instruction	Remark		Key operation	
4 1 1	16	A			1.6
5	$+$			+	
6 P	RM			RM	
71	17	B			$1 \quad 7$
8	$=$			-	
9 S	SM			SM	
060	18	x_{1}			1,8
1	RM			RM	
2	16	A			1 , 6
3	-			-	
4	RM			RM	
5	17	B			1.7
6	工			=	
7	SM			SM	
8	19	x_{2}			$1 \quad 9$
9	1		Indication of real root.	1	
070	1			1	
1	1			1	
2	\bigcirc			\bigcirc	
3	RM			RM	
4	18	x_{1}			1,8
5	5/4			FIX	5
6	04				0,4
7	\bigcirc			\bigcirc	
8	RM			RM	
9	19	x_{2}			1,9
080	$5 / 4$!	FIX	5
1	04				0 0, 4
2	\bigcirc			\diamond	
3	Oo To			GOTO	
4	02		!		0.2
5	FLG		!	FLAG	
6	03		!		0,3
7	9	,	Indication of imaginary	9	
8	9		root.	9	
9	9			9	
090	\bigcirc	,		\bigcirc	
1	RM		!	RM	
2	16	A			1,6
3	5/4		!	F1X	5
4	04		\vdots		$0 \quad 4$
5	\bigcirc		\vdots	\bigcirc	
6	RM		!	RN	
7	17	B	\vdots		1.7
8	$\|a\|$		\vdots	INST	8,6
9	$5 / 1$		\vdots	FIX	5.
100	04		\vdots		0,4
1	$1 \diamond$!	\bigcirc	
	2 Fl,		!	FLAG	
	$3{ }^{3}$:		0,2
	4 LF		-	1/O	0
	5 EP		!	E P	
	$6{ }^{2} 2$				\% 2

Exercise (3)

(Program with branching)
" (31) Write a program to calculate a deduction for life insurance from income tax.
The deduction is calculated according to the following standard.
i) Total amount, when the insurance fee to be paid is up to $\$ 80$.
ii) (The insurance fee to be paid) $\times 1 / 2+\$ 40$, when the insurance fee to be paid exceeds $\$ 80$ up to $\$ 160$.
iii) $\$ 125$, when the insurance fee to be paid exceeds $\$ 160$. (\$80 \$80, \$100 \$90, \$150 \$115)
** (32) The trunk line telegram fee is 20 cents for up to 10 letters with additional 3 cents per 5 letters over 11 letters. Write a program to find the fees by inputting the number of letters.
(9 letters $\$ 20,11$ leters $\$ 23,15$ letters $\$ 23,17$ letters $\$ 26$)
** (33) There is a game of throwing a ball to a place just five meters away.
A prize is calculated on the base of the distance thrown as follows:

1. $\$ 200$ per meter in the case of less than 5 meters.
2. $\$ 2,000$ in the case of just 5 meters.
3. $\$ 200$ is fined per meter over the 5 meters if a ball is thrown to a place more than 5 meters. Write a program to calculate a prize or a fine (shown with - sign) by inputting the distance thrown.
($4.3 \mathrm{~m} \ldots . \$ 800,5.0 \mathrm{~m} \ldots . \$ 2,000,5.8 \mathrm{~m} . . .-\$ 200$)

3. Program with Iterative Routine

This type is a program having a routine where the same procedure is iterated sequentially. This is distinguished from the subroutine, because this uses a conditional jump to repeat the calculation or to be free from the loop, while the subroutine calculation is executed by unconditional jump instruction. The two kinds of this type program are as follows.

3-1 Input Repetition

In statistic calculation, storing of many data is usually done before starting the calculation. In this case, the procedure to input one datum is repeated as many times as the number of data, and for that reason the number of the data should be counted.

3-2 Calculation Repetition
This is the case such that the same calculation procedure is repeated until the calculated value is regarded as same as given value. When the calculated value has reached to that value, the calculation proceeds to the next step.

** Example 3-1 Mean, standard deviation (Input repetition)

Arrange the program to obtain the mean and standard deviation after the input of the data
$x_{1}, x_{2}, \ldots . . x_{n}$.
Mean : $\bar{x}=\frac{x_{1}+x_{2}+\ldots \ldots \ldots+x_{n}}{n}$
Standard deviation: $\quad \sigma=\sqrt{\frac{1}{n}\left\{\Sigma x_{2}-\frac{(\Sigma x)^{2}}{n}\right\}}$

Study Points:

1. Jump instruction (IF ENT)
2. Splitting a memory in two
3. Method of counting the number of data

1. Jump instruction

IFE: (Key operation, IFGOTO ENT)

This is a judging instruction that the calculation procedure changes according as the input has been done or not at the ENT (E) instruction.

The program is written as shown on the left. E instruction is needed just before
IFE. When this program proceeds to the E, calculation stops. Then,

1. If the START key is depressed after putting numerals, the program jumps to FLG $n \boldsymbol{n}$.
2. If the START key is depressed without putting numerals, it proceeds to the next instruction.

2. Splitting memories

Memories can be used by dividing them in two.
In this case, the significant digits of accuracy is decreased to 6 digits, while the number of memories is doubled.

Key operations are shown below.
RIGHT SM * 1 , 3 : Store in right half of memory of address 13.
LEFT RM * 0 : 4 : Call out the left half of memory of address 4.
*This system is applied to any of CM, SM, ΣM, RM instructions. In this case, each of them operates on the half of the designated memory.

3. Method of counting the number of data

The number must be often counted in the program besides counting the number of data. In these cases, the following method is used.

Operation procedure

1. LEARN
2. C
3. Input the program.
4. OPE C
5. S x_{1} S

Repeat operation 6.

STEP	nstruction		Remark	Key operation	
000	S P			S P	
1	31				31
2	OMA		Clear all memories	INST	F 1
3	E		Input x_{1}	ENT	
4	FLG			FLAO	
5	02				0,2
6	$\Sigma \mathrm{M}$		Find $x_{1}+x_{2}+x_{3} \ldots \ldots$	$\Sigma \mathrm{M}$	
7	11	Σx			11
8	a^{2}			a^{2}	
9	$\Sigma \mathrm{M}$		Find $x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \ldots$	$\Sigma \mathrm{M}$	
010	12	$5 x^{2}$			1.2
1	1		Accumulate 1 in the right half of memory address 13 to find N , the number of data.	1	
2	R			R	
3	$\Sigma \mathrm{M}$			$\Sigma \mathrm{M}$	
4	13	N	$\mathrm{N}=\mathrm{N}+1$		1, 3
5	E		Input $x_{\text {t }}$	ENT	
6	IFE		If there is input in previous step, program jumps to FLG02	IFGOGO	ENT,
7	02				0,2
8	RM		(04 step).	RM	
9	11	Σx			1, 1
020	\div			\div	
1	1			R	
2	RM			RM	
3	13	N			1, 3
4	$=$		$\bar{x}=\Sigma x / \mathrm{N}$	-	
5	$5 / 4$		Round-off to 3 decimal	FJX	5
6	03		places.		0,3
7	\bigcirc	3		\bigcirc	
8	RM			RM	
9	12	Σx^{2}			1,2
030	-			-	
1	RM			RM	
2	11	Σx			1.1
3	a^{2}			a^{2}	
4	\div			\div	
5	R			R	
6	RM			RM	
7	13	N			1, 3
8	=			$=$	
9	\div			\div	
040	R			R	
1	RM			RM	
2	13	N			1,3
3	$=$			$=$	
4	r		!	r	
5	$5 / 4$			FIX	5
6	06		!		0,6
7	\bigcirc	σ		\bigcirc	
8	F. P		!	E P	
9	31		!		$3 \ldots$

＊＊＊Example 3－2 Find one real root of a equation of third degree．

Find one real root by giving the coefficients a, b, c of the equation of third degree，by Newton method．

$$
a x^{3}+b x^{2}+c x+d=0 \quad(a \neq 0)
$$

Study Point：Jump instruction（IF ≈ 0 ）
Way of thinking：Let $f(x)=x^{3}+\frac{b}{a} x^{2}+\frac{c}{a} x+\frac{b}{a}=x^{3}+p x^{2}+q x+r$

$$
f^{\prime}(x)=3 x^{2}+2 p x+q
$$

According to Newton method，

$$
x_{1+1}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=x_{1}-\frac{x_{1}^{3}+p x_{1}^{2}+q x_{1}+r}{3 x_{1}^{2}+2 p x_{1}+q}
$$

When $\left|x_{i+1}-x_{i}\right| \leqq 10^{-6}, x_{i+1}$ is regarded as same as x_{1} to complete the repetition calcula－ tion and $x i$ becomes the answer．
Here，if $f^{\prime}\left(x_{\mathrm{i}}\right)=0$ and $f\left(x_{\mathrm{i}}\right)=0, x_{\mathrm{i}}$ becomes the answer．
If $f^{\prime}\left(x_{\mathrm{i}}\right)=0$ and $f\left(x_{\mathrm{i}}\right) \neq 0$ ，different initial value should be input．

Jump instruction

IF $\neq 0$ ：（Key operation；IFGOTO $⿴ 囗 十$ ）
Program jumps to FLG $n n$ if the contents of the buffer register is not zero．Continues if it is zero． Refer to the Table for comparison of two numbers．

Operation procedure

1. LEARN
2. C \triangle ALL
3. Input the program
4. OPE
5. C
6. $\quad a \quad$ [
b S
c S
d S
Initial value x_{0} S
Real Root \diamond
Repeat operation 6.

Input another initial value, when the real root is not printed even if x_{0} is input and calculation stops in ENTRY status.

STEP	Instruc tion		Remark	Key operation	
100	S C			SIGN CHG:	
1	=			=	
2	IF ≥ 0			IFGOTO	$+$
3	03				0.3
4	FLG			FLAG	
5	05				0.5
6	RM			RM	
7	16	x_{1}	Print the answer		1, 6
8	$5 / 4$			FIX	5
9	03				03
110	\bigcirc			\bigcirc	
1	LF			I/O	0
2	EP			EP	
3	32				3.2
4					
5					
6					
7					
8					
9					
0					
1					
2					
3					
4					
5					
6					
7					
8					
9					
0					
1					
2					
3					
4					
5					
6					
7					
8					
9					
0					
1					
2					
3					
4					
5					,
6					
7					
8					
9					

Exercise (4)

(Repetition program)

* (41) When results $x_{1} x_{2} \ldots \ldots x_{n}$ of one subject is given and its average \bar{x} and standard deviation σ are known, write a program to find deviation T_{1} of $x_{1} x_{2} \ldots . . x_{n}$.
In this case, deviation is represented by the following equation.

$$
\begin{aligned}
& \mathrm{T}_{1}=\frac{x_{1}-\bar{x}}{\sigma} \times 10+50 \\
&\left(\bar{x}=60, \sigma=20, x_{1}=80, \mathrm{Ti}=60,000\right)
\end{aligned}
$$

* (42) Input $x_{1}, f_{1}, x_{2}, f_{2}, \ldots . . x_{n}, f_{n}$ in this order and write a program to find x by the formula shown below. (Average of data with frequency distribution)

$$
\begin{aligned}
\bar{x}= & \frac{x_{1} f_{1}+x_{2} f_{2}+\cdots \cdots+x_{n} f_{n}}{f_{1}+f_{2}+\cdots \cdots \cdots \cdots \cdot+f_{n}} \\
& \left(x_{1}=5, f_{1}=2, x_{2}=7, f_{2}=3, \bar{x}=6,200\right)
\end{aligned}
$$

** (43) The following equation indicates the relation between average temperature $t^{\circ} C$ from 2 to 3 o'clock p.m. and the number Y of ice creams sold during that hour. Write a program to find the number of sales in succession at average temperatures, $21^{\circ}, 22^{\circ}, \ldots . .30^{\circ}$, using the following formula. (This is a hypothetical equation.)

$$
\begin{aligned}
& Y=\frac{1}{10}\left(t^{3}-8 t^{2}+15 t\right) \\
& (605,711,828,958,1100,1256,1426,1610,1810,2025)
\end{aligned}
$$

** (44) Write a program to find the three-month moving average in the monthly data $x_{1}, x_{2} \ldots$.

$$
\begin{aligned}
& \bar{x}_{1}=\frac{x_{1}+x_{2}+x_{3}}{3} \\
& \bar{x}_{2}=\frac{x_{2}+x_{3}+x_{4}}{3} \\
& (1,2,3,4 \ldots \ldots, 2.000,3.000)
\end{aligned}
$$

***(45) Write a program to find the combination $n C_{r}$ with given n, r and using the following formula. (Program Classification No. X1-1075)
(If n ! function is used, overflow comes in $n>70$. Therefore study the following formula.)

$$
{ }_{n} C_{r}=\frac{n!}{(n-r)!r!}=\frac{n(n-1)(n-2) \cdots \cdots(n-r+1)}{r(r-1)(r-2) \cdots \cdots \cdots 1}
$$

However, r represents the smaller value between $n-r$ and r.

$$
\left({ }_{6} C_{4}=15,{ }_{7} C_{3}=35\right)
$$

4. Program with Subroutines

When the same calculation is used several times here and there, you had better arrange this part as a subroutine program.

Example 4.

Arrange the program to obtain the internal area A bounded by two circles as shown in the figure. The radii R (of larger circle) and r (of smaller one) are given.

Study Point; Subroutine

Subroutine

As the area of a circle must be calculated twice in this example, a program of that calculation part is written as a subroutine.

1 Subroutine program start with SPnn and ends with EPnn as a main program.
2 In a main program, GOTOSPnn instruction is put at the step to be jumped to the subroutine. When the program comes as far as this instruction, jumps automatically to the subroutine SPnn and returns to the next step to GOTOSPnn.

3 Subroutine nesting is up to two depths.

4 Special consideration (given in P. 21) is required for jumping to a subroutine on another page.

Operation procedure

1. LEARN
2. C $\underset{A_{L}}{C}$
3. Input the program.
4. OPE
5. C

$$
\text { 6. } \begin{array}{lll}
\mathrm{R} & \mathrm{~S} \\
& r & \mathrm{~S} \\
& \mathrm{~S} & \diamond
\end{array}
$$

Repeat operation 6.
$(\mathrm{R}=4 \quad r=2 \quad \mathrm{~S}=37.6991)$

STEP Ins	nstruc. ion	Remark	Key operation
000	S P	Input R	S P
1	41	-	4.1
2 Or	OTSP	Jump to subroutine	GoToSP
3	10	(SP10)	1.0
4	SM	-	SM
5	10	$\mathrm{S}_{1}:=\pi \mathrm{R}^{2}$	1.0
6	E	Input r	ENT
7 O	GTSP	Jump to subroutine	GoToSP
8	10	(SP10)	10
9	SM	!	SM
010	11	$\mathrm{S}_{2}=\pi r^{2}$	1.1
1	RM	-	RM
2	10	S_{1}	1,0
3	-	!	-
4	RM	+	RM
5	11	S_{2} :	1,1
6	$=$	-	$=$
7	$5 / 4$	\vdots	FIX 5
8	04	!	0,4
9	\bigcirc	!	\bigcirc
020	LF	+	I/O
1	EP	!	EP
2	$2{ }^{4} 1$!	4,1
3	3 SP	!	S P
4	410	!	1, 0
5	$5 a^{2}$!	a^{2}
6	$6 \times$!	\times
7	7 析	,	arc jarc
8	8 =	!	$=\quad \vdots$
9	9 E P	!	EP
030	0 1 10	!	10
	1	:	!
	2	!	!
	3	!	!
	4	!	!
	5	!	!
	6	!	
	7	!	!
	8	!	-
	9	:	;
	0	!	!
	1	!	!
	2	\vdots	!
	3		\vdots
	4	!	
	5	\vdots	
	6	!	
	7		\vdots
	8		
	9	!	

5. Array

When many data are dealt with as one group by arranging them, this is called an array. There are programs in which the data recalled by designating the index, and exchanged or processed. In the following example, data are input one after another, and after completion of input, they are printed out one after another after the processing of each datum.

*** Example 5

There are some data $x_{1}, x_{2} \ldots x_{n}$. Write a program to find mean \bar{x} and then the difference between the mean and each datum. Make the print out so that the individual data and difference from the mean can be compared at a glance. (The number of data is within the memory capacity - 3.)

Study Points: 1. INDIRECT instruction
2. Method of making tables

1. INDIRECT instruction

As memory addresses are indirectly designated, this name is given.

Suppose that the number 3 is memorized in the 00 address.
In this case, when instruction is given as IND SM 000 , this works in the same way as $\mathrm{SM}, 0,3$. This is a convenient method by which some data are memorized one by one, for instance from address 3.

Now, x_{1}.............. Address 3
x_{2}.............. Address 4
x_{3} \qquad Address 5, thus data are to be memorized.

In this case, the program is written as follows:

* CM, ΣM, or RM can be used instead of SM. And program is performed according to the instruction at that time.

2. Method of making tables

A simple table can be made since thermal paper is very wide (for 48 characters). Alphabet, numerals and symbols can be printed in the desired format.

There are several instructions for that purpose.
(1) SPACE nn

Print-head spaces by number designated by nn. Namely, this is an instruction by which blanks are made by necessary digits.
(2) CHARACTER PRINT

Place this instruction before and after character (and figure symbol) printing.
See the key layout on p. 5 for the correspondence between keys and characters, figures and symbols.

The characters, figures, and symbols on the keyboard can be printed by manual operation as well as in a program, while the symbols and some characters that are specified only in the Character Code Table but not on the keyboard are printed only in a program. In this case, look for m and n, the code corresponded to the character, in the Character Code Table (p. 5) and enter it as INST m.

(3) COL-PRINT $n n$

This is an instruction to print the contents of buffer register in digits designated by number $n n$. When the specified column is longer than that of data, spacing is carried out in higher digits to fill the specified column.

FIX n
$n n$
COL
$n n$

(4) LINE FEED

Shift the print-head to the end of the right hand by giving LF instruction (key operation I/O 0) after the last CHARACTER PRINT or COL-PRINT instruction of one line. (No paper feeding in this time)

The following example shows the usage of this three kinds of Print instructions.

* Depress the corresponding character keys on the keyboard or use the [INST key as INST $\square \square$.

Operation procedure

1. LEARN
2. C
3. Input the program.
4. OPE
5. C
6. S
x S
$\begin{array}{cc}x_{2} & {[S]} \\ \vdots & \\ x_{n} & {[S]}\end{array}$
S
$\Sigma x \diamond$
$\bar{x} \diamond$
Title \diamond
$x_{i} \diamond$
$x_{i}-\bar{x} \diamond$
Repeat operation 6.

STEP	Instrue tion		Remark	Key operation	
050	SPC			SPACE	
1	12				1, 2
2	CHA			CHA	
3	\times	58			X
4	6	20			SPACE
5	-	2D			-
6	6	20			SPACE
7	M	4D			M
8	E	45			E
9	A	41			A
060	N	4E			N
1	CHA			CHA	
2	LF			I/O	0
3	3		Store the head ad-	3	
4	SM		dress 3 again for	SM	
5	00		recalling		$0 \quad 0$
6	FLG			FLG	
7	11				11
8	SPC			SPACE	
9	08				0, 8
070	IND			IND	
1	RM			RM	
2	00				0×0
3	$5 / 4$			FIX	5
4	00				0 0, 0
5	COL	x_{i}	Print x_{i}	COL	
6	10				1, 0
7	SPC			SPACE	
8	10				1, 0
9	IND			IND	
080	RM			RM	
1	00				0,0
2	-			-	
3	RM			RM	
4	02				0,2
5	$=$			$=$	
6	5/4			F1X	5
7	00				0,0
8	COL	$x_{i}-\bar{x}$	Print $x_{i}-\vec{x}$	COL	
9	10				1.0
090	LF			1/0	0
1	1			1	
2	$\Sigma \mathrm{M}$			$\Sigma \mathrm{M}$	
3	00				$0 \quad 0$
4	SC			S C	
5	$\Sigma \mathrm{M}$			$\Sigma \mathrm{M}$	
6	01				0,1
7	RM			RM	
8	01				$0 \quad 1$
9	IF $\ddagger 0$		Continue repetition	IFGOTO	-
100	11		until 0.		1,1
1	EP			EP	
2	51				$5 \quad 1$

6. Making Tables

Tables can be made by taking advantage of wide roll paper.
*** Example 6 Common logarithm table

Write a program to print out x at the 0.5 interval from 1.5 to 9.5 and common logarithm, $\log x$, correspondingly.
Print out titles "COMMON LOGARITHM TABLE", "X", and "LOG(X)" as shown below.

Study Points: 1. Usage of functions
2. Method of making tables

$\begin{array}{c\|c\|} & \text { Ins } \\ \text { STEP } \\ \hline \end{array}$	nstruction	Remark	Key operation
000	5 P	,	8 P
1	60	:	6.0
2 S	SPC	:	SPACE
3	10	;	110
4.	CHA	!	CHA
5	C	43	C
6	0	4 F	0
7	M	4D !	M
8	M	4D :	M
9	0	4F	0
010	N	4E	N
1	6	20 :	SPACE
2	L	4C	L
3	0	4F	0
4	G	47	G
5	A	41	A
6	R	52	R
7	I	49	I
8	T	54	T
8	I		H
9	H	48	H
020	M	4D	M
1	万	20	SPACE
2	T T	54	T
3	3 A	41 !	A
4	4 B	$42 \quad \vdots$	B
5	5 L	4C	L
		45 !	E
6	5 E		
7	7 CHA	!	CHA
8	8 LF	;	I/O
9	9 LF	!	I/O 0
030	0 SPC	\vdots	SPACE
1	$1{ }^{1} 4$!	14
	2 CHA	!	CHA
	3 X	58	X
	4 CHA	:	CHA
	5 SPC	!	SPACE
	$6{ }^{6} 07$!	0,7
	7 CHA	\vdots	CHA !
	8 l	4C	L
	8 L 9 0	4F	0
040	0 G	47	G
	1 (28 !	!
	2 X	58	X
	3)	29 !)
	4 CHA	-	CHA
	$5{ }^{4} 5 \mathrm{LF}$		I/O 0
	6	!	1
	7 -	!	!
	85		5
	9 S M	\vdots	SM

Ins	Instruc		Remark	Key operation	
050	00	x			0,0
1 F	FLG			flaj	
2	10				1,0
3	SPC			SPACE	
4	12				1, 2
5	RM			RM	
6	00	x			$0 \quad 0$
7	5/4			FIX	5
8	01				0.1
9	COL		Print X	COLPRINT	
060	04				$0 \quad 4$
1	SPC			SPACE	
2	205				0,5
3	3 RM			RM	
4	400	x			$0 \quad 0$
5	5 LOG			LOa	
	6 5/4			FIX	5
7	706				$0 \quad 6$
8	8 COL			COLPRINT:	
9	$9{ }^{9} 08$		Print $\log X$		$0 \quad 8$
070	0 LF			1/0	0
	1			-	
	25			5	
	$3{ }^{2}$			$\Sigma \mathrm{M}$	
	00	x	$x+0.5 \rightarrow x$		0.0
	5 RM			HM	
	$6{ }^{6} 0$				$0 \quad 0$
	7 -			-	
	8			1	
	90			0	
080	$0=$			=	
	$1 \mathrm{~F} \neq 0$,	IFGOTO	=
	210		;		1,0
	3 EP			EP	
	$4{ }^{4} 60$				$6 \quad 0$
	5				
	6				
	7		,		
	8				
	9				
	0				
	1		:		
	2		:		
	3		-		
	4		:		
	5				
	6		,		
	7		!		
	8		!		-
	9		;		

Exercise

*** (51) Find the possibility P of Fisher's exact method by the following equation from the contingency table shown below.

This problem can be calculated by equation (1) using N ! instruction when $\mathrm{T} \leqq 69$ and easy to write a program. But equation (2) must be utilized when T exceeds 69 , when $n C r$ may be calculated by using the program of Exercise (45) on Page 41 as a Subroutine.
*** (52) There are several sales. Find a percentage of total sales for each sale.
As to a print form, try to make it so that each sale can be clearly compared with its percentage. In this problem, a program can be easily written without dividing memories but a program requires a higher skill when the memories must be divided for storing more data.
*** (53) Print out 30 values of the trigonometric functions (SIN, COS, TAN) per a certain angle from any designated angle (Degree, Minute, Second Mode).

Print out "INFINITY" when TAN 90°. Take note of using SED, RED, and RE functions to deal with TAN 90°.

Answers to Exercises

(21)		(22)		(23)	(24)
SP	14	SP	RM	SP	SP
21	-	22	16	23	24
SM	RM	SM	=	SM	X
11	13	11	\div	11	E
E)	E	RM	E	X
SM	=	SM	17	SM	E
12	r	12	=	12	DEG ($a \cdot \square \cdot \square$
E	5/4 (FIX, 5)	E	5/4	E	SIN
SM	3	SM	06	+	\div
13	\diamond	13	\bigcirc	1	2
LF	EP	LF ($1 / \mathrm{O}, 0$)	RM	=	$=$
RM	21	E	11	SM	5/4 (FIX, 5)
11		SM	\times	13	03
+		14	RM	RM	\bigcirc
RM		E	16	12	EP
12		SM	-	+	24
+		15	RM	1	
RM		E	13	$=$	
13		SM	x	a^{x}	
=		16	RM	RM	
\div		LF (I/O, 0)	14	13	
2		RM	$=$	-	
$=$		11	\div	1	
SM		X	RM	=	
14		RM	17	$\dot{+}$	
X		15	5/4 (FIX, 5)	RM	
(-	06	12	
RM		RM	\bigcirc	\times	
14		12	LF ($1 / \mathrm{O}, 0$)	RM	
-		x	LF (I/O, 0)	11	
RM		RM	EP	=	
11		14	22	5/4 (FIX, 5)	
)		=		00	
x		SM		\bigcirc	
1		17		EP	
RM		RM		23	
14		13			
-		\times			
RM		RM			
12		15			
)		-			
X		RM			
(12		.	
RM		\times			

(31)	(32)	(33)		(41)
SP	SP	SP	\downarrow (FIX, 0)	SP
31	32	33	∞	41
SM	-	5/4 (FIX, 5)	0	SM
10	1	00	LF ($1 / 0,0$)	10
-	0	SM	EP	E
1	=	10	33	SM
6	SM	-		11
0	10	5		FLG
$=$	IF $\geqq 0$ (${ }^{\text {IFGoTo, }}$ +	=		10
IF ≥ 0 ($\mathrm{FGGoTo},+$)	10	$\mathbf{I F}<0$ ($\mathrm{IFGoTo},-)$		E
10	2	11		-
RM	0	IF $₹ 0$ ($\mathrm{IFGoTo},=$)		RM
10	GoTo	13		10
-	12	Goto		$=$
8	FLG	12		-
0	10	FLG		RM
=	RM	11		11
IF <0 (IFGoTo, -)	10	RM		x
11	$\stackrel{+}{+}$	10		1
RM	5	\times		0
10	$=$	2		+
\div	1 (FIX, 9)	0		s
2	00	0		0
$+$	\times	=		=
4	3	Goto		5/4 (FIX, 5)
0	+	14		03
=	2	FLG		\bigcirc
GoTo	0	13		GoTo
12	=	5		10
FLG	FLG	-		EP
10	12	RM		41
1	1 (FIX, 0)	10		
2	00	$=$		
5	\bigcirc	X		
GoTo	LF (I/O, 0)	2		
12	EP	0		
FLG	32	0		
11		=		
RM		GoTo		
10		14		
FLG		FLG		
12		12		
\downarrow (FIX, 0)		2		
00		0		
\bigcirc		0		
LF (I/O, 0)		0		
EP		FLG		
31		14		

(42)	(43)	(44)	(45)	
SP	SP	SP	SP	RM
42	43	44	45	19
CMA (INST, F, 1)	2	SM	SM	$=$
E	1	11	17	SM
FLG	SM	E	E	18
02	15	SM	SM	1
X	FLG	12	19	C
E	10	FLG	LF ($1 / \mathrm{O}, 0$)	LM
EM	RM	10	RM	19
13	15	E	19	IM
$=$	a^{2}	SM	X	17
IM	X	13	2	GoTo
11	RM	RM	-	12
E	15	11	RM	FLG
IFE (IF GoTo, ENT)	-	+	17	14
02	8	RM	$=$	EP
RM	\times	12	IF <0 (IFGoTo, -) 45	
11	RM	+	10	
\div	15	RM	SC	
RM	a^{2}	13	$\Sigma \mathrm{M}$	
13	+	=	19	
$=$	1	+	FLG	
5/4 (FIX, 5)	5	3	10	
03	x	=	1	
\bigcirc	RM	5/4 (FIX, 5)	SM	
EP	15	03	18	
42	$=$	\bigcirc	FLG	
	\div	LF ($1 / 0,0$)	12	
	1	RM	RM	
	0	12	19	
	=	SM	IF $₹ 0$ (IFGOTo, $=$)	
	5/4 (FIX, 5)	11	11	
	00	RM	RM	
	\bigcirc	13	18	
	1	SM	5/4 (FIX, 5)	
	$\Sigma \mathrm{M}$	12	04	
	15	Goto	\bigcirc	
	RM	10	Goto	
	15	EP	14	
	-	44	FLG	
	3		11	
	1		RM	
	$=$		18	
	IF $₹ 0$ ($\mathrm{IFGoTo}, ~=~) ~$		\times	
	10		RM	
	EP		17	
	43		\div	

(51)

SP	$=$	SP	IM
51	SM	46	17
SM	10	RM	Goto
11 a	RM	19	12
E	13	\times	FLG
SM	+	2	14
12 b	RM	-	EP
E	14	RM	46
SM	=	17	
13 c	SM	$=$	
E	17	IF <0	(IF GoTo, -)
SM	RM	10	
14 d	11	SC	
LF (I/O, 0)	+	SM	
RM	RM	19	
12	12	FLG	
IM	$=$	10	
13	SM	1	
RM	19	SM	
13	GTSP	18	
SM	46	FLG	
17	\div	12	
RM	RM	RM	
12	10	19	
SM	=	IF $₹ 0$	(IF GoTo, =)
19	1/a	11	
GTSP	5/4 (FIX, 5)	RM	
46	04	18	
SM	0	Goto	
10	EP	14	
RM	51	FLG	
11		11	
IM		RM	
14		18	
RM		\times	
14		RM	
SM		17	
17		\div	
RM		RM	
11		19	
SM		=	
19		SM	
GTSP		18	
46		1	
X		SC	
RM		$\Sigma \mathrm{M}$	
10		19	

(53)

SP	CHA	04	T	54
53	SPC	COL	Y	59
SPC	09	08	CH	
10	CHA	RM	Fl	
CHA	S 53	00	02	
T 54	I 49	SIN	LF	
R 52	N 4E	5/4 (FIX, 5)	RE	(INST, F, 7)
49	CHA	06	RM	
G 47	SPC	COL	01	
O 4F	09	13	IM	
N 4E	CHA	RM	00	
O 4F	C 43	00	RM	
M 4D	0 4F	COS	05	
E 45	S 53	5/4 (FIX, 5)	-	
T 54	CHA	06	1	
R 52	SPC	COL	=	
49	09	12	SM	
C 43	CHA	SED (INST, F, 9)	05	
\% 20	T 54	RM	IF *	(IF GoTo, =)
F 46	A 41	00	00	
U 55	N 4E	TAN	LF	(I/O, 0)
N 4E	CHE	IFER (IFGOTO, CE)	LF	(I/O, 0)
C 43	LF ($1 / \mathrm{O}, 0$)	01	EP	
T 54	E	5/4	53	
149	DEG	06		
0 - 4 F	SM	COL		
N 4E	00	12		
620	E	Goto		
T 54	DEG	02		
A 41	SM	FLG		
B 42	01	01		
L 4C	1	RE (INST, F, 3)		
E 45	0	SPC		
CHA	SM	03		
LF ($1 / 0,0$)	05	CHA		
LF ($1 / \mathrm{O}, 0$)	FLG	I 49		
SPC	00	N 4E		
05	RM	F 46		
CHA	00	I 49		
$\times \quad 58$	DMS (arc, $^{\text {a }}{ }^{\circ} \underline{\cdots}$)	N 4E		
0 DF	5/4 (FIX, 5)	149		

Table for Comparison of two numbers

Item	Flow chart	Description by FORTRAN	Program by SX300
Decision $<$		$\begin{gathered} \text { IF } \begin{array}{c} \text { A } \mathrm{LT} \text { B }) \text { Go To } 10 \\ A<B \end{array} \end{gathered}$	$\begin{gathered} \mathrm{RN} \\ \mathrm{~A} \\ - \\ \mathrm{RM} \\ \mathrm{~B} \\ = \\ = \\ 1 \mathrm{~F}<0 \\ 10 \end{gathered}$
$\begin{aligned} & \text { Decision } \\ & \leqq \end{aligned}$			$\begin{gathered} \mathrm{RM} \\ \cdot \mathrm{~A} \\ - \\ \mathrm{RM} \\ \mathrm{~B} \\ = \\ \mathrm{SC} \\ 1 \mathrm{~F} \geq 0 \\ 10 \end{gathered}$
$\begin{aligned} & \text { Decision } \\ & = \end{aligned}$		$\begin{gathered} \mathrm{IF}\left(\begin{array}{lll} \mathrm{A}_{\mathrm{A}} & \mathrm{EQ} & \mathrm{~B} \end{array}\right) \text { Go To } 10 \\ \mathrm{~A}=\mathrm{B} \end{gathered}$	$\begin{gathered} \text { RM } \\ \mathrm{A} \\ - \\ \mathrm{RM} \\ \mathrm{~B} \\ - \\ \mathrm{IF} \neq 0 \\ 20 \\ \mathrm{GoTo} \\ 10 \end{gathered}$
Decision \neq		1F(A NE B)GoTo 10 $A \neq B$	$\begin{gathered} \mathrm{RM} \\ \mathrm{~A} \\ - \\ \mathrm{RM} \\ \mathrm{~B} \\ = \\ \mathrm{I} F \neq 0 \\ 10 \end{gathered}$
Decision $>$		$\begin{gathered} \operatorname{IF}\left(\begin{array}{lll} Y_{i} & \text { OT } & \vdots \\ B \end{array}\right) \text { GoTo } 10 \\ A>B \end{gathered}$	$\begin{gathered} \text { RM } \\ \text { A } \\ - \\ \text { RM } \\ \text { B } \\ - \\ \text { SC } \\ \mathrm{IF}<0 \\ 10 \end{gathered}$
$\begin{aligned} & \text { Decision } \\ & \quad \geq \end{aligned}$		$A \geq B$	$\begin{gathered} \mathrm{RM} \\ \mathrm{~A} \\ - \\ \mathrm{RM} \\ \mathrm{~B} \\ - \\ 1 \mathrm{~F} \geq 0 \\ 10 \end{gathered}$

CANON CANOLA SX-300 SERIES RROCREMVING MANUAL

Canon

CANON INC. 11-28, Mita 3-chome, Minato-ku, Tokyo 108, Japan
U.S.A.-CANON U.S.A. INC. HEAD OFFICE

Nevada Drive, Lake Success, Long Istand,
CANON U.S.A., INC. CHICAGO OFFICE
CANON U.S.A. INC. LOS ANGELES OFFICE
123 PaularIno Avénue East, Costa Mesa, California 92626, U.S.A.
CANON OPTICS \& BUSINESS MACHINES CANADA, LTD.
CANADA- HEAD OFFICE
3245 American Drive, Mississauga, Ontario, L4V 188, Canada
EUROPE, AFRICA CANON AMSTERDAM N.V
\& MIDDLE EAST- CANON AMSHERD Oost, Holland
OBONO LATIN AMERICA. INC: SALES DEPARTMENT
SOUTH AMERICA - CANON LATIN AMERICA, Of Panama
CANON LATIN AMERICA, INC. REPAIR SERVICE CENTER
CANON LATIN $\mathbf{~ C o l o n}$ Frpe Zone, Rep. of Panama
SOUTHEAST ASIA -_CANON INC. HONG KONG BRANCH
Floor 2.6, Fui Yiu Kok Street, Tsuen Wan, Now Territories, Hong Kong

