INTRODUCTION TG PROGRAMMING GF THE SX

I -

Introductory Dinrcise

Assume a siniple calculaticn
X=Ax B+ C
Where A = 10
B =20
c = 30
To solve this in keyboard mode:-
a) Make sure SX is in OPE mode and that '"Printer Off' & 'Program Select!'
Buttons are up. '
b) Key 10 x 20 + 30 =

c) SX will print log as shown below

Fig. 1

Now let's try programming this:-
The mode in which the SX stores programs is ‘LEARN' mode
i) To invoke 'LEARN' mode press the 'LRN' key
ii) Depress C, C-ALL to clear the SX's memory
In 'LEARN' mode the SX will automatically print the step number alongside
the instruction giQen.
- You start off the SPnn where n is a character in the range

0-90orA~F

- 'SP' is short for 'start program' - it denotes the starting point of
a program snd inserts a special flag so that the start of any program

may be easily found.

- SPnn is a double or two-step instruction -~ after keying the 'SP' a
light wmarked '"UNFIN' will come on to denote that the instruction is

unfinished.

- The 'nn' is added to differentiate one program's start point from

another's. We will call this one Program 00 (zero zero), so we key SP0Q
g

- Then key the keyboard instructions keyed before ~ this time they will

not be executed but will be stored and printed.

e 1 N T : - vy - N C X
- Then depress the 'PRINT' key to incorporate a print instruction (appears
as a diznond)

- Finally key EP$# (short for end of program $9)

Now depress 'OPE' to put the SX out of 'LEARN' wmode and into 'OPERATE'

mode and depress 'C' to reset the machine,
Then depress 'START' to start the program.

By now, you should have a printout like that shown in Figure 2

Fig. 2

If something is wrong, you can very easily put thé SX back into 'LEARN’
mode (but don't depress C and C ALL this time or you will 'wipe' your
program): position youfself to the right step number as shown on the
listing by depressing 'STEP SET' and then keying the 3-digit step
number of the step to be rekeyed, then rekey the steps as necessary.

(Note: the 'Step back' key takes you back to the previous step)
y

Noéice that the answer produced by the 'PRINT’ (Diamond) instruction is
in 20 column floating-point format. It always appears this way regardless
of the setting of the decimal-point wheel. For this reason, it is only

used for simple output.

~3=

To produce nszater, more intelligible output the following technique
1 > 24 3

is uscd:-

First Step - Convert the number from the internal floating—point
format to fixed point representation by the 'FIX' instruction:-
e.g. FI¥3 FIX5 FIX9
02 B2 92
Round Down Round offi Round Up

- to two decimal places

Second Step - Specify a column print iastruction: COL

nn

Where nn is the number of columns to be occupied by the printout
including sign and decimal point. Naturally the number of columns

specified must be large enough to contain the maximum size of number

printed with the number of decimal places shown in the 'FIX' Instruction

or an error will result.

So to clean up the print out in this example, put the SX into 'LEARN'
mode, Step Set 01l and key the following steps:-
FIX5 (keyed as 'FIXan', '5') (Round Off)

02 (to 2 places)
COoL (Column Print)
08 (to 8 places)
EP .

00

Then revert to 'OPE' mode, depress 'C' and then 'START'.

The printout by now should look like that in Figure 3

L

et Fig. 3

.

By now, onec moastrous deficicney of the program should be apparent -
it will only woric fox values of A, B & C of 10, 20 & 30: any other

values of A, B & € requive altzrvation to the program.

So what should be done is to allow thoe operator to key in new values
of A, B & C each time the program 1s run.

How is this to be achieved?

Data Fntry

Tne SX will stop, turrn the 'INT' light on (and wait for the, operator
to key data and press 'START' before resuming) under 2 circumstances:-
a) When it encounters an 'SP' instruction in the program (NB this does

not happen when a program is called as a subroutine - explained below)

b) When it encounters an 'ENTRY' instruction - obtained by depressing

the 'ENT' key and appearing on the listing as 'E'.

1
i

N 1 T T 8 O S I
T

i

B

,.
(

.

)

,.“
I R

T e T

1

Fig. &4

i)
(A
»
ey
R
s

i

In Figure 4, the 'SPOO' at the start allows the operator to entér the
first number - A. The first ENT allows B to be entered, the second
ENT allows C to be entered. The '=' calls out the result from the
SX's own working registers into the A register for round-off and print
out (every algebraic expression has to terminate in an '=' to recall

the result).

If the 'Printer-off' button is left up, the SX will log items entered
on the printer; if it is depressed, only explicit print instructions

(PRINT, COLUMN - PRINT) will result in print output.

»

You will notice that after keying the 3 data items, and after printout
of the result, the 'ENT' light will again come on. This is because the
*EPOO' statement causes the SX to look for the start of program 00, and
await input again. Thus there is no reason why a program cannot have
several EP's, as the EP merely says 'go back to start! A program can

obviously have only one 'SP’

-6-

Introductiocn to the User of Men vies

What if we wanted to store A, B or C for later use in the program?
The answer is simple ~ the instruction 'SMnn' (nn is a 2 digit memory
no. between 00 and ©9) says: 'store the number currently in the

A - Register into the nominated memory, leaving the A - register
untouched'. When we need to recall the contents of the memory for
calculaticn or printout, we issue the imstruction 'RMnn' (short for
'Recall Memory') to bring it back from the nominated memory into

the A-Register.

'*SMnn' and '"RMnn' are, like the 'SPan' and 'EPnn' instructions,
Double instructions. When, for example, keying in the 'SMnn'
instructions in 'LEARW' Mode, you depress the 'SMnn' key; the step
number and 'SM' will be printed on the listing, and the 'UNFINISHED'
light will be displayed - the 2 digit memory number is then keyed.

Try the example shown in Figure 5.

ig. 5

Here it has been decided to retain A & B in memories 1 & 2. TFor

illustration purposes, the calculation is performed using Memories 1 & 2.

So, in Figure 5, the number (4) entered at the 'SP' is stored in Memory

-7~

01 (SMO1), the next (B) is stored in %2, and the next (C) is left
sitting in the A-Register as we ¢o not (in this case) wish to
retain it after the calculation which follows. RM01 and RMD2 recall

the contents of memories 1 and 2 as the calculation proceeds.

It is very casy to forget the purposes for which you have assigned
memories, so it is advisable to make a list of them as you go. This
will also make it very wmuch easier for anyone else reading your

program to understand it,
Some other useful memory instructions are:-

CMnn Clear memory nn (for clearing totals)
ZMnn Add the contents of the A-Register to Memory nn, leaving

the contents of the A register unchanged.

Notice all data movement and calculation has to take place via the
A-Register. To copy the contents of Memory 1 to Memory 2, for
instance, the following would be required:-

RM

g1

SM

g2

Also note that the previous contents of the A-Register would be

replaced with a copy of Memory 1.

Also note (in Fig. 5 Steps 19-20)the use of the 'LF' (line feed)
instruction. This causes the printer to space a line, and is obtained

by depressing 'I/0' and then 'Q' (zero).

In the examples in Figures &4 and 5, it would be very easy for the
operator to lose track of when to enter A, when to enter B, and when
to enter C. One ideal way of overcoming this is to print instructions
on the printer.

How is this to be accomplished?

-8-

Incorporating Printer Messages into the Program

Apart {yom 'prowpting' the operator, printer messages are also very

useful for wmaking the results =asier to understand,

To causc a message to be printed in 'Keyboard' or 'Immediate' mode,

proceed as follows:-

- Put the SX in 'OPE' mode
for SX100:-

- Depress 'Character Print'

- then depress 'INTnn' fellowed by the 2 digit code corresponding to
the letter required as per the table below (for digits A to F, you
will see the letters marked under, the 2 leftmost columns of keys,
e.g. 'ARC' = A, 'SIN' = B etc)

Repeat for successive characters of the message

- Depress 'Character Print' to terminate the message.

SX100 Character Table

Letter Code Letter Code Letter Code
A 41 J LA S 53
B 42 K 4B T 54
C 43 L 4C U 55
D 44 M 4D -V 56
E 45 N 4LE W 57
F 46 0 4F X 58
G 47 P 50 Y 59
H 48 Q 51 YA 5A
I 49 R 52 Space 20

For SX300:-
- Depress 'Character Print'

- Type the message, using the keyboard. Note that the alternative,
alphabetic, values of the function keys are displayed below them on
the case: e.g. 'ARC' gives the letter 'A' etc.

~ Depress 'Character Print' to terminate the message.

To do the same thing under program control, insert the message (in
'"LEARN' mode) at the appropriate spot in the program, preceded by
'Character Print', and followed by another 'Character Print' to

terminate the message.

»

Note that 'Character Print' appears on the listing as 'CHA'.
Note that the full character set is shown in the SX100 and SX300 manuals.
You will see from Figure 6 that our previous example has now had

messages inserted so that the operator is told what to enter next

-9-

(ENTER A?, ENTER B?, etc); the answer is preceded by the word 'ANS'.

.
e

e

ot B o I e

‘o

T bt ek

£

‘Nt
|

T
)
n

e

1

T T

=J =g

Fig. 6

The printout from running the program is shown in Figure 7.

EMTER A7
e e

EMTER E7

EMTER, ©7

EMTER
EMTER
EMTER

v

cant

R N
1:|

-10-

Another thing that has had to be done is to avoid the program stopping
at SPO0, after the program has processed the output for the first set
of values. If it did stop at SPO0, after encountering EPOO after the
first run through the program (EPOO having 'trigusered' a search for
6] p & oD
SP00), then the 'ENT' iight would come on without any preceding
)

printout as to what the operator was suppcsed to enter.

To avoid this, we have to stop the program reaching EP0O, and instead

of relying on EPCD to take us back to the start of the program, we
instruct the SX (Figure 6, steps 78-79): GTOl - Meaning 'go to Flag Ol' -
obtained by depressing the 'GO TO nn' key, then keying'Ol'. We define
Flag 01, as being the point before, the printout 'ENTER A?', by keying'
'"FLAGnn' and 01 at Lines 2-3 (Fig. 6).

Under these circumstances the SPO0 and EPOO, at the beginning and end
of the program respectively, are no longer required, as the GT@#l and
FLGALl have effectively taken over their function in this case, They

are only left in for clarity's sake.

-11-

Jumps
2 MRPS

Quite often, as in the previous example, the program nceds to JUMP
to a point other than one which would be reached naturally. These

unconditional jumps are achicved by inserting GO TO nn at the point

in the program at which the jump is to take place. The 'mnn' is a

2 digit code used to defincwhere you want to JUMP to, in combinatidn
with a FLAG nn instruction. For consistent results, the 'nn' code
associated with the FLAGnn must be unique within the program. The
"GO 10' trizgers a search of memory for a FLAG with the same code.
"GO T0' is obtained by depressing the 'GO TC nn' key, followed by
the 2 digits of the flag; it appears on the listing as 'GI'. 'FLAG'
is obtained by depressing the 'FLAG nn' key, again followed by the 2
digit code. !'FLAG' appears on the listing as "FLG'.

Each digit in the code must be in the range #-9, A-F.

So a 'GTSS' instruction will trigger a search of memory for a FLG55,
if the SX cannot find it, the search will continue over and over
again in an endless loop (key 'C' to terminate).

Using this method of jumping, the SX will be searching for a symbol

3

(FLG + Code) - hence this is known as a symbolic jump.

There is another method ~ an absolute jump. This is implemented by
loading the step number (to be jumped to) into the A-Register, by
computation, recalling memories, etc. and then issuing the IOF
instruction (Keyed as 'I/0', F). This is a much faster instruction
because the SX does not have to search - it 'knows' which step to go
to, However it is inadvisable to use this approach during program
development, as any change to a 'destination' step no. through
insertion/deletion of other steps would necessitate changing all the
IOF sequences pointing to that step. Consequently, it is usual to

insert the IOF's only when the program is virtually in final form.

—~

-12-

Subroutines

Notice from Figure 6 that certain blocks of steps are repeated several
times, viz:~

CHA

Lines 6-11, 24-29, 42-47

o oH 3 2

FIX5

COL Lines 19-23, 37-41, 53, 56, 73,77
08

LF

It is tedious to have to enter these steps over and over again, and

also consumptive of steps.

To overcome this problem, we can make use of a technique known as

subroutining.

Using this technique, we code a frequently - used routine as a program

on its own, beginning with 'SPnn' and ending with 'EPnn’',
b (=] o g

When we want to use this routine, we use the instruction 'GO TO SPnn'
(short for 'Go to Subprogram') followed by the 2 digit code assigned

to the subprogram. The 'GO To SPnn' key prints as GS.

When a subroutine is called via the 'GS' instruction (eg GS21) the

SX searches for an 'SP' with the same code - in this case SP21.

When it finds it, it transfers program control to the new subprogram

without stopping for input.

When the subprograms 'EP' is encountered (End of Program), the SX,
knowing that the subroutine was called as a subroutine (subprogram),
transfers program control back to the step after the 'GS' which called
the subroutine. Where there are many calls in the same main program
to Ehe same subroutine (via several 'GS's' in various parts of the

program), the SX keeps track of which 'GS' called the subroutine, so

as to be able to return to the correct section of the program, eg:-

~13-

~ MAIN PROGRAM SUB-ROUTINE

I
1
|
' N0
(T _ _--“,:\,.'.3.4
~99 Lt . .
1] \‘/;Z:\, :
Ny -
¢ .
Ly S~ -
v , - 1
FE
<
P ,
[
(_.,/ . PO E
. el H
- .o]
Y o i
GSR2, T |
5. IS Lo i
[o8& Tl
7 O/‘.’b z-
’:\Dx‘f7. ~
STUR e
‘A‘/ V\\
-7 -
T ONEPIR

Control alwuays transfers back to the step after the 'GS' which called

Note the difference between the effect of '"EP' in a program called as

'main' program and 'EP in a program called as a subprogram:-

Main Program: 'EP' causes search for 'SP!
Subprogram: 'EP' causes return to calling program

The same routine can be used as a wmain program and as a subprogram -

the difference lies in whether it was called via 'GS' or not.

The subroutine can be located anywhere in memory.

14

-
ol

TIT —f T

IO
St M=t a0 0 00 N

(2

ARRAL

)

..‘_
'
.]..!

N0 Y T

L)
r
!
[
o
O

Vo] T
i
3

e
s

Figure 9 shows the Program in Figure 6 converted to use two subroutines,
one of which (SP@2) prints 'ENTER' the other (SP@3) does the rounding
off and printing. The 'GS' statements are underlined. The number of
steps saved in this case is trivial, but this technique can frequently

save,a great many steps and greatly simplify programming.

et

~15-

Tables & Dissections

Let us say that we want to do a sales analysis whereby we key in the
territory numuber (1 - 50) and then the invoice amount, for all invoices,
in such a nanner that 50 territory totals are accumulated, for printout

after we have finished the last invoice.

Up to now, when using memories we have always specified the memory
number to be used. But with 50 possible memory numbers, this would be

impossibly tedious.

Luckily, the SX provides a very easy way round the problem whereby,
instead of storing in a memory specified in the program, we can get

the program to put the number of the memory to be used into a

'pointer' memory (any memory can be used for this purpose). To specify
that the register nominated is to be used as a pointer, we precede

the memory reference instruction with 'IND' (indirect) obtained by
depressing the 'INDIRECT' key.

Contrast these two approaches:-

A B
(Memory 20 contains 8)

Si IND

08 SM

20

Both achieve the same effect - in case B the SX sces 'IND' and knows

that for the following 'Store Memory' instruction it has to treat the

contents of memory 20 as the pointer to where it really has to store

the data, instead of storing the data directly into Memory 20.

To do our sales analysis, let's use Memories 1 - 50 for the 50 territory
totals, and 51 as storage for the territory number. Then, in order
to ensure that the invoice total is accumulated in the correct memory,

we just designate 51 as a 'pointer' memory.

=16

Yoy

s
3

MIDKIKS

P
i~

/i

’
A

1

el

AcconiplAT?

~17-

Figurc 10 shiows a program to do this: the operator is asked for the
territory numbar, and then the sales, which are accumulated in the

appropriate territory total in memories 1- 50. Notice the useof the
'F1' instruction at line 2 to clear all memories - this is obtained

by keying 'INSTan', F, 1.

At line 44, the program goes back to line 3 (after the Fl1 instruction)

for the next entry, in anendless loop.

.
T
RENES

-1

L

SRR

o

RN

3

b oo el el =

Mmoo

B e B s e
T MY T R e
T

mT

ool beed pel g e

]
-

th}
e

r

Fig. 11

Yo T I

Figure 11 shows the printout of the program when run('OPE' mode, 'C’',

& 'START' - 'PRINTER OFF' down).

After the last entry, it was necessary to depress 'C' to stop the
program, and put the '"PRINTER OFF' button up, in order to get the

printout shown by manually recalling memories 1 - 5 (tedious for 50!)

To recall a memory, you simply key '"RMnn! followed by the memory no:-

g1, 92, 83 etc.

Wouldn't, it be nice to have this printout occur automatically?
To achieve this, you have to master 2 new skills, - Use of Conditions,

and Loops

~18-

Use of Conditions

It is often nccessary for a program to make a logical decision. In
the case discusscd above, it would be nice to have the machine detect

whether the last entry has been keyed.

This might be achieved by use of the 'IF ENT' test. This test checks
whether the operator has entcred anything in response to the 'ENT'

command. It is entered by keying:-

IF GO TO nn
ENTRY
dd

('dd' is the two-digit code of the flag to which the program is to go

if something (even a zero) has been keyed)

I1f appears on the listing as, eg:-

IFE

35

So to terminate the entries, the operator would depress 'START' without

keying anything.

Other conditional Tests are available for testing the contents of the

A-Register after an arithmetic operation:-

Purpose Keved As Lists As
Is A Won-Zero? 1f GO TO, =, dd ggNZ

Is A Positive or Zero if GO TO, +, dd §5+

Is A Negative 1f GO TO, -, dd ﬁg—

So to test whether the numbar contained in Memory 2 is less than or
equal to that in g1, and if so to go to FLAG 30, the following could
be used:-

RM

g1

RM
62

= (don™t forget to recall result with 1=1)
IF+.'
80

1f the number in Memory 2 is greater than that in Memoxry 1, (test is not
true), control will 'fall through' the 'IF' and continue at the

followiﬁg step.

~19-
Other Hrms of test are listed in the 5% Programmer’s Manual.
The instructions to test whether the operator keyed anything are shown
in Figure 12, Steps 18-20.
2 K
R
11 1
i T
1% G
sy ®
shagn
1;_ .?
1y CTHA
e R
4 DN oLt o 17T WY ANY TEHIN G ,9
' o TO B2
i
— 50 70 d7_
TSIV IR A0
——. s 'l;"':'f"(’y 5'-/
S
G
ST
SIEE
: e
: SSE
| . EIEE
S5

ACconicsi AT TALCICE
TOYAL AN TERRTC9Y

e TETAL

1

I
b
™
N
4
M.
Cs
[y
D
O
O
~
o
\%

v

f A -
. AN
[
-
L
R
T
' <
- N
£ WINT
e
T 7} o~ Y.
.: AN /)OA) /'— o
! F
L 10
= .) ERcH AR,
R '/./ TN 2 /7 g PR I
K / "(”5"//'(/-'\9 i B T el T
PPN 4o
RS =]
i1 S
N i e o g
- o ‘rfx_ J3 17 NCN - TEL
: 165 31 Yrg
; i =7 /oo
i A% iz
= Clos FLOG
1
i

bbogd g

A o i
T ket pd

.,-
[l
-
)
o
-

TRty i

PR T S

RITCRY NO-
G5 ACLESS

LL PO STy _O._£._>§

R A
T

on

lhﬂ:

L }::v. B pe pL

DR

T
In

o
ot

o ool s

r
T

{’I N
-1 T

DAl

ii
B11% R
Blee 51
H1E1 FIxs KACAAA
& Bz TRAITORY

TOTHA & POINT

b fo EL P b g gl

Tnyrn
T L) b

]
]

oy

SO T STHOT

O ACop

T
) Y

11

TQOO T

e

ek

~-20-
Loops

In the Sales Analysis case under discussion, we want to step through
the pointer through the values 1 - 50, so that we can print out the
corresponding totals.

To do this we can construct a simple loop, Using Memory 51 as a

counter: -

N

CLEAR
MEMORY
51

TO

.//// NO Is Memory 51

<:ff1§5i/////,___“_—> Less than 51
YES \T

LOOP INSTRUCTIONS

1, LOOP EXIT

N

The steps to do this (one way) are shown on lines 83-97 and 126-127

Other refinements added are as follows:-

a) In lines 100-104 we test if the Territory total is Non-Zero -

if so, well print it, otherwise well skip that territory and go

on to the next.

b) In lines 115-116 we make use of another handy print formatting
instruction - 'SPACEnn' (prints as sideways arrow) which means

'space nn positions' in this case 4 print positions.

The run of the program is shown in Figure 13.

-21

Lo, i

14

~-22-

10. Function Kevs

Frequently the operator needs to be able to call up a special routine
such as printing totals (as in the previous example), entering

a credit, doirg an error correcction, ctc.

A Function Key facility is providd for this purpose:- when the
'PROGRAM SELECT' button is down, the following 6 keys change their
function and, in OPE mode, become function keys:-

X

ARC (4) e, (F)
SIN (B) a- (U)
cos (<)
TAN (D)
a . (E)

Depression of a function key causes the SX to look for a routine

starting with 'SP' and then a reserved code according to the following:-
Code

8A
8B
8C
8D
8E
8F
89

So a routine to be activated by the 'C' key will start:-

SP
8C (ete)

Y Ow > Eg

For this to occur, the 'Program Select' button must be down, and the

SX must either be idle c¢r in the 'ENT' state (awaiting entry).

A special keyboard overlay is available to remind the operator which

function key performs what function.

Another way of calling up a special function when in 'OPE' mode is to

depress 'GO TO SPnn' followed by the routine's 2 digit code.

-23-

10. Conclusion

f]

Hopefully, this has served as a primer to the use of the SX; it is

intended to be read in conjunction with the SX Programming XManuals
In particular, the following topics are not covered in this Introduction:-

- Use of Check Mode for Inserting and Deleting steps
-~ Use of debug Mode for Debugging programs

-~ Scientific functions

-~ Use of Magnetic Card & Cartridge

- Splitting Memories

- Full SX Imstruction Set

For these consult the following Canon Publications:-

SX Programming manual
SX Programmable Calculator Instructions

SX Scientific Functions Instructions

*»

