
I ' iTl'0 0 " . . ' 0 i TG I RO(.' '''-':-"' l, 0 0 " T l ! E SX

1 . I n l r u tu Co r v ,. I 2 ' rse

Assume a simple calculai ion

X = A x . ' 3 —;- C

4'here A = 10

D = 2 0

C = 3 0

To solve this in keyboard mode:

a) "Iake sure SX is in OPE mode and that 'Printer Off' 6 'Program Select'

But Cons a r e up .

b) I . 'ey 10 x 2 0 + 30

c) SX will print log as s hown b e l o w

F ig. 1

Now let' s try programming this:

Tne mcce in whicn the SX stores programs is 'LEARN' mode

i) To i nv ok e 'LEARivI' mode p r e s s t he ' LRN' key

i i) Depr e s s C, C- A L L t o clear the SX's memory

In 'LEAR~I' mode t h e S X wi l l a u t oma t i c a l l y pr i n t t h e step num'oer alongside

the instruction given.

You start off the SPnn where n is a cha r a c t e r i n t he r an ge

0 - 9 o r A - F

' SP' i s s hor t f o r 'start program' — it denotes the starting point of

a p r o g r a m a n d i n s er t s a special flag so that Che start of any program

may be easily found.

SPnn is a double or two-step instruction after keying the 'SP' a

1 ight m a r k e d ' L~NFIN ' wil I c o m e o n t o denote t h a t t h e i n s t r u c t i o n i s

u nfi n i s h e d .

Thc'. ' nn ' i s added to differentiate one program's starC point from

another' s. ITe will call his o n e Pr ogr a m 0 0 (z e r o z ero) , s o we k ey SP0 0

Then key the I eyboard instructions keyed before t hi s t i me t h ey w i l l 0 0

0

not be executed but will be s to re d a n d p r i n t ed .

lf I f 1 I > i - Ilhcn (i. p l ! 5 Lh o ' PRIx l ' l' cy to incor po rate a p. in t ins true tion (appears

as a d i amund)

F inal l y 1 ;ey Epical,' (shor t f u r cn d o f pr o g r a m 88)

N o. dcp c s s 'OPE' to nut the SX out of 'LE "HARV' mode and into 'QPEPJTE

m ode «n d d e p re s s ' C' to reset tl:e machine.

Then dcp:ess ' START' t o s t a r t t h c p r og r am .

Hy now, you should have a printout like that shown in Figure 2

F ig. 2

If something is wrong, you can very easily put the SX back into 'LEAKV'

mode (but don't depress C and C ALL this time or you will 'wipe' your

program): position yourself to the right step number as s hown on t h e

listing by depressing 'STFP SET' and then keying the 3-digit step

number of the step to be rekeyed, t hen r e k e y t h e s t eps as ne c e s s a r y .

(Note : t h e 'Step back' key takes you back to the previous step)

Notice that the answer oroduced by the 'PRINT' (Diamond) instruction is

i n 2 0 c o l u m n f l oa t i ng- poi n t f ou n t . It always appears this way regardless

of the setting of the decir!a'-point wheel. For this reason, it is only

used for simple output.

To produce neater, mo e intelligible output the following technique

1

3 .s usc o :

format to fi ~ed point representation by the ' F I X ' instruction:

e . g. FI VE FI X5 FIX9

02

Round Down Roun d o f f Roun d Up

to two decimal places

Second Step — Specify a column print instruction: COL
nn

Where nn is the number of columns to be occupied by the printout

including sign and decimal point. N a turally the number of columns

specified must be large enough to contain the ma:primum size of number

printed with the number of decimal places s hown i n t h e 'FIX' Instruction

or an error will result.

So to clean up the print out in this example, put the SX into 'LEARN'

mode, Step Set 011 and key the following steps:

FIX5 (key ed as ' FIXn n ' , '5') (Round Of f)

02 (to 2 p l a c e s)

COL (Column Pr i n t)

08 (to 8 o l a c e s)

EP

00

Then r e v e r t t o 'OPE' m ode, d e p r e s s ' C' a nd t h e n ' START'

The printout by now should look lik, that in Figure 3

F ig. 3

I 3y no'..' O n ". . : " ' "- tto us dcf ic i c.n. y o f. the pro .;ra-;,::. hould be apparent
it ~ ill o ily wo lc for val..= ., o " ."., H 6 C o f 10 , 20 6 30 an y o t h er

values o f A , il 6 C .- . c~c ir o a l t er an t i o n t o t h e pr o ' r am.

So;.hat should be done is to a' '' ow thc operator to key in new values

0 f A, 8 6 C o'.ach tlpi.e the D 0 ra.il 1s run.

IIow is this to be aohieved?

Data Ent r y

Tne SXw i ll stop, turn the ' ENT' light on (and wait for the, operator

t o k c y da t a and p r es s 'START' before resuming) under 2 circumstances:

a) @hen it encounters an 'SP' instruction in the program (NB this does

not happen when a program is called as a subroutine expla i ned b e l o w)

b) h nc n i t enc o un t e r s an ' ENTRY' ins true tion o btained b y d e p r e s s i n g

the ' ENT' key and appearing on the listing as ' E' .

' ",!- 'L.i',-:

F ig. 4

I n F i gu r e 4 , t h e 'SPOO' at the start allows the operator to enter the

first number — A. Th e first ENT allows 8 to be ente r e d , t h e s econ d

E NT allows C to be entered. T he
' = ' calls out the result from the

SX's own working registers into the A register for round-off and print

out (every algebraic expression has to terminate in an ' = ' t o r ec a l l

t he r e s u l t) .

I f t he 'Printer-off' button is left up, the SX will log items entered

on the printer; if it is depressed, only explicit print instructions

(PRINT, COLUMN — PRINT) will result in print output.
o

You will notice that after keying the 3 data items, and after printout

of the result, the 'ENT' light will again come on. Th is is because the

'EPOO' statement causes the SX to look for the start of program 00, and

await input again. T hus there is no r e a s o n w h y a pr og r am c an n o t h av e

several EP's, as the EP merely says 'go back to start! A p rogram can

o bviousl y h a v e o n l y o n e 'SP'

3 . I n t r o duc t on t o t h e U e r o f >' c —." i c s

4'hat if we wanted to store A, 3 or C for later u se i n t he pr ogr am ?

The answer i s simple — the instruction ' SI'Tnn' (nn is a 2 digit memory

n o. be t ween 00 an d 99) s a y s : ' store the number currently in the

A — Regi ster. into the nominated memory, leaving the A r eg i s t er

untouched'. Lichen we need to recall the contents of the memory for

calculation or printout, we issue the instruction ' @inn' (short for

'Recall Hemory') to bring it back from the nominated memory into

t he A - R e g i s t er .

'Sinn' and 'PJinn' are, like the 'SPnn' and ' EPnn' instructions,

Double instructions. When , for example, keying in the 'Sinn'

instructions in ' LEAK<' Node, y o u d e p r ess t h e 'Siinn' key; the step

number and 'S~!.1' will be printed on the listing, a nd t h e 'UNFINI SHED'

light will be displayed — the 2 digit memory number is then keyed.

Try the example shown in Figure 5.

':.:j. "i L.- : - :

I] g 5

Here it has been de id d to retain A 6, 8 in memories 1 6 2. For

illustration purposes, the calculation is performed using Hemories 1 6 2.

So, in Figure 5, the number (A) entered at the 'SP' is stored in hlemory

0 1 (S ' i 0 1) , t he n e; - t ()>) i s s t i r e d i n ",',2, and th n ext (C) is left

siLting in tl e A R»gi. ter as !'c do not (in this case) .~i sh to

retai n it af te' th» calculation which follows. F~i01 a! .d R ! I02 r ec a l l

the contents of me-,.!ories 1 and 2 as the calculation proceeds.

It is very c sy to forgcL the pu poses for which you have assigned

memories, so it is advis"ble to make a list of them as you go. This

will also make it very much easier for anyone else reading your

program to understand it.

Some other useful me-:,:ory instructions are:

C~Inn Clear memory nn (for clearing totals)

KY~n Add the contents of the A-Register to i~!emory nn, leaving

t he c o n t en t s o f t h e A r eg i s t er un ch an g e d .

Notice all data movement and calculation has to take place via the

A-Register. To copy the contents of ~Iemory 1 to ~~?emory 2, for

instance, the following would be required:

RI'I

SH

Also note that the previous contents of the A-Register would be

replaced with a copy of Memory 1.

Also note (in Fig. 5 Steps 19-20)the use of the ' LF' (l i n e f eed)

instruction. T his causes the printer to space a line, and is obtained

by depressing 'I/O' and then ' O' (z e r o) .

In the examples in Figures 4 and 5, it would be very easy for the

operator to lose track of when to enter A, when to enter 8, and when

to enter C. On e ideal way of overcoming this is to print instructions

on t h e pr i n t er .

How is this to be accomplished?

C, ~Incor > o ; . t ;.- . , i ; i n t c . : i s o .-n ; c o- c." o t i : c . p r o " , l n >n

Apar t f r om ' prompt i n g ' thc operator, printer nessa< cs are a].so very

useful fo" making the result.", . s ie r t o un der s t and .

To cause a message to be printed in ' Keyboa r d ' or ' Inrnediate' mode,

proceecl as follows:

Put t h e S X i n 'OPL' mode

for SX100:

Depress ' Char a c t e r Pr i n t '

t hen d e p r e s s 'INTnn' followed by the 2 digit code corresponding to

the letter required as per the table below (for digits A to F, you

vill see the letters marked under, the 2 leftmost columns o f keys ,

e.g. 'ARC' = A , ' SIN ' = B e t c)
Repeat for successive characters of the message

Depress ' Character Print' to terminate the message.

SX100 Cha r a c t e r T abl e

L et t e r Co de Let t e r Code Let t e r Code

A B
41 4A S 53
42 4B 54

C D
43

J K L
4C 55

44 4D
T U V

56
Ei 45 4E W 57

F G
46 4F 58
47

M N 0 P

50 59

H I
4e Q 51

X Y Z
5A

49 R 52 Space 20

F or SX30 0 :
Depress ' Chara c t e r Pr i n t '

Type the message, us'ng the keyboard. N ote that the alternative,

alphabetic, values of the function keys are displayed below them on

t he case : e . g . 'APC' gives the letter 'A' etc .

Depress 'Character Print' to terminate the message.

To do the sane thing under orogram control, insert the message (in

'LEARN' mode) at the appropriate spot in the program, preceded by

'Character Print', and followed by another ' Character Print' to
e

terminate the messag

Note that 'Character Print' appears on the listing as 'Ci!A' .

Note that the full ch-racter set is shown in the SX100 and SX300 manuals.

You vill see from Figure 6 that our previous example h a s n ow h ad

message" inserted so that the operator is told what to ente r nex t

(i.".;TL'1', A.?, Z;TL'P, !;?, etc); the answer is preceded by the word 'ASS'

'L

,

' L L .

LF

F ig. 6

The printout from running the program is shown in Figure 7.

E[: EF
Ej: IEF.:
El:!TEF;, ' : .. '

I=;l lS

Et.TER F;=..
E i -; T E F E =.'
EI"',TEF.' I , '

Another thin: th"' has had to b done is to avoid the program stopping

at SPOO, after t' e progr m h p roces sed the output for the first set

of valu "s. If it did stop at SPOO, after encountering EPOO after the

first run through the pro, ra;::. (EPOO having ' triggered' a search for

SPOO), ' hen t h e ' EYT' light ";o ld co~. e on ~>ithout any preceding

printout as to ~that the opera' or rras supposed to enter.

To a~.oid this, rre have to stop the program reaching EPOO, and instead

of relying on EPOO to take us back to the start of the program, ve

instruct the SX (Figure 6, st "ps 78-79): GT01 — Heaning 'go to Flag 01'

obtained by deoressing the ' GO TO nn' key, then keying'01' . Ne define

Flag 01, as being the point before, the printout ' E'ATER A?', by keying

'FLAGnn' and 01 at Lines 2-3 (Fig. 6).

Under these circumstances the SPOO and EPOO, at the beginning and end

of the program respect' vely, are no longer required, as the GT81 and

FLG81 have effectively taken over their function in this case. T h ey

are only left in for clarity's sake.

Quito of ten, as i.n the previous e::a"..;pie, the program needs to JPIP

to a point otI.cr than on • which would be r eached n a t u r a l l y . Th es e

unciondition 1 ju,ps are achieved by ii-serting GO 'i'0 nn at the point

in thc program at which thc jump i t o t a k e p l ac e . Th e ' nn ' i s a

2 di.git code used to defin" ..here you want to JEIP to, in combination

with a FLAG nn instruction. For consistent results, the 'nn ' code

associated with the FLAGnn must be unique within the program. The

'GO TO' triggers a search of memory for a FLAG with the same code.

'GO TO' is obtained by depressing the 'GO TO nn' key, followed by

the 2 digits of the flag; it appears on the listing as ' GT'. ' FLAG'

is obtained by depressing the 'FLAG nn' key, again followed by the 2

dig i t c o de . 'FLAG' appears on the listing as "FLG' .

Each digit in the code must be in the range g-9, A-F.

So a 'GT55' instruction will trigger a search of memory for a FLG55,

if the SX cannot find it, the search will continue over and over

again i.n an endless loop (key 'C' to terminate).

Using this method of jumping, the SX will be searching for a symbol

(FIG - ' C o d e) — i h enc e t h i s i s k now n a s a ~s. b o i t e j ump .

There is another method — an absolute jump. Thi s is implemented by

1 oading the step number (to be jumped to) into the A-Register, by

computation, recalling memories, etc. and then issuing the IOF

instruction (Keyed as ' I / O ' , F) . This is a much faster instruction

because the SX does not have to search — it 'knows' which s t ep t o go

to. However it is inadvisable to use this approach during program

development, as any change to a 'destination' step no. through

insertion/deletion of other steps would necessitate changing all the

IOF sequences pointing to that step. C o nsequently, it is usual to

insert the IOF's only when the program is virtually in final form.

6, Sub r ou t i n es

Notice from Figurc 6 th t certain blocks of. steps are repeated several

times, viz:

CHA

N

L ines 6 - 11 , 2 4 - 2 9 , 4 2 - 4 7

FIX5

COL Lines 19 - 23 , 3 7 - 4 1 , 53 , 56 , 73 , 77

LF

It is tedious to have to enter these steps over a n d ov er aga i n , an d

also consumptive of steps.

To overcome this problem, we can make use of a technique known as

s ubrou t i n i n g .

Using this technique, we code a frequently u sed r ou t i n e as a pr og r am

on its ourn, beginning with 'SPnn' and ending with 'EPnn'.

When we want to use this routine, we use the instruction 'GO TO SPnn '

(shor t f o r 'Go to Subprogram') followed by the 2 digit code assigned

t o t h e s ub pr og r a m . Th e 'GO To SPnn' key prints as GS.

When a subroutine is called via the 'GS' instruction (eg GS21) the

SX sea r c h e s f or an 'SP' with the same code — in this c ase S P21 .

When it finds it, it transfers program control to the new subprogram

without stopping for input.

When the s u bprograms ' EP' i s encountered (End o f Pr o g r a m) , t he SX ,

knowing that the subroutine was called as a subroutine (subprogram),

transfers program control back to the step after the 'GS' which c a l l ed

the subroutine. W h ere there are many calls in the same main program

to the same subroutine (via several 'GS's' in various parts o f t he
• 1

program), the SX keeps track. of which 'GS' called the subroutine, so

as to be able to return to the correct section of the program, eg:

-13

hiAT< i POOCH "I S t,"8-RO"TINE

'f)7 o

c.t'/8

Control always trans fers baclc to the step after the 'GS' which c a l l ed i t .

Note the difference between the effect of ' EP' in
a program ca l l e d a s a

'main' program and 'EP in a program called as
a sub p r o g r a m :

H ain P r o g r a m : 'EP' c auses s e a r c h f or 'SP'

S ubprog r a m : 'EP' c auses r e t u r n t o calling program

The same r o u t i n e c an be u s ed a s a main pr ogr a m a n d as a subprogram

the difference lies in .whether i t was cal led v i a 'GS' or n o t .

The subroutine can be located anywhere in memory.

-14

».:: I

i: I'I..

. L

' L',
'. ' '. ' I~Lj.

: I:
I "».".» I

L i»
LLI

' I I

I I
I.' I ' ! . !

- C'
!

C: I 'I.':L'„

: -., i ', ' . I: . ' C: C

I.;:!.'! 1 l-.i »' '
— IL

',:,».:I I' - .:~ I
I:.I..':. ! ' '

I
I ' i l . ' ! . ! I

'»:1', .L!
!. ' . I ! I »

k. I.. I II. I i

»» 'II i~ E
' . r . I - . l

I

! ':l ~LI
'» "I IL'

I.' I I ': L
C'

L

».' r ir
!I

-„r ,
,

I
!.'!."I - ' - '!L- '

i :» I - I ! - ; I
C L .

'.-.: I-'! Ii - I i I
i.' .

»:I

I"..-.. —:LI.

r'' I ! I I LF Fig. 9
L'

Figure 9 shows the Program in Figure 6 converted to use t w o su br ou t i n e s ,

one of w h i c h (S P82) p r i r t s 'ElTER' the other (SP83) does the rounding

off and printing. The 'GS' statements are underlined. T he number o f

steps sav'ed in this case 's trivial, but this technique can frequently

s ave,.a g r e a t ma n y s t eps and greatly simplify programming.

— 15

7 . T abl e s 6 D i.s a c c t i o l l s

I..et u say that we want to do a sales analysis whereby we key in the

te r r i t o r y nu .: . ber (1 — 50) and then the invoice amount, for all invoices,

in such a m.!nner that 50 territory totals are accumulated, for printout

a f ter we have f in is hed the las t invoice.

Up to noh;, when using memories we have always specified the memory

number to be used. Bu t with 50 possible memory numbers, this. would be

imoossibly tedious.

Luckily, the SX provides a very easy way round the problem whereby,

instead of storing in a memory specified in the program, we can get

the program to put the number of the memory to be used into a

'pointer' memory (any memory can be used for this purpose). To specify

that the register nominated is to be used as a pointer, we precede

the memory reference instruction with 'IND' (indirect) obtained by

d epres s i n g t h e ' INDI RECT' k e y .

Contrast these tsso approaches:

B

(Memory 20 contains 8)
SiT IND
08 S i~I

20

Both achieve the same effe. t — in case B the SX sees ' IND' and kn o ws

that for the followin' 'Store Ncmory' instruction it has to treat the

contents of memory 20 .,s the gointer o wh ere it really has to store

the data, instead o' storing the da a ~di r e c t l i n t o t l emo r y 20 .

To do our sales analysis, let' s use Nemories 1 — 50 for the 50 territory

totals, and 51 as storage for the territory number. Then, in order

to ensure that the invo'ce total is accumulated in the correct memory,

we just designate 51 as a ' pointer' memory.

LF

-17

Figure 10 sh .:s =" program to do this: thc operator is asked for the

t er r i t or y nu . . .~ " . , !nd thon thc sales, which are accumulated in the

appropriate territory total in memories 1- 50. Notice the useof the

' F l ' instruction at line 2 to clear all memories — this is obtained

by k e y i n g ' l l ;S T n n ' , F , 1 .

At line 44, the program 'oes back to line 3 (after the Fl instruction)

for the next entry, in anendl e s s l oop .

J •

t-.,
r r ' " . W ' l — C' l

-l
J • i : ' '

r'".,
l . .

' ' : l ' I
l — •

L~ • k ' l ' l

t": l : l

I '':'i. .i

C ' I - !

i~t:;i l~ F ig. 1 1

Figure 11 shows the printout of the program when run('OPE' mode, ' C ' ,

'START' — 'PRINTER OF." ' d o w n) .

After the last entry, it was n ecessar y t o depr e s s 'C' t o s t o p t he

progr am, a n d p u t t h e 'PPINTER OFF' button up, in order to get the

printout shown by manually recalling memories 1 — 5 (tedious for 50!)

To recall a memory, you simply key ' RTnn' followed by the memory no:

I |bl, 82 , | ! I3 e t c .

Wouldn't it be nice to have this printout occur automatically?

To achieve this, you have to master 2 n ew sk i l l s , — Use of Conditions,
' •

a nd Lo o p s

— 18

8 . Us e o f Con di t i on s

It is often necessary for a program to make a logi.cal deci. sion. In

the case discussed above, it wo e)Id be nice to have the machine detect

whether the last entry has been keyed.

This might be achieved by usc of the 'IF ENT' test. T his test checks

whethe r t he o per a t o r h as entered anything in r espons e t o t h e ' ENT'

c ommand. I t i s ente r e d b y l(ey i n g :

IF GO TO nn

TRY

dd

(' dd' is the two-digit code of the flag to which the program is to go

if so me r h i n (ev en a ze r o) h as be en k ey ed)

If appears on the listing as, eg:

IFE

So to terminate the entries, the operator would depress ' START' w i t hou t

k eying an y t h i n g .

Other conditional Tests are available for testing the contents of the

A-Register after an arithmetic operation:

~Fur o s e Keyed A s L i s t s As

Is A Non - Z e r o ? I f G O T O , =, d d II NZ
dd

Is A Positive or Zero If GO TO, +, dd)F+

I s A N e g a t i v e I f G O T O , — , dd I F
dd

So to test whether the numb=r contained in Memory 82 is less than or

equal to that in 81, and if so to go to FLAG 80, the following could

be used:

RM
52

(don~t forget to recall result with '
=')

IF+
80

If the number in Memory 2 is greater than that in Memory 1, (test is
not

true), control will ' fall tl.rough' the ' I F ' and continue at the

folio~a ing s tep.

Other ~~r~s of tc" t are listed in the S/: Progran~er
) s ~ manual.

The instructions to Lest)/hcther the opera t o r k ey e d an y t h i n g ar e sho~rn

i n F i gu r e 12 , St e ps 1S- 20 .

LF

)

I . I

I

I LI'

0 0

P

-20

9. ~Loo o

In thc Sales Analysis case under discussion, we want to s tep t hr o ug h

the pointer through the values 1 — 50, so that we can print out the

corresponding totals.

To do t h i s we c an co ns t r uc t a simple loop, Using Memory 51 as a

c ount e r :

CLEAR
MEMORY

51

V

ADD 1
TO

MEMORY 51

NI9 I s Memory 51'M51<51
L ess t h a n 51

?

YES~

LOOP INSTRUCTIONS

LOOP EXIT

The steps to do this (one way) are shown on lines 83-97 and 126-127

Other. refinements added are as follows:

a) In lines 100-104 we test if the Territory total is Non-Zero

if so, wdll print it, otherwise wdll skip that territory and go

on t o t he n ex t .

b) In lines 115-116 we make use of another handy print formatting

instruction ' SPACEnn' (prints as sideways arrow) which means

'space nn positions' in this case 4 print positions.

The run of the program is shown in Figure 13.

-21

'.=. LE
' : 'L l=

'.;=-:.LE
-I — I
*'' ',: I

': —. i=;LE
'.=:I=:LE

j r
I L

-22

10. Fun c t i on Kc v s

Frequently th= ." rotor needs to bc able to call up a special routine

such as printing totals (as in the previous example), entering

a credit, doing an error correction, etc.

A I'unction Key facility is providaifor this purpose: — when the

' PPOGIV~I SELECT' butt on is do~iw, the following 6 I.eys change their

function and, in OPE mode, become function keys:

A RC (A) e (F)
SIN (B) a (U)
C OS (C)
TAN (D)
a (E)

Depression of a function key causes the SX to look for a routine

starting with 'SP' and then a reserved code according to the following:

Code

A B
8A
8B

C D
8C
8D

E 8E
F 8F
U 89

So a routine to be activated by the 'C' key will start:

SP
8 C (et c)

For this to occur, the ' Program Select' button must be down, and the

SX mus t ei ther be idle or in the ' ENT' s tate (awai ting entry) .

A special keyboard overlay is available to remind the operator which

function key performs what funct'on.

Another way of calling up a soecial function when in 'OPE' mode i s t o

depress 'GO TO SPnn' followed by the routine's 2 digit code.

-23

10. Con c l us i on

fIopefully, this has served as a pri-..ier to the use of the SX; it is

intended to be read in conjunction with the SX Programming Manuals

In particular, the following topics are not covered in this Introduction:

Use of Check Mode for Inserting and Deleting steps

Use of debug Mode for Debugging programs

Scientific functions

Use of Magnetic Card 6 Cartridge

Splitting Memories

Full SX Instruction Set

For these consult the following Canon Publications:

SX Programming manual

SX Programmable Calculator Instructions

SX Scientific Functions Instructions

