S8A

PRELIMINARY INFORMATION

Sequential Boolean Analyzer

FiN FUNCTIONS
RESET Input
GO Input

HALTED Output
{NPUTS/OUTPUTS

1/Q Control

When taken 10 a logic ‘0", this input il resst the program ta the start position,

When taken to 2 logic '0", this input will hatt the program at the end of the program cycle and will activate the
HALTED output When taken to a icgic *1', the program will cyclz continuously.

A logle “1* on this output indicates that the program has stopped cycling,

There are 30 inputfoutputs on the circuit wincn can be mask programmed as inputs, outputs. or
inputs/outputs

When this output is et logic 0, tne circuit wil) outout injorration When is at fogic 1, it will read input oata.

FEATURES PIN CONFIGURATION
@ 1023 words of program 40 LEAD DUAL IN LINE ELECTRICAL CHARACTERISTICS
® 30 programmabie inputs. outpuls, or multiplexed
input/outputs, Tap View 1 =
& 18 slament stack and 120 element Read/Write memory Voo o1 b co Maximum Ratings ,
& AND, OR, XOR, COMPARE, INVERT basic logic functions RESEY 02 201 16 Contrat Voitage on any pin with respect to Vg . -0.3V 10 15V “Exceeding tnese ratings could cause
& Serial processing of inputs and stored information WALTED O3 281 Clock storage Temperature Range ... 86°C t0 +150°C permanent damage. Functionst operation of
provides very easy programming [n Boalean logic ~5v (4 ar[3 Gloek Operating Ambient Temperature Range . 0°C to +70°C tnis devige at these torditions {s not implied
® Versatile clock generation scheme *12v 5 36[1 Glock — operating rangss are specified below.
B TTL compatible inputs and autputs - o1 sH 0w Standard Condltions (unless otnerwise noted)
¥ Simulator and software program compiling facilities vaz g7 P Qe
avaiiable vos 48 360 W0 28 Vs = OV
WO 4 39 3201 o 27 Vgg = 712V T 10%
H WO 5 [J10 310 o2 = +5Y r {59
I}; DESCRIPTION e bl =g Vgg = "5V = 16%
i The SBA 15 a microprogremmabie Sequential Boolean Analyzer war e 280 w024
H which farms the basle controlling elemant for many systems o8 013 28[3 voz —
requiring timing and contraf functions. The SBA is tabrizated in uoa (1e 273 o 2z Characterlshic B, I Tye. Max, Unity Conditions
h 20 10 [115 260 Wo 21 L
Gl's low voltage lon implant N-channel process resuiting in high ;',Q = ‘; 20 1020
speed operation and low power dissipation |:-'D o= e ng 1o 18 Clack 10 ‘ - 800 K4z MNote 1
=n: s 170 13 €18 230 Vo8 inputs }
APPLICATIONS 170 *4 g 22[3 1107 togic 'O’ level +0.3 — 0.4 v
The SBA 15 suitable for avery wida spectrum of applicatlons such 4015 CJan 21[1 4016 Logic 4" level 424 ’ - w19 v
as 4 Current - b~ 10 LA Vi = +12V
TELECOMS: Simple PAX controllers, Relay circult control, Timing - | b - - Note 2
Answering machine controllars, Line seeker/monitor. MICROPROCESSORS: As a slave processor for BCD/binary Outputs
INDUSTRIAL: Complex sequential timers, Smal! machine canversion, Binary/BCD conversion, Alarm condition Logic ‘¢’ - 100 - Chms 0.7V at TmA
controlers, Special purpose digital clocks, Alarm monitor. manitor/Interrupt generator, Perlpheral controiter Slnk Current - 7 20 mA Max 1otal power 150mwW
CONSUMER: Gaming machines, White goods timers, In general the SBA is best suited to applicetions wnere a control Logic 4’ 1.2 ‘ - - MOhms open drain
Combination locks, Pinball machine/one arm bangit. response is required in mitfliseconds rather than microseconds Leakage current - - Y HA Vour = =12V
Timing —_ ‘ — - — Note 2
i BLOCK DIAGRAM AND DATA PATHS NOTES:)
i 1. Clock frequency controlied by external B/C network
) .- T T T T T T T T) 2 The timing of inputs depends on the clock frequency and the program length Refer to the Setaled descriptions.
¢ 5BA 9
: ——
; ! | PROGRAM MEMORY !
! : :
. | ‘ Loglc o |
i [M UNIT o
f I P T !
) v s 9 |
| N T Y U
P | v T
| i : ToR & P
T 7 H y Y |
s s N ¢
\ ¢ 7| 3 \ F 8 !
[E /oA E
s g B [
l K 5
X; | |
| STORED STATES '
, PAGE PAGE L PAGE PAGE |
i 1 2 3 4
: . !
3 S G GO UG S
—~—————«[EXTERNAL §YSTEM BEING CONTROLLED k‘— ;

PART I General Information

A, INTRODUCTION

The Sequential Boolean Analyzer (SBA} is a very simpie single
bit processor which can directly avaluate e set of Boolsen
equations.

The use of Boolean Equetions as a ‘programming language' has a
number of unigue advantages:

it is concise

it is standarized worldwide

engineers already use it and understand it

universities teach it now and have dona so for many years.
tt serves the dual purpose of both program and
documentation

it has stood the test of time.

The equations define tne logic that controls the system to which
the SBA Inputs and outputs are connected.

NSRS

o

Inputs f~—— Qutputs
from — SBA [=~—to control
System —— p——— the system

In eddition to Boolean logic, most systems require that some
events have to be remembered’. this being the reason for the use
of flip flops in TTL type logic Implementations. In the SBA a
number of internal storage elements arg provided for such
purposes

A memory is usea to hola an encoded verslon of the Boolean
equations that define the desired function ofthe SBA and there is
a one to one correspondence between the data in this memory
and the Boglean Equations as written by an engineer,

B. PRINCIPLE OF CPERATION

A block diagram of the SBA showing the program memory,
inputs, logic unlt, stack. stored states and outputs Is shown in
Fig. 1.

The SBA functlons as follows:

1. The new inputs are read in from the system being cantroliv
ed and are latched into the input 1atches.
The SBA now reads the Boolean eguations out of the
memory and, using the logic unit and the stack, it processes
the input data and stored states one Boolean term at atimg
to produce results which are elther ‘remembered’ as storeq
states or placed in the output buffer.
The Boolean equations are taken from the memory term by
term and when all the equations have been evaluated the
results are transferred from the outout butfers to the out.
puts and thus to the system being controlled, The program
address counter Is then reset and the cycle begins again,

C. COMBINATIONAL LOGIC

If the SBA 1s used to emulate combinational logic, tnen the
Boolean equation which defines the loglcal function will only
contain input terms and output terms. For example:
A = B.C-D+EF. (X + -X.Q)
L=T+EF. (X ~-X.8}
where signifles logical AND
+ signifies logical OR
- signifies negate {-D reaa not D}
A and L are outputs
all other fetters are inputs,
Tne number of program steps required to avaluate the abovs
Boolean equations can be reduced by using a stored state to save
the vatue of E.F (X + -X.G) after it has been evaluated the first
time, This partial result can then be used in the second aquations.
Now we have;
a. stored state = EF. (X » -X.G)
b. A =B.C *stored state
¢ L =T+ stored state
This example serves to illustrate now the equations can
sometimes be optimized by trading off stored state memory
against program memory.

]

@

Henz—

CLE LTS

" PrOBRAY HENGRE

onmmACe AeESTO

aGE | pagk
A ¥

D. SEQUENTIAL LOGIC

Although some problems are combinational in nature, the vast
majority of practical problems are sequential
A sequential system is one i wnicn the response toagiven setof
[nput conditions is dependent on the previous history of the
system. An exampie might be & digitai clock where normally the
seconds digits are incremented except when they are at 58 when
they are reset to 00. In other words the next response of the
counter depends on its current value and there may be different
responses depending on different current values
All sequantial systems ¢an be described by a combinational
network in which some of the results of the Boolean equations
are stored in a memory. t is this memory that ramembers the
history or 'state’ of the seguential systern.
Thus the storec state memory of the SBA has its main use in
remembering the ‘state’ of the system being implemented. Each
time the SBA evaluates the completa set of Boolean equations
dascrlbing a saqueniial system, ituses the stored states as part of
the equations. As the evaluation proceeds, the stored states may
ba changed if the Boolean equations demand it
A simple example is shown by 2 Venaing Machine wnere thera
are two major states —1, not enough money to buy anything
2. enough money, so supply the goods
In this example some of the stored states would be used to kesp

only ellows for 30 addresses, out the number of stored states
Is increased to 120 by having typically 4 pages of 30 each
Two instructions contral a page counter’. One steps the
counter and 80 changes the page, and the other sets it back
to the first or ‘home page’ Thus an infinite number of pages
is tneoretically possible, the SBA stepping througn them in
sequence as required with the option to return tothe start at
any time

. A logic unit which can perform all the possibie logic

functions of two variables, namely AND, OR, EXCLUSIVE

OR and COMPARE and also negate (invert) The truth

tables of the funetions are shown in Fig, 2, Any logic system

can be described by & set of Boolean equations written with
these operators

The logic unit always has two inputs and produces one

output and there are two types of action.

(a) One input comes from an input latch or stored state; the
second 1nput comas from the top of the stack, and the
result is placed on the top of the stack.

(by One input comes from the top of the stack; the secona
Input comes from the next location of the stack; and the
resuli Is 1eft on the top of the stack

Tne exact operatien of tne various Boclean equation

evaluation codes is defined in Lhe next section.

Qutput true only il
both inputs true.

Qutput true if
either input true,

count of the money that has been fed into the machine The 5. The stack is always invoived in logical svaiuations, as the
Boolean equations controliing the dispensing of the goods top of the slack is always one of the operands to the logic
would ell contain a term involving the stored state that could unit. The stack is just a pile of Boolean values and can be
never be fogically true if there were not anough money to buy the imagined as a vertical shift register in which data 1s always
goods. As soon as goods wera bought and supplled the stored put into or taken from the top When data Is added to the
states halding the "amount’ of money would be altered ta reflect stack, it Is said to be ‘pushed’ onto the stack The new data
that the goods had been supplied thus switching the system back becomes the top of tha stack and all the previous data is
pushed down the stack by one place. If the opposite is per-
to state 1.
formed, the data in the stack is moved up by one place and
E. SYSTEM DESCRIPTION the stack is said to bel‘popptlad‘ The topho' the stgfk will be
The Sequential Boolean Analyzer congists ol tha following major lt:: :23 229 if:tfhzr::;c;:s'y iust below the top will become
companents (refer to Fig 1} P " ’
. The data stack in the SBA is normally used as workspace or
1. A Program Memory which holds the set of Boolean . :

: . ” " accumulator and the top of the stack 1s used in most of the
equatnon: :\aﬂngg::le §ystem gpe;alnons. in l:Tslnglichlp instructlons together, sometimes, with the next location
verslont; ;SMATh sis cﬁln!alna :\ananjc p "":‘? hp{o- down. However, the stack can also be used to store
grammabls ROM. . er‘: w be'anot efvarSlon n v:)elcRohe temporary Boolean variables and helps greatly in the
program memory is o ‘ths chip and it can then M. evaiuation of Boolean equatiens containing brackets. For
RAM or PROM as raqux.red, The Boolear equallons‘wh\cn example a function such as
detine the logical relationships between the SBA inputs, A {B.C.+ (D.E + F.G).(H.| ~ J.K})
stored states, and outputs are storsd in the memory as 8 bit ., .
words in an encoded form. An exact definition ofthe codeis would be evaluated in tha following way:
given in the next section Operation Result

2. A set of up to 30 input buffers whicn are latched at the start (a) evaluate D,E D.E
of the avaluation of Boolegn equations. This is done so the (b) push Into the stack
input values are consistentduring the whols period of time it {c) evaluste F G
takes to evaiuate all the Boolean equations once {d) OR D.E-F.G
3. Anumber of pages of 30 stored-state fiip ttops which can be (8) push into the stack
grouped to emulate counters and shift registers, or used {f) evaluale H.| + J.K as m (a)-(a)
singly as 'flags’ to remember the state of the machine, orin {g} AND
logi¢c equation reduction The SBA addressing struclure {h) push into stack (D.E+F G).(H.I=J.KY
N
AND UR EXCLUSIVE OR COMPARE
A B RESULT A B RESULT A B RESULT A B RESULT
0 0]] 0 0 ¢l ¢l Q) 0 1
[1 Y]] 1 1 0 1 1 Q 1 0
1] 0 1 0 1 1 ¢l 1 1 0 0
1 1 1 1 1 1 1 1 [1 1 1

Qutput true when
nputs differ

Qutput true when
inputs comoare

Fig. 1 BLOCK DIAGRAM Flg. 2 LOGIC FUNGCTIONS

8-38

Operation Result

{i) evaluata 8.C

() OR B.C+(D.E+F.G).(HI+J.K)

{k} AND the stack with A Final result.
Naturaliy this I8 not tne anly way the stack can be used. the
variation belng limited only by the Imagination
A sel of up to 30 autput buffers wnich have their new values
stored In them as the Boolean equations are evaluated.
When all the equations are complete, at the end of a
program cycle, the data on the output buffars is relatched
into the output drivers connected to the system being con-
trolled. In this way the externei outputs of the SBA are up-
dated once per cycle and remain unchanged until the end of
the next complete evaluation of the Boolean equations.

F. INFUT/OUTPUT

It has been notad that there can be up to 30 inputs snd up to 30
outputs avallable in an SBA. Howovar, bacausa of the physical
limitation of an actual device, if there are more than & tofa/ ot 30
inputs and outputs then inputs and outputs are multipiexed onto
the same pins. So the device will be avallable with 30 plns mask
programmable to be inputs. outputs or muitiplexed
input/outputs

G. CONTROL LOGIC

As well as the major functional blocks described above, tha SBA
contains some simple controt logic which operates transparently
to the user. At the end ot a complete program cycle, i.e. at the
Restart instruction, the followIng actfons are performad:
{a) the contents of the output buffers are relatched into the
outputs
{b} the top of the stack (s set to a loglc 1
{c) the page counter Is set to the home page
(d) new inputs are letched
{e} the program address counter Is set to point at theflrst term
of the flrst Boolesan equation.

o

Onca the SBA has started a program cy¢ie, the program address
counter Is simply Incremented every SBA ¢lock cycle, the
instruction read out and actad upon,

H. SBA RESPONSE TIME

It 15 impilcit In the description of the operation tnat the speed of
responge of the SBA to an external aystem being controlled s
determined by the length of time ittakes to evaluate the complete
set of Boolean equatlons once. This is because the inputs and
outputs are enly latched once per program cycie of the SBA’s
operation.

The SBA is designed in such a way that all Its logical operations
and data transfers take the same time ta exscute ({intact, one of
the SBA's internal clock cycles) and so the response time of the
output of the SBA 10 new inputs from the system being controlled
by the SBA is directly proportional to the number of Boolean
operations requlred to define the control tunctlon. This responsg
time will typically be of the order of a few milliseconds.

i. DATA PATHS

The data paths available In the SBA are itlustrated in Fig. 3, The
focal point ee far as deta is concerned is the top of the stack since
all data transfer go to or come from the top of the stack. Thestack
is loaded from aninput or stored state. The logic unit can perform
any toglcal function on it and the resultcan then be stored on any
output butfer or a stored state.

Note that it is not possible for Boolean equations to use terma
involving data on the output bufters. If such afacillty is absolutely
necessary, then s copy of the output buffer state must be madein
astored stale so that the data path to the top of the stack is made
avallabte. The outputs of the SBA can be connacted back to
inputs sither directly or via some piece of circultry, A direct
connection forms a stored stats that can be accessed from
outside the SBA. This can efso be a limited aource of extra stored
states, External logic can be connected between outputs and
inputs or even keys and switches. This latter possibllity Is useful
In, say, scanning a matrix switch or selecting s code switch, and
reduces external circuitry.

Howaver, in general, the outputs of the SBA are connected to the
parts of the externs! system that controls its actions and the
Inputs of the 8BA are connectad o parts of the system thet
monitor ita current state.

|
N
P
n
T
L
A
T
c
H
E
8

PROGRAM MEMORY

“Cwaco

womame®

} STORED STATES

PAGE
1

PAGE
7

PAGE PAGE
2 4

B T EXTEMNAL SYSTEM
BEING CONTROLLED

Flg. 3 DATA PATHS

840

4. BOOLEAN EQUATIONRS IN THE PROGRAM
MEMORY

1n order o make the best use of the space avaitable for memory,
the codes representing the Boolean operations should be as
efficient as possible. It has been deiermir\eq that about 20
Instructions would provide a good compromize between the
number and efficiency of the instructions. Given also that about
30 inputs and outputs were suitable for the requirements of tha
type of system llkely to be contolied by an SBA, the following
scheme is used.

An 8 bit word is used for each Instruction code. 5 bite provide an
address tor the inputs, outputs or stored states and, if two of the
32 avallable addresses are reserved for addressiess instructions,
the remaining 3 bits of the code enabies & totat of 24 Instructions
to be mede availgble.

The 8 bit binary word is conveniently represented by 3 octal
(radix 8) digits ranging from & to 377 (00 000 G0G 1o 11 111 111
blnary). The least significant 8 binary digits are treated as the
Instruction, and the 5 most signlficant bits as the address.
Addresses 1 to 38 (octal) represent the 30 sadresses required
throughout the SBA (1-30 in decimal). Addresses 0and 37 (all0's
and all +'s in binary} are reserved for instructions as shown in Fig. 4.

specified by the aodress” is
ANDed with the top of the stack
then a 1 is pushed onto stack,
The value on top of the stack

18 stored in the stored state
specified hy the address® and a
logical 1 lett on the stack

7 OUTPUT The vatue on top of the steck s

§ STORE

Memory Memory

Code Code £ God

in OCTAL |MMEMORIC| Functionsi Description of Code in OCTAL} MNEMQNIC Functional Descripilon of Code
01 | 000 RESTART Restart evaluation of equations
to } 0 ANDIN This input specified by the 001 INVERT jnvert tap of stack
36 :::dr;:s;ls ANDad with the top of 002 PAGE Ghange Page
TV 4 | nanom 'r: logicat nvorss of the nput 003 HOME Back to Homa Page
10 @ logice) inverse o i
36 specified by the address is 004 PUSH 0 Push fogic 0 onto stack
o1 ANDed with the top ot the stack 005 PUSH 1 Push loglc 1 ontg stack
to 2 ANDSS The stored state specified by the 008 PUSH C Push ana copy top of stack
38 address* is ANDed with the top Q07 POP Pop the stack
o1 ofthe St.aCk 370 ANC Perfarm the function
to 3 NANDSS The Iogncql nverse of the slorfad an OR an the top two (0calIoNs
3 stat speclﬂgd by the address 372 EXOR of the stack. Store result
s ANDed with the top of 373 COMP on top of stack

I3l the stack.

o 4 ASP The storad stete specified by the 374 PAND Perform the function or the
36 address” Is ANDed with tne top 375 POR top two locations of the stack

of tha stack. then e 1 I1s pushed 78 FEXCR Push result into stack leaving

ot onto stack ar7 PCOMP, logic 1 on top

to] 6 NASPI The inverse of the stored state _—

stored in the output butfer
specified by the address and a 1
lett on the stack.

*The address of a stored state defines 1 of 30 on the currently enabled page.
Flg. 4 BOOLEAN EQUATION CODES

?:tegory (&) — Iogical operations {See Fig, g)
ere are two types here, a fogicai lunctior‘1 AND, O

'y , O, EXOR.
COMP) and the function followsd by PUSH: ‘ o

Description of Codes.
1
The cades usnd for defini
categorfes:

{&) single operand instructions which affect the stuck

(b) logical op. 0 A
ogical oparations taking Inputs from the stack and storin,
ata toring

(€) data transfer instructions for nputs, stored states, an
18, tes, and

(d) program control instructions.

ng the Boolean squations fall into four

Category (a) — stack manipulation (See Fig. 5)
1. [nvart top of stack. Tha Boolean value is taken from the top
:!Jhe:lljackoag: reptaced by its logica) Inverse; a 1becomes
. and a 'comes a 1, The stac| i
ooy tack Is neither pushed or
Push 0 ontto stack, ANl data values on
3 the stack are pushed
gown ons place and a logic 0 enterad on top of lr:s:ack
ush 1 onto stack, All items in the stack are pushed down
ons place and a logic 1 put on the top,
::;P:ha:d quy top of stack. Data is meved down the stack
previous top of stack (now the next posit
g cosion o o position down)
- Pop the stack. All data values are mov,
ed Up the stacl
place. The old top of stack is lost, ° stack one

ol

o

»

o

1 AND, OR EXOR, COMP. The top two elements of the stack
are propped into the logic uni, the logical function Is per-
formed on them, and the result pushed back onto the stack.

2 {\ND—PUSH, ete. Tho top two valuos on the stack are poppaé
info the logle unit, the appropriate function is performed on
them, the result is pushed onto the stack, and ths Is follow-
8dby alogical 1. Thistorm of logical operation is useq when
tcr;essrl:zulgl's t? ba saved in the stack tor subsequent pro-

Ng. The 1 s put &
. evalua“a:mp onto the stack to make it ready far

INVERT

A
B
Balore {
A i
PUSH 0 8~}
i
Hetore

A
PUSH 1 B
Betors
PUSH ~ COPY
A [8]
Pop B I
Betore | After

Flg. 5 STACK MANIPULATION

TOP OF STACK = A function B, whers -
EXCLUSIVE OR, COMPARE- 01" AND. OR,

A] AtB
3 c
c

Before After

In the case of AND PUSH, OR PUSH, EXCLUSIVE OR-
PUSH, COMPARE-PUSH:

Flg 6 LOGICAL OPERATIONS

STORE A;

The valua of B on 1

OUTPUT A;

Category (€) — Input/output operations (See Figs. 7 and 8):
There instructions have two parts, the commend and the
address, Tha command defines the data path {input-stack, stored

{ate-stack, st 80 atate or k-output) and the logical
10 be performed, if any. The address defines which of

B 1
-
C [}
Before After

he top of the stack is stored in stared
state of addrass A and replaced by a fogicai 1.

8
c
Before

1
%]
After

The value of B on the lop of the stack is stored in output

|

Fig. 7 QUTPUT OPERATIONS

putfer ot address A ang replaced by a logical 1,

—

ANOIN A;
ANDSS A;

NANDIN A;
NANDSS A;

ANDSS - A
PUSH 1

NANDSS - A,
t PUSH 1

L

B R A B

c C
[Before After
——

Before

B il
c | _ar8 |
[c
Before I ater
B | 1
c | _A-8
B }_,.Gk
Betore After
Fig. § INPUT OPERTIONS

the 30 pieces of date is to be manlpulated
STORE and OUTPUT take the logic value from the top of the
stack and {ransfer It to the approprite stored state or output
buffer, the top ot the siack being replaced by a logical 1 ready
for the next evaluation.
ANDIN takes the value of the add resseq Input and ANDs it with
the top of the stack.
NANDIN takes the logical inverse of the addressad inputs and
ANDs it with the top of the stack,
ANDSS takes tha valus of the addressed stored state and ANDs
it with the top of the stack,
NANDSS takes the fogical inversa of the addressed stored
state and ANDs it with the top 6 the stack,
In the above four operations, the stack is neither pushed nor
papped
ASF1 takes the valug of the addressed stored state, ANDs it
with the 1eo of the stack, and pushes 1 onto the stack
NASP1 takes the logical inverse of the addressed stored stata,
ANDs It with the top of the stack. and pushas 1 onto the stack
Catagory (d} — controk:
PAGE There are typically 4 pages of stored states In the SBA,
and tha instructions reading and writing to and from the storad
states oniy provide an address within the currently enabled
page. The PAGE insiruction steps the page counter and
enables the naxt pags.
HOME. if itis required ta enaple & page of stored states thatnas
been passed, the HOME instruction causes the page counter to
go back to enable the home page.
As an example, If the page caunter |s currently snabling page 3
and it 1s required to update a stored state on page 4, the PAGE
instruction would be used. If now & stored atate on page 2 is
required, a HOME instruction will switch back to pege 1 and a
PAGE instruction wili stap to page 2
RESTART. This code)s always 1he last code in the program
memory {note that ils value is conveniently alt zeros} and when
seen by the controi logic the following is performed:
the contents of the output butters are relatcheo to the
outputs.
a new set of inputs are laiched
the top of the stack is set to logical 1
the page counter is reset to the home page
the program addrass counter is reset to restart the
evaluation of Boolean equations

[NS

943

PART II Using the SBA

A. INPUT/OUTPUTS

The sddrossing capability of the SBA aliows for 30 inputs and 30
outputs. There are 30 pins available as Input/Outputs and so if
mare than 30 total inputs and outputs ere used they must be
multiplexed

There 1s a mask programmable optian on each of the 30 pins to
allow them to be inputs, outputs ar multiplexed Input/outputs.
Regardless of the option, the internal addressing of the pins
remains the same and so, for example, it an application requres
only one inpul and the boarg layout requires it to be the last pin
the program must use eddress 30,

Input

When programmed as an INPUT,nothing will be able to be output
from N’}e pin even it the program loads something in the
respective output puftar.

Output

When programmed as an OUTPUT, the input date path is stilt
connected and the vaiua on the pin will be latched with ail the

other inputs at the appropriate time, This {act can be utitized as
foliows:

(8} 1t Is sometimas required thatthe value of an output 1s useq
In the processing during the following cycle and would
normally have to be copied into a Stored State. Feading an
output back as an Input in this way Bvoids this problem and
can also beusedas a limlted supply of extra stored states, it
s:lare Plns are aveilable, that can also be read outside the
chip,

(b) As well as reading the valus of the output dj
output can be moditied by making use OE‘!h:IO,:::']yd.r""e
canstruction of the output drlver. The value of the oulem
can be modified by an externatly connected active mﬂ
down deviea and tha result read into the input, Somenl:i "
tike & manuai override would be a simple use of this facllr[ls

while more complex togic functi
nctions can als i
poriormen: o bo eosily

Multiplexed Input/Qutput
For complete separation of In

puls and output.
MULTIPLEXED facility must be used although eme‘:nanlslalhiE
must be used for demuitiplexing. oo

OQutput Drive Capabliity

The Output drivars have an impedance of 100 Ohms end ar,

nqmlnally rated at 8 sink current of 7mA. Thus each otrtput cae
drive 4 TTL Isads plus a 10 KOhm pyli-up resistor to +5v, "
The nominal current rating is determined by the total allowable
powaer dissipation in the output circults, which is & maximum of
150mW. The 7mA rating has osen datermined assuming ail 30
outputs ere being used. If less than the maximum are in use, the
current rating for each can be incraased up to the maxin;um
ml‘ng of 20mA, keaping within the 150mw power restriction. Fig

9 gives a gulde to tha current capacity for dierant numbers of
outputs in use.

MAXIMUM CURRENT PER OUTOYT

—

Pt et AN N D T SN R T N R RS
101192 %8 1@ 15 98 17 18 9 20 20 22 23 25 25 26 27 56 39 a0
NUMBER QOF OUTPUTS

a4

B. DEVICE TiMING

The ctock can be generated internally with the haip of an externial
A/C natwork connected to the three ‘clock’ pins, or an external
clock can be applied 10 the clock inpat,

The SBA will perform tha Instructions in the ROM, one par cfock
cycle, untit the RESTART instruction is reached. At this point a
speclal sequence is performed that is shown in Fig. 10.

program (including RESTART) pius 8 (for the ena of cycle
sequence). If the cycle {s stoppad by removing GO, the time can
be up to 1 clock cycte less. Thus the maximum possibie cycle
tima is;
Clock period x (1023 + 6} = 1.28625mg at 800KHz
= 10.29ms at 100KHz
In genersl wa have:

no. of instructlons +6 progrem cycle tima in ms.

The possible varlations are due to separate or p
inputs/outputs end the use of HALTED and GO.

Input Timlng

|nputs are stroped into the device once per program cycle, as
shown in Fig. 10, whether they are excluslve Inputs or
multiplexeo.

Qutput Timing

| & pin 15 dedicateq to the output tuncrion, then tne logic lavel
rsroeins constant throughout the program and is updated a1 thg
end of each cycle as shown in Fig. 10.

in a muttiplexed 1/0 the output data 's present for two clock
cycles attheend of each program cycle, the /O contro! providing
a strobe so the date can be stored in an external device (on the
nagative edge).

todes of Operation

1. If the SBA is required to cycle continuously tne GO input wifl
be true In this case there will be one clock cycle between 1/0
control disappearing and the SPA strobing the inputs This isthe
more common mode of operation.

2. If GO is not present after the I/O conirol goes high. the
HALTED output wili appear and the SBA will stop. when GO
becomes true, HALTED will be removed end the SBA will
continue by latching a new set ol inputs, Although this moda can
be useful it is usually bstter to put the contro!l into the program
itself and run continuously.

Cycle Times

Since all instructions have been arranged 1o take the seme time,
the total time taken for a complets program cycle is thetime for 1
clock cycle muitiptied by the total number of instructions in the

clock frequency In KiHz

C. BASIC PROGRAMMING

Tne internai operation of the SBA 1s of no concern to the user, the
device simpiy belng thought of as a variabie array of Ipgic. It can
be treated as abstracl logic or as tha foglc family most familiar to
the engineer, aithough speed and response time must be
considerad geparately as it is somewhat unique 1n the SBA
The logic represanting the function to be performso by the SBA
Is described by a set of Boclean Eguations. These can be of any
length and are composed of the four logical functions, AND, OF,
EXCLUSIVE OR and COMPARE, together with invert or negate
and as many levels of brackets as are required Rules and
restrictions are minimal.

Stered States — Baslc Storage
Thae Stored States can be used to store the state of some input or
logical combinations from one program cycle to the next. For
exampfe, if it were reguired to produce an output whenever an
input changed state, the vaiue of the input must be stored end
cormpared with the new input in the next cycle, The equations
might be,
output = input * store; {where * represents exclusive OR)
store = Input:
Tnus, when the Input is different trom the stored value. La. tne
state of the Input last time, the output is produced.
W should be noted nere tnat becauss of the ssquential nature of
tha $BA the aquatlons are performed one at a time. So the 'store’
equalion must come after tha ‘output’ equation otherwise the

|
OEDICATEO OUTEUT UPDATED 1
MULTIPLEXED OUTPUT DATA VALID !

/C CONTROL

INPUT STROBED | l
/0 CONTROL I

HALTED QUTPUT }

INPUT STROBED

S e N

J

i -
oC —
b
4 Il
I [
\ b
- ||
4+
nssmml | s |
| USING ‘GO’ AND ‘HALTED'
i r 7 —
)
. 7
! I e I
T
! ,
1 -}

L Flg. 10

845

1

store would contain the same value as the input of tha current
program cycle.
The Stored States can also be considered in groups for storing
numbers, machine states, etc., and also tor counters and
sequence generators Again the equations can sither be
generated purely fogically from a truth table of the required
sequence or by considering en appropriate hardwre solution.
Stored State — Temporary Storage
Stored States do not necessarily have to be used as stores from
one cycle to the next. It is often convenient to use these as
temporary stores within a program cycie. A typicai example is
when a calculated value is to be used in several equations. Rather
than calculate the value each time, it can be calculated once and
stored and then read directly from the store as required. Such
‘temporary stores’ mey be updated as many times esrequiredin a
program cycle and it Is often convenient to reserve a couple of
stored states on eech page for this purpose. An example might be
the Stored State ‘temp’ being used as a reset for a store and then
iater as an enable for an output:

temp = reset logic;

store A = (store A logic}.-temp;

store B = (store B logic).-temp;

elc., then tater In the program

temp = enable logic;

output A = (output A loglc).termp;

output B = (output B fogic).temp;

etc.
If the SBA compiler Is used, the narne for the temporary store
must be the same (as ‘temp’ above) to define the same bit and it
can be seen that there might be confusion in knowing the
function of the store in a particular part ot the program. The
problem can be solved by knowing that SBACOMP only takes the
first 4 characters of the name. So as long as these remain
constant, the same bit of storage will ba used and the name can
be extended to indicate the current use of that particufarstors. In
the above example the names could have been ‘tampreset’ and
'tempenable’.
Order of Equations
The most important rule in SBA programming has already oeen
mentioned and that is the order of the equetions. While the timing
as seen external to the device is clearly defined, it must always be
remembered that the equations within a pregram cycie are
performed in sequence and care must be taken to ensure that
stores are updated at the right time.
The first exampleillustrates the overall construction of a program
and is demonstrated by considering the store defining the
current state of the machine, The state will be output to the
aystem belng controlled and the inputs read back from the
systam. These, tagether with the present state, will define the
next state to be output to the system. When the state number is
used in ie SBA equations, the position of that equation in
relation to the equations updating the state wiil obviously define
which state is being referred to. The state number before
updating will refer to the state output to the system tast time and
will therefore be associatad with the current inputs since these
are a direct result of that state. The state number after updating
will refer to the next state and will be used in determining the
outputs.
Another Important time to watch the updating of stares is when
using such things as counters. A 3 bit binary counter steppad by
‘step’ might be written:
A = A'stap;
B*(step.A);

C = C*(step.AB);
where the least significant bitchanges whenaver ‘step’is true and
the subsgquent bits only when all previous bils are true AND
‘step’ is true, It can be sean that the equations cannot be written
as shown because the values on the right hand side refer to the
present value of the counter end those on the left hand side the

8-48

noxt value. After the firstequation, A has been updated and 50 In
the next equation the wrong value will be read. (Note that a
hardware solution would updats all bits in parallel.) In this case
the stack can be utitized to advantage by storing the new valuey
8s they are calculated and only whan all bits ere completed arg
the stored states updated from the stack. The example would
actually be written:

stak = A”step;

stak = B*(stap.A);

stak = C*(step.A.B);

C = save:
B = gave;
A = save;

Equations 3 and 4 can be combined but, if written iike thls for
clarity. they will, in fact. be combined by the compiter,

The Pages of Stored States

The order ot equations and the veriables within the equations gan
also be importent (as far as economy of instructions are
concerned) when the differsnt pages of Stored States are used,
Equations using variables from more than one page can, in
extreme circumstances, usé more page change instructions than
actual processing!

For this reason, those bits commonly used together (e.g.
counters) should be grouped on asingle page, Itis betterta leave
apage partly unused In order to do this. Thus four 15 bit counters
would certainly ba better put one counter per page with the add
associated blts (like resets) kept on their respective pages, rather
than squeezing onto two pages and heving to put resstsete., ona
different page.

i possible, procossing should be performed In the order of
pages. Thus page 1 processing would b& done first, than page 2
and $0 on to evoid unnecassary page changes. It Is easiest to
write the program first and then allocate the stores to pages to gat
the flow right. Data transferring from one page to another can
often be stacked first as demanstrated in the following.

Bits on page 1 [abelied 1A. 1B, 1C to ba moved to page 2, hits
labelled 2A, 28, 2C, and it written:

2A=1A;

2B = 1B,

20 =1C;

will usa 11 instructions while.

stak = 1A;
stak = 1B;
stak = 1C;
2C = save;
2B = save;
2A = save;

uses only 8. If the pages were 1 and 4, the number of instructions
would be 17 and 11 if moving page 3 to page 2 we would have 14
against 10, Obsessive page instruction saving is, howsver, not
usually required and is only important when using the ROMtoits
maximum capacity. It is generally best to write the equationg
initiaily using the simple basic rules and to resort to mare clever
reduction techniques if the RCM is filled.

D. PROGRAMMING EXAMPLES

Combinational Logle

Little needs to be said here since any boolean equations is valid
end ¢an include AND, OR, EXCR, GOMPARE and INVERT
operators and as many variables snd orackets as are required
For greatest economy of Instructions the eguation should ba
minimized as far as possibie, using EXOR and COMP if
appropriate, and in ganeral stims of minterms are most efflcient.
If required, even further reductlons cen be made by considering
tha Instruction set, Inverston of single terms costs nothing, while
inversions of multiple terms costs one instruction. The AND
operator with a single term is implicit with the reading function,

while all other operetars and the AND with a multiple term all cost
an extra instruction
A good ruleis to use es few OR, EXOR and COMP operators as
possible {(also AND and INVERT outside brackets). The
ditference in tha number of instructions taken by two versions of
the same equations is approximatsly the dlf(erence in the
numbers of these ‘bad’ operators {shown underlined).
Examples:

(8} -A-B = -C.-D 2 -E-~Finsteadof (A © B).(C = D).(EL F)

saves 3 (2 versus 5)
{b} -(-A-B.-C.-D} ingtead of A2 B £ C = D saves 2

Latches

The straightiorwazd storing, temporarily o otherwise, of input
data or logical combinations has been discussed and needs no
turther comment,
However, it 1s often req ured thata piece of data be latched intoa
store, and in hardware solutions devices such as S-R, J-KandD
type latches arg available tor this function. The stored siates in
the SBA together with & bit of {ogic can be made to act as latches,
the type being fimited oniy by the Imagination. A few exampies
are as follows:
(a) Simple S-R latch that is set by thevariable ‘set’and resetby
‘reset’: Q = set + Q -reset
(b) In (a) the 'set’ will override \fboth inputs appear together. if
‘reset’ I8 to override: Q = (set + Q) -reset
(c) Clocked latches have greater variety, a simple B type
being’ Q = data.clock + -clock.Q
{d) A clocked set - reset:
0 = {set.clock) * Q.-{reset.clock)
{e) Clocked set, asynchronous reset, set override
Q = {setclock) + Q.-reset
() Clocked set, asynchronaus overriding reset”
Q = {{set.clock) + Q).-reset
{g) Full J-K iatches:
Q = J.clock.~Q = Q.~(K.ciock)
It Is usually best to design tne latch to fit the particuler
reguiremant since, in general, the more features required the
more instructions are needed. if afatch s requiredtocnangeona
particutar edge of a clock, another store is required and we have,
for example:
clock = inclock.-storeclock;
storeclock = inclock;
1o detect the 0-1 fransition. Eithar or both edges can be detectey
in this way. It can ba noted here that once an input clock has been
monitored for & transition then anything in the whole of that
program cycle cen be clocked by the same edge.

Counters and Sequence Generators

There are several ways in which counters can be programmed.
but a good general purpose migthod is described here.
The counter will hava an Input to tell It wnen to count and Jet this
be called COUNT,
Consider each bit of the eounter in turn, from the least to most
significant bits, and determine the conditionsthatrequirathat bit
to change. This condition, ANDed with COUNT. can be made to
change tne bit using the exctusive OR instruction, So for the Rth
bit. it the change condition ie CR we have:

R = R*(COUNT.CR):
Care must, of course, b¢ taken to ansure that bits are not used
after they have been uodated, They can be stored conveniently

on the stack. In a binary counter each bit changes wnanall bits of
lower significance are trus, and we have, tora 4 pit counter as an
example

stak = A"COUNT;

stak = B*(COUNT.A);

stak = C*(COUNT.A.B);

stack = DY (COUNT.A.B.C);

D = savo,
C = save;
B = save;
A = save,

| the counter is to step each program cycle {for aswitch scanner
ar a counter using the cycle for its timing, for example}, COUNT
can be removed and the first equation changed to stak = -A;
The pinary case is very feguiar and an alternative approach,
which is more economical for larga {over 4 bits) counters, usgs
tamporary stores to build up the change conditions
progressively:

T1 = COUNT.A
A = A"COUNT
Te=T1B
B=B"Tt
T1=T2C
C=C'T2
T2=T1D
D=D"T1

efc.

Note that this time stacking has been avoided since the cnange
conditlon is built up progressively. It car also be sean that only
two temporary stores are reguired.

The technique 1s further 1llustrated by considering the fallowlng
‘random’ sequence:
State DCBA
0000
0111
1110
0cot
1011
oot
0100
1001
0000,
Examining sach bit we seé tnat:
A changes after states 1,2, 3,6.7, 8
B changes after states 1,3, 4, 6
G changes after states 1, 8,6, 7
D changes after states 2,3. 4, 5.7 8
Assuming the non-valid states eannot ocour, and using standard
reduction tachniques, the change conditions reduce to'
CAz-A+«B-D~-BD
CB=-G-D~-CD
CC=-A-B-C-D
CD=C+D+A-B i
Now incluoing STEP, and reduging still further for the SBAusINg
extlusive OR(") and compare (#), we have finally
stak = A * STEP.(-A * (B”DY),
stak = B " STEP (C#D),
stak = G * STEP (-A « B.-C.-D):
stak = D STER.(C + D ~ A~B),
B = save,

NN s LN

B = save.

A = gave.
And, for completeness, the carry output is given by A-B-C.0,
reducing to

COouT =-B.D;
which should go at the beginning, before the states are updated

047

