
9-37

!\Jote'1

Vlt~ = "',2V
l\Iote 2

"Exceeding tnese ratings could cause
permanent damage, Functlonel operation of
tnis device at these cotidltions ls not implied
- operating ranges are specified below.

,.-0.3V to ·q51f
. 65°C to "'150~C

,.oDe to ~70oC

When taken to a logiC '0', thiS input ~·,ill reset the Di"ogran" to Iho sl;;:t1 pos:llon,
When taken to a logic '0', t/'lIS Input Will halt me program at tneilnd 01 the program cyCl~ and Will actlVate the
HALTED output When taken to a logic '1', the progral"l'" will cycle continuously,

A logIc ',' on this output jndica.!eS thai the program lul.s stoppea cyclir"lg.
There are 30 inpuUoutputs on tne CirCUit whlcn can ba masl< programmed as inputs, outputs, or
rnpuls/oUIDuts
When this output is at lOgic 0', tnE' CIlCUlt will outout inio~mallon When 11 is at logIc '1', II Will read input 001t3.

NOTES:
~. Clock frequency controlleCi by external R/C nelwor:'

2 The timing of inputs depends orr the clOCK freQue"cv alld the program length Refer to the detailed IJescrlptioflS,

Chanulterlstlc Mln~-~ t-ils/(, -1~~iI L ContlltlonG

Clock 10 I - . 800 I kHz I
Inp~(5i I I I
LogIC '0' level "0,3 I "'0.4 V
Logic T level +2.4 - ,.12 V I
Current - 10 UA I
Tlm"g - I - I - I
OUlpuls I i
Logic '0' - 100 I - Ohms D,7V at 7mA
Sink Current - ~720 ITA Max 10tal power 15QmW
Logic '1 1 2 I - - MOhrns I open drain •
L~a~age current - I - 10 iJA I' VOUT'= ...12V ,
Timing ~ - - - ---l_N"o-,"te=2 _

I
I, !'

\
't

Siandard Condltlor;s (unless otnerwlse noted)

Vss:: OV
Vec = .,.12V· '! 10%
VGG'" ...5V 1: 15%

ELECTRICAL CHARACTERISTICS

PIN FUNCTIONS

RESET Input
GO Input

HAI~TED Output
INPUTS/OUTPUTS

1/0 Control

Maximum Ratings·

Voltage on any pin with respect to VS3 .

storage Temperature Range .. """ ...
Operating Ambient Temperature Range

i
~

I
1

i
I
i

i

---1

I
I
I
[

I

PIN CONFIGURATION
40 LEAD DUAL IN LINE

ropv,ew

MICROPROCESSORS: As a slave processor for BCD/binary
conversion, Binary/BCD converSion, Alarm condition
monitor/Interrupt generator, Peripheral controller

In general the SBA IS best SUIted to applications wners a control
response is requirod in milliseconds rather than microseconds

'vs; a1 GO
FlESET ~ I/O Control

HALTED J Clo(:k

T5V 4 CIOC~

+1:2V ~ Cloc~

1'01 e I/O:lO
110:2 ,1029
1/0:1 1/028

'104 I/O 27
I/O 5 If0 26

L_:iii" ~i~~1,10 10 11021
Ifa '1 110 20
liD t~ 2~ I/O \9

I/O 13 ?J 11018
110'4 :22 1/0 17
'1015 21 ,/016

______---J

I :=:-1L_ "'l:lOGRAM MEM~_~

SBA ~ PRELIMINARY INFORMATION

, m
1[T;, ~ j lw'i'\ ~ il ~~Jl:

I s / ~ \ ~I I
':" ~J I

t ,------'--STO-A-ED-ST-A1-ES-2..~ I

L ~;~2~~~ JJ
t=-~:,:~:==" CONT"~~---j

BLOCK DIAGRAM AND DATA PATHS

~---------------------
S8A

II 1023 words of program
II 30 programmable inputs. OUlpuLS, or multiplexed

mput/outputs,
iii 16 element stacK anCl 120 element ReadlWrite memory
III AND, OR, XOR, COMPARE, INVERT basic logIc functions
II SerIal processing of Inputs and stored information

provides very easy programming in Boolean logic
II Versatile clock generation scheme
• TtL compatible inputs and oUlputs
• Simulator and software program compiling facilities

livafJable

DESCRIPTION

FEATURES

Sequential Boolean Analyzer

APPLICATIONS

The S8A IS sUitable fora verywJda spectrum of applicallonssuch
a,'
TELECOMS: Simple PAX controllers, Relay CircuIt control,
Answering machine controllers, Line seeker/monitor,

INDUSTRIAL: Complex sequential timers, Small machine
controJlers, Special purpose digital clocks, Alarm monitor.

CONSUMER: Gaming machines, White goods timers,
Combination locks, Pinball machine/one arm bandit.

The SEA IS a microprogrammable Sequentlal 8001ean Anelyzer
which forms the basic controUing elemenl for many systems
requiring timing and control functions. The SSA is fabricated in
GI's low voltage Ion Implant N-channel process resulting in high
speed operation and low power dissipation

8-36

r

r'I
i

9-36

Fig. 1 BLOCK OIAGRAM

•~

RESULT

1

o
o

COMPARE

A B

o 0

o 1
1 0

1

Output true when
inputs cornoare

EXCLUSIVE OR

A B RESULT

o 0 0

o 1 1
1 0

1 1

Output true when
Inputs differ

Operallon Result
(a) evaluate D,E D.E
(b) push mto the stack
(c) evaluate F G
(0) OR D.E-F,G
(e) push Into the slack
(t) evaluate H,I + J.K as III (a)-(o)
(9) AND
(h) push lOio stack (D.E+F G).{H.I.,.J,K)

only allows for30 addresses, out the numblilrofstored states
is incr£!ased to 120 by neving typically 4 pages of 30 each
Two instructions control a page counter'. One steps the
counter and!'lo changes the page, and the olhersets it back
to the first or 'home page' Thus an infinite number of pages
is tneoret1caily possible, the SBA 5tepping lhrougn them in
sequence as requIred with the option to return lothe start at
any time

4. A logiC unit which can perform all !he posslbfe logiC
functions of two variabies, namely AND, OR, EXCLUSIVE
OR and COMPARE: and ajso negate (invert) The truth
tables of the funotions are shown in Fig. 2. Any logic system
can be described by a set of Boolean equations written with
these operators

The logic unit always has two inputs and produces one
output and there are two types of ac;tioll.

(a) One Input comes from an input latch or slored state: the
second Input comas from the top of the staCk, and the
result is placed on the top of the stack.

(b) One Input comes from the top of the stack: the secona
Input comes from the next location of the stack; and the
resuit Is lett on the top of the stack

Tne exact operation of tne va nous BOolean equation
evaluation cOoes is definE'd in the next section.

S. The stack is always involveo In logical evaluations, as the
top of the staCk is always one of the operands to the logic
unit The stack is just a pile of Boolean values and can be
imagined as a vertical shiH ~eglster in which data IS always
put into or taken from the top When data, is added to the
stack, it 1s said to be 'pushed' onto the slack The new data
becomes the top of the stack and all the prevIous dala is
pushed down the stack by one place. [f fhe opposite is per·
formed, the data in the slack IS moved up by one place and
the stack is said to be 'popped' The top Of the stack will be
iost and the data previously just below the top will become
the new top of the stack.

The data stack 10 the SBA is normally used as workspace or
accumulator and the top 01 the stack IS used in most of the
instructions together, sometimes. with the next location
down. However. the stack can also be used 10 store
temporary Boolean variables and helps greatly in the
evaluation of Boolean equations containing brackets. For
example a function such as

A. (B,C.· (D.E , F,G).(H.I • J,~»)

would be evaluated in tha follOWing way:

UR

A B RESULT
o 0 0

o 1 1
1 0 ,

1 1 1

Output true if
either inp(Jt true.

AND

A B RESULT

o 0 0
o 1 0
1 0 0

1 1 1

Output true only if
both inputs true,

9-39

E. SYSTEM DESCRIPTION

The Sequential Boolean Analyzer conSi,sts of tha fOllowing major
componE;lnts (refer to Fig 1)

1. A Program Memory which holds the set of Boolean
equations defining the system operations. In the single chip
version of the gSA this is contain ad in an on-c;hlp mask pro'
grarnmable ROM. there will be another varslon in which the
program memory is off the chiP and it can then be ROM.
RAM or PROM as required, Tne Boo[ea,r equaflOI!$ whlCI1
deffne the logical relationships between the SSA inputs,
stored states, and outputs are stored In the memory 8.S 8 bit
words in an encoded form. An exact dellnllion oflhecode is
given in the next section

2, A set of up 10 30 input buffers whJcn are latched at the s!art
of the avaluation of Boolean equations. ThIs is done so the
input values are consIstent during the whole period 01 time It
takflS to evaluate all the Boolean equallons once

3. A number of pages of 30stored-stafe fl1p flops which can be
grouped to emulate counters and shift registers, or used
singly as 'flags' to remember the state of the machine, or in
logic equation reduction The SSA addressing structure

Fig. 2 LOGIC FUNCTIONS

D. SEQUENTIAL LOGIC
Although some problems are combinational in nature, the vast
majority of practicllI problems are sequenUal
A sequontial system Is one In wnk:n the response to a given setof
Input conditions IS dependent on the previous history of the
system. An example might be a digital clock wl1ere normally the
seconds digits are incrementEJd except when they are at 59 when
they are reset to 00. [n other words the next response of the
counter depends on its current value and there may be different
responses dependIng on different curren! "alues

All sequanhal systems can be des,cribed by a, combinational
network in whJch some of the results of the Boolean equations
are stored in a memory. It is this memory that ramembers the
history or 'state' of the sequential system.

Thus the storeo state memory of tne SBA has its roaln use In

remembering the 'state' of the system being implemented. Each
time the SBA evaluates the c;ompleta set of Booleal"1 equations
descrIbing a saquential system, jtuses the stored states as part of
the equations. As the evaluation proceeds, the stored states may
ba changed If the Boolean equations demand it

A simple example is shown by a Veoolng Machine wnere there
are two majorstates-1. not enough TTloney to buy anything

2. enough money, so supply the goods
In this example some of the stored states would be used to keep
count of the money that nas been fed into the machine The
Boolean equations controlling the dispensing of the goods
would all contain a term involVing the stored state that could
never be logically true If there were not anough money to buy ths
goods, As soon as goods wera bought and supplied the stored
6tate5 holding the 'amount' of money would be altered to reflect
that the goods had been supplied thus switching the system back
to slate 1.

C. COMBINATIONAL LOGIC

If the SBA IS used to emulate combmational logic, tnen the
Boolean equation which dellnes the logical function will only
contain input terms and output terms. For example:

A::; B.C.-D+E,F. (X -to -X.G)
L '" T l' E.F. IX ... -X.G}

where signifies logical AND
+ signifies logIcal OR
- signifies negate (-D reao not D)
A and L are outputs
all other fetters are inputs.

Tne number of program steps required to avaluate the above
Soolean equations can be reduced by using a, stored state to save
the value of E.F (X'" -X.G) after it has been evaluated the first
time. This partial result can then be used in the second aquations.
Now we have:

ij, stored state" E.F. (X.,. -X.G)
b. A = B.C ~ stored state
c L:: T + stored state

This example serves to Illustrate now the equations can
sometimes be optimized by trading off stored state memory
against program memory.

The SBA functions as follows:
1, The new inputs are read in from the system being control!..

ed and are latched Into the input latches.
2. The SBA now reads the Boolean equations out of the

memory and, usIng the logic unit and the stack, it processes
the inpllt dala and stored states one 8001ean term at a time
to produce results which are either 'remembered' as stored
states or placed in the output buffer.

3. The Boolean equations are taken from the memory term by
term and when all the equations have been evall,Jated the
results are transferred from the outout buffers to the out­
puts and thus to the system oemg controlled, The program
address counter Is then reset and lhe cycle begins again,

PART I General Information

B. PRINCIPLE OF OPERATION

A block diagram of the SBA showmg the program memory,
inputs, logic unit, stack. stored states and outputs Is shown in
Fig. 1.

A. INTRODUCTION

The Sequential Soarson Analyzer (SBA) is a very simple sJngle
bit processor which can directly avaluate a sel of Boolean
equations.
The use of Boolean Equations as a 'programming language' has a
number of unique advantages:

1. it is concise
2. It is standarlzed worldwide
3 engineers already use it and undersfand it
4. universities teach it now and have dona so tor many years.
5, It serves the dual purpose of both program and

documentation
6. it has stood the test of time.

The equations dellne tne logic that controls the system to wnlch
the SBA Inputs and outputs are connected.

Inputs ~ ~ Outputs
frorp SBA to control

System the system

In edditiol"l to 800lean logic, most systems require that some
events have to be 'remembered'. this being the reasoll forthe use
of flip flops in TTL type logic Implementations, In the SBA a
number of Internal storage elements ars provided for such
purposes

A memory is Llseo to holo an encoded version of the Boolean
equations that define the desired function oflheSBA and there is
a one to one correspondence between the data in this memory
and the BOQlean Equations as written by an engineer,

------_ ..

~I~~

I ~
T
P
U
T

c_
EXTERNAL SYS'rEM

BEING CQNTRQI.L!"D

Fig. 3 DATA PATHS

·The address of a stored state defines 1 of 30 on the currently enaoted page.

Fig. 4 BOOLEAN EQUATION CODES

An a bit word is used for each InstructIon code. 5 bite provide an
address for the inputs, outputs or stored states and, jf two of the
32 available addresses are reserved for addressless Instructions,
the remaIning 3 bits of the code enables a total of 24 Instructions
to be mede available.

The 8 bit binary word Is conveniently represented by 3 octal
(radiX 8) digits nmging from 0 to 377 (DO 000 000 to 11 111 111
binary). The least slgnificant:'3 binary digits are treatad as the
Instruction, and the 5 most significant bits as Ihe address.
Addresses 1 to 36 (octal) rltpresent the 30 aadresses required
throughout the SBA (1-30 in decimal), Addresses 0 and 37 (all O'S
and alii's in binary) are reserved for Instructions as shown in rig.4.

•I

~

Restart evaluation of equationB

Invert top of stack

Change Paga

Back to Home Page

Push logiC 0 onto staCl(

Pu~r- logic 1 onto stack

Pust'l ana copy top 01 stack

Pop ttla stsCIo:

Perform the function
on the top two locations
of the stack. Stora result
01" top of stack

Perlorm the funcllon 01" the
top two locations of tha stack
Push result Into slack leaving
logic 1 on lop

Functional DescrfpUon of Code
Memory Memory
Code Code

In OCTAL MNEMONIC Functlona' Description of COde In OCTAL MNEMONIC

01 }
000 RESTART

to 0 ANDIN This input specified by the 001 INVERT
36 address is ANOed witn the top of 002 PAGE

01 }
the stack.

to 1 NANOIN The logical inverse of the Input
003 HOME

36 sptlcifled by the address is DO' PUSH 0

01 }
ANDed with the top 01 the stack 005 PUSH 1

to 2 ANDSS The stored state specified by the 006 PUSH C

36 address· is ANDed with the top 007 POP

01 }
of the stack

to 3 NANDSS The logioal Inverse of tM slored
370

ANO }
371 OR

36 state specified by tha address' 372 EXOR
IS ANOed with the top of 373 COMP

01 }
the stack.

to 4 ASP! The stored stete specified by tne 374 PAND }
36 address· Is ANOed with tne top 375 POR

of the stack then a 1 IS pushed 376 PEXOR

01 }
onto stack 377 PCOMP

to 6 NASPI The inverse of the stored state

36 specllied by the aodress' is
ANDed with the top of the stack

01 }
then a 1 is pushed onto slack.

to 5 STORE The value on top of the Slack
36 IS stored in the stored state

specified by the address' and a

01 }
logical 1 left on the stack

to 7 OUTPUT The value on top of the steck IS

36 stored in the output buffer
speoified by the address and a 1
lelt on the stack.

In order to make the best U6e of the space avaltable for memory,
lhe codes representing the Boolean operations should be as
efficient as possible. It has boon determined that about 20
Instructions would provide a good compromize between the
number and effIciency of ttle instructions. Given also that about
30 inputs end outputs were SUitable for the requirements 01 tha
type ot system likely to be controlled by an SBA, the follOWing
scheme is used.

J. BOOLEAN EQUATIONS IN THE PROGRAM
MEMORY

H. SeA RESPONSE TIME
It 16 Implicit In the descrIption of the operation tnat the speed of
rltsponse of the S6A to an external aystem beIng controlled Is
determined by the length 01 limlt it takes to evaluate the complete
Sltt of Boolean equations once. This Is because the inputs and
outputs are only latched once per program cycle or the SSA's
operation,

The SBA Is designed in such a way that all Its logical operations
and data transfer" take the same lime to execute (In tact one of
the SBA's Internal clock cycles) and so the response time of the
output of th6 SBA to new inputs from the system being controlled
by the SBA Is directly proportional to 1h6 'lumber of Boolean
operations required to define the control function, This response
time wJll typically be 01 the order of a few milliseconds.

I. DATA PATHS

The data pathS available In the SBA are illustrated in I'=lg. 3, The
focel point e6 far as data Is Conoerned Is the top of the stack slnco
a!l data transfer go to orcome from the !opofthe steck. Thestack
is loaded Irom an input orstored slate. The logic unit can perlorm
any logical function on it and theresultcan then be stored on any
output buHer or a stored state.

~ote that it is not pos!ible for Boolean equations to use terma
Involylng data on the output bu1ters. If such a facility is absolutely
necessary, then a copy of ttle output bufferstale must be made in
a stored state so that the data path to the top of the stack 15 made
available. The oUlputs ot the SBA can bEt connected back to
inputs elttler directly or via some piece of circuitry, A direct
oonneotlon forms il stored statl!l that can be accessed from
outside the SSA. ThiS oan elso be a lImited aource of eXUastored
states, External logic can be connected between outputs and
inputs or eYen keya and SWItches. This latter possibility Is IJseful
In\ say, scanning a matrix switch or selecting e code switch, and
reduces eXlemal circultlY.

Howellsr, in general, the outputs of Ihe SBA Breconneoted lathe
parts of the externsl system that controls its actions and the
Inputs 01 the SBA are connectad to parts of the system that
monitor its current state.

Operollon FlesUll
(I) evaluate e,c
(J) OR B.C ... (D,EotF.G).(H.h·,J.KI
(k) AND the stack with A Final result.

Naturally this Is not tne only way the stack can be useO, the
variatIon being limited only by the Imagination

6. A set of up to 30 output buffers wnlch have thejr new values
stored In them as the Boolean equations are evaluated,
When all the equations are complete, at the end Of a
program cycle, the data on the output buffers Is relatched
in10 the output drivers connected to the system being con­
trolled. In this way the externBI' outputs of the SBA are up·
dated once per cycle and remain unchanged until the end Of

the I"\exl complete evaluation of the Boolean equatlons.

F. INPUT/OUTPUT

It has been no led that there can be up to 30 Inputs snd up 10 30
outputs a~allable in an SBA. However, becauSIJ of the physical
limitation 01 an actual device, if there are more than s /olal of 30
in puIs and outputs then inputs and outputs are multiplexed onto
the same pins, So the device will be available with 30 pins mask
prograrnmable 10 be Inputs. outputs or multiplexed
input/outputs

G. CONTROL LOGIC

As well as the major functional blocks described above, tM SBA
contains some simple conlrollogic which operates transparently
to the user, At the end of a complete program cycle, I.e. at the
Restart instruction, the following actions are performed:

(a) the contents of the output buffers are relatctled Into tna
outputs

(b) tho top of the stack 16 set to a logic 1
(c) the page counter Is set 10 the home page
(d) new inputs are letched
(e) tna program address counter Is set to point at theflrsl term

of the first Boolean equation.

Once ttle SBA has started a program cycle, the program address
counter Is sImply Incremented every SSA cloCk cycle, the
Instruction read out and actad upon.

9-'0 9-41

•I

l

category tc) - Input/output operations (See Figs. 7 /,lnd 8):
These intltructions ha....e two parts, the command .lind the
address. Thec:ommand defines the data path (input~slack, Mored
slate--stack,)!teck-Stored atate or stack-outJ)ut) and the logloal
operetion to be per/ormed, If any. The address defines whioh of
the 30 pieces of date is 10 be manipulated

STORE and OUTPUT lake the logic: value from the top of the
stack and transfer It to the approprlte stored state or output
buffer, the top ot the stack being replaced by a logical 1 ready
for the nexl evaluation,

ANDIN takes the value 01 the aCldresseQ Illput and ANDs It witl'1
the top of the slack.

NANDIN takes the logical inverse of the addressed inputs and
ANDs it with the top of the stack.

ANDSS takes thevalua of the addressed storE:ld state andANDs
it with the top ot Ihe staCk.

NANO$S takes the logical inverse of the addressed stored
state ana ANDs It with the top 0' the stack.

In the above four operations, the stack is neither pushed nor
popped

ASP1 takes the value 01 the addressed stored state, ANDs It
with the too of the stack, and pushes 1 onto !he stack

NASP1 takes the logical Inverse of the addressed stored state.
ANDs It wl1h the top of the stack.. end puSheS 1onto the stack

Category (d) - control:
PAGE There are typically 4 pages of stored states In the SBA,
and the instructions reading El'ld wrIting to and from thegtQred
states only provIde an address within the currently enabled
page. The PAGE instruction steps the page countar and
enEibles the n9xt page.

HOMe. If il is required to enable a page of stored sfatesthat nas
been paSsed, tna HOMe Instruction causes tha page Counter to
go back to enable the home page,

As an example, If the page counter Is currently enabling page 3
and Jt IS required to update a stored stata on page 4. the PAGE
Instruction would be used. If now a stored atate on page 2 Is
required, a HOME instruction will switch back to pege 1 and a
PAGE instruction will stap 10 page 2

RESTART. ThIS code IS always Ihe Jast code In the program
memory lnote that Us value is conveniently all zeros) and When
seen by the control logic the following is performed'
1 the contents of the output buffe,s are relalcheo to the

outpuls.
2, a new set of inputs are latched
3. the top Of the stack is set to logical 1

4, the page counter is resel to the home page
5. the program address counter is reset to restart the

evaluation of Soolean equations

~

~
~-i

r--e-
--C

~

I B.~O'. I

I B.~o,.l

Fig. 7 OUTPUT OPERATIONS

OUTPUT A;

ANOIN A;

ANDSS A:

Before

The value of B on tho top of the slack is stored in output
buffer of address A and replaced by a logical 1.

NANOIN A;

NANDSs A:

ANDSS-A;

PUSH 1

STORE A: ~ ~

~~"M value of e on the top of tho stack. is stered in stored
slate of address A and replaced by a (oglcaI1.

NANDSS - A, ~c

e_, -~,. I

Fig. 8 INPUT OPERTIONS J
l

AJ_B_
C

After

I---~
Arter--

AtB

Fig. 5 STACK MANIPULATION

Fig. 6 LOGICAL opeRATIONS

EFl
~~4

B

C

reafore

TOP OFSTACK::A function S. where function" AND. OR,
EXCLUSIVE OR, COMPARE'

I
I 8'~'" ~!'NVERT

~
-B--,PUSH 0

Beta,. '

PUSH 1

~ ~

¢ ~A~.~
B jPUSH.,. COpy ----:

Before i

POp ,--,,-----j

~

In the case of AND PUSf-1. OR PUSH, EXCLUSiVe OR.
PUSH, COMPARE-PUSH:

Description of Codes.
I

Tho codes ust'!d tor deffnlng ine BOolo/,ln equa.tlons faf! into four
categories:

(a) single operand instructions which affect the stack
(b) logicat operations tElking Inputs from the stack and storing

the result on the slack

(c) dala transfer instructions lor Inputs, stored states. and
outputs

(d) program control instructions,

Category (b) - logical operations [See Fi9. 6):
There Bre two types here, a logical function (AND, OR, EXOA.
COMP) and the function followed by PUSf-1:

1 AND, OR EXOR, COMPo The top two elements of the stack
are propped into the logic uni;, the logical function Is per~

formed On them, and the result pushed back onto the stack.
2 AND-PUS..... etc, Tho lop two VEiluos on lhostack Eire pop!,ed

inlo the logIc unit. the appropriate function is performed on
them, tho result Is pushed onto the staCk, and this Is follow~
arj by a logical 1. ThIS form of logical operation IS userj when
the result Is to be saved In the stack for sUbsequent pro~
cessing. lhe 1 is put onto the stack to make It ready for
further evaluations

Category (a) - stack manipulation (Sea FiS. 5):
1. InvQrt top of stack. The Boolean value is taken from the lop

of the slack and replaced by its loglc81lnverse; a 1becomes
a 0, and a 0 becomes a I, The slack Is neither pushed or
popped,

2. Push 0 onto st.ack, All data values on the stack are pushed
down one placa and a rogic 0 entered on lop of the slack

3. Push 1 Onto stack. All Items in the stack are pushed down
one place and a logic 1 put Of' the top,

4. Push and Copy top of slack. Data is moved down the stack
and Ihe previous top of stack (now the next position down)
Is copied 10 the top

5. Pop Ihe stack, All data values are moved up Ihe stack one
place. The old (op of stack is losl,

9-42

9-43

9~44

0-45

I

J

program (Incluolng RESTART) plUS 6 (fOr the ena Of cycle
sequence). If the cycle {e Mopped tly removing GO, Ihe time can
be up to 1 clock cycle less. Thus the maximum pos81bie cycle
tlma Is:

Clock period x (1023 ... 6\ '" 1.28625ms at 800KHz
" 10.29ms at 100KHz

In genersl wa have:

no. oj instructions + G "prDgre!'T1 cycle time In ms.
clock frequency In KHz

Fig. 10

II --f f--
I I rr-{-I~_
I I
I I (~I I

GO

lID CONTROL.

lie CONTRD,

'NPL!' STRDBEO

IN!'U" sTRoaED

8A~IC ClOC~ .JlI
OEDICAT'O OUT OUT U,,"'O I I X : :

I I I '
",UCTI"'''O OUTPU' ,m"", =F1 LJ I i

I I n 1 i
IRESTARTl I IN

1
;JN I

USING 'GO' AND 'HALTED'

I ! / 1-------
I LJ '

S. DEVICE TIMING

The ctock can be generated internally with the helP of an external
FVC network connected to the three 'clock' pins. or an external
clock can be applied to the clock Input.
The SeA will perlorm the InstructIons In the ROM, one par clock
cycle, until the RESTART Instruction is reached. At this point a
8peclal sequence is performed that is shown in Fig. 10.

The possible variations are due to separate Or multipleXed
InputS/outputs end the use of HALTED and GO.

Input Timing
Inputs are strooed Into the aevlce once per program cycle. as C. BASIC PROGRAMMING

5hu~:~e~~0~i9' 10, whether they are exclusive Inputs or Tne InterneI operation of the SBA 1501 n,o concern tothe user, the

m p devICE! simply being thought of as a varrabla array Dlloglc, It can
output riming be treated as abstrac1 lDglc Dr as the logic family most lamUiar to
If a pin IS dedicatee to the output function, then tne logic level the engIneer, althDugh speed and response time must be
remeins constant throughout the program and is updated M th", considered separalely as It is somewhat unique In the SBA

end of each cycla as shown in Fig. 10. The logic rep reSentlng the function to be performeo by Ihe SSA
If' a (I1ultlplexed 1/0 the output data's presenl for two CIDCK Is described by a set Df Boolean equations. These can be Df any
cycles at the end of each program cycle, the 110 control providing length and are composed of the 10l.lr logical functions, AND, OR,
a strobe so the date can be stored in an external device (on the eXCLUSIVE OR and COMPARE. together with invert or negate
naga1ive edge), and as many levels of brackets as are required Rules and

Modes of Operation restrictions are minimal.

1. If the SBA Is required to cycle continUOUSly tne GO input Will Stored States - Basic Storage
be true In this case there will be Dne clock cycle between 1/0 The Stored States can be used tD store the state of some input or
control disappearing and the SPA strobing Ihe inputs This isthe logical cDmbinations from one prDgram cycle to the next. For
(I1ore common mode of operation. example, jf it were required tD produce an output whenever an
2. If GO is not present after the 1/0 control goes high. the input changed state, the value 01 the input must be stored end
HALTED output will appear ana the SBA will stop. When GO compared with the new input in the next cycle, ihe equatlon~

becomes true, HALTED witt be removed end the SBA will might be,
continue by latching a new set 0/ inputs. AlthDUgh thlll moda can output" Input t store; (where" represents exclUSive OA)
be useful II is usually bailer to put the control into the program store::: input:

itself and run continuously. Tnus, when the Input is different from the stored value. 1. a, tne
Cycle rimes state of tha Input last time, the output is produced.

Since alilnslructlons have oeen arranged to take tne seme time, It should be noted nere tnat because of the seQuential nature 01
the total time taken for a complete program cycle is Ihs time tor 1 the SBA the aquatlons are performed one at a time. So the 'stDre'
clock cycle mUltiplied by the total number or instruct[Dns in the equation must come after the 'output' equation otherwise the •

I

I

~I

I

Cb) As weir as reading the value or the output directly, Ihe
output cen be modified by making use of the opan drain
construction of the output driver, The value of the output
can be modified by an externally connected active pUII~
dOwn device and the result read into the Input. Something
like a manual Override would be a simple use of this facility
while more complex logic functions can also bo eeSil

yperformed,

Output DrlYe Capability

The Output drivers have an Impedance of 100 Ohms end are
nomInally reted at a sink current of 7mA. Thus each output can
drive 4 TIL lOad! plus a 10 KOhm pull~uo feslstor to "'SV.
The nominal current rating is determined by thEl total allowable
power dissipation in the output circuits, which is a maximum of
150mW. The 7mA rating has ooon determ[ned aSSuming all 30
outputs ere being used. 111eS8 than the maximum ere in use, the
current rating for each can be Increased up to the maXimum
rating of 20mA. ~eeprngwithIn the 150mWpower reStrIction. FJg.
9 gives a gulda to the current capacIty for dlHerent numbers of
outputs in use,

Multlple.ed Inpul/Oulput

For complete separation of Inputs and outputs the
MULTIPLEXED facility must be used althou9h external logic
must be used for demultlpleXlny.

~A

~-:-'~2--;-3~4~5~'~'~'---;;9-tO~~ 15 A 1~ 1~ ro 2' n ;3 i4 25 de 2~ 28 219 ao
~UM8ef1 OF OUfPUTS

Fig. 9

PART II Using the SBA

A. INPUT/OUTPUTS

The eddrosslng capability of the 8SA allows for30 inputs and 30
outputs. There are 30 pins available as Input/Outputs ano So If
more than 30 total inputs and outputs era used theY must be
multiplexed

There IS a mask programmable option on each of the 30 pins 10
ellow them to be inputs. outputs or multiplexed lnpuVoutputs.
Regardless of the oplion, the internal acldresslng of the Pins
remains the same and S0, for example, it an application requres
only one Input and the board layout requires it to be the last pit"
the program must use address 30.

Input

When programmed as an INPUT,nothing will be ablato beoutput
from the pin even it the program loads something in the
respective outout buffer.

Output

When programmed as an OUTPUT, the Input date path is still
connected and the value on the pin will be latched with all the
other inpuis at the appropriate time. This fact can be utilized as
follows:

(a) It Is sometimes required thai the value at an output IS Used
In the processing during the following CyCle and would
normally have to be copied into a Stored State, Feeding an
output back es an Input in this way avoids this problem and
can I;3,lso be used a~a limltecl5vpply of extrastored stales, it
spare PIns are aveileble, that can also be read outside the
chip.

20

t 1$

iI
~ '3

~
~ 1,
:3
>
~
~IO

~tore would contain thE} same value as the input of tha current
program cycle.
The Stored States can also be consIdered in groups for -storing
numbers, machIne states, etc., and also tor counters and
sequence generators Again the eqllations can either be
generated purely logically trom a truth table of the required
sequence or by considering en appropriate hardwre solution.

Stored State - Temporary Siorage
Stored States do not necessarily have to be used as slores from
one cycle to the next. It is otten convenient to use these as
temporary stores withIn a program cycle. A typical example IS
when a calculated lJalue isto be used Inseveral equations. Rathel
than calculate the value each time, It can be calculated once and
stored and then read directly from the store as required. Such
'temporary stores' mey be updated as many timeses required in a
program cycle and it Is often convenient to reserve a couple of
stored states on eech pageforthls purpose. An example mlghl be
the Slored State 'temp' being used as a reset for a store and then
later as an enable for an output:

temp:: reset logic;
store A ::: (store A loglc),-temp;
store B =(store B 10glc).-lemp;
etc.. then later In the program
temp'" enable loglc;
output A :: (output A loglc).temp;
output a =(ou1put B logic).temo;
etc,

If the SDA compiler Is used, lhe narne for the temporary store
must be the same (as 'temp' above) to define the same bit and it
can be seen that there mIght be oonfusion in knowing the
function of the slore in a particular part of the program. The
problem can be sollJed by knowing that SSACOMPon[y takes the
first .cl. characters of the name. So as long as these remain
constant, the same bit of storage will be used and the name can
be extended to indicate the curr~nt use of that particurarstore. In
the above example the names could have been 'tempreset' and
'tempenable'.

Order of Equations
The most important rule in SBA programming has already oeen
mentioned and that is the order oftheequetions. Whl!eth~timing
as seen external to the delJice is clearly defined, it must alweys be
remembered that the equatjon~ within a program cyoie are
performed in sequence and care must be, taken to ensure that
stores are updated at the right time.

The first example illustrates the overall construction ota program
and is demonstrated by considering the store defining the
current state of the machine, The state wilt be output to the
system being controlled and the inputs read back from the
system. These, together with the present state, will defIne the
next stale to be output to the system, When the state r,umber is
used in 'le SBA equations, the position of that equation in
relation to the equatlons updating the state wilt obviously define
which state is being reterred to. The state number before
updating will refer to the state output to the system last time and
will therelor~ be assocIated with the current ir-.puts since these
are a direct result of that state, The state number aNer updating
will refer to the next state and wilt be used in determining the
outputs.

Another Important time to watch the upda,ting of ~tores is when
using such things as counters. A 3 bit bInary counter stepped by
'step' might be written:

A = A'"step;
B "" B-(step.A);
C '" C*(step.A.B);

where the least significant bIt changes whenever'step' IS true and
the subsequent bits only when atl prevIous bits are true AND
'step' is true, It can be sean thai the equations cannot be written
as shown because the values on the right hand side refer to the
present value 01 the counter end those on the left hand side the

8~46

noxt value. After the first equation, A has oeen updated and so Ir,
the next equation the wrong value will be reed. (Note that a
hardware solution would update all bits in parallel.) In thIs caSe
the stack can be utilized to advantage by -storing the new values
as they are calculated and only when all bits ere completed are
the stored slates updated from the stack. The example Would
actually be written:

stak =" A"step;
stak = S'"(step.A);
slak = C *(step.A.B);
C '" save:
B =: Gave;
A=. salJe;

Equations 3 and 4 can be combined but, if written like this for
clarity. they Will, in fact. be combined by the complier,

The Pages of Stored States
The order of equations and theveriableswlthin the equations elln
also beimportent (as far as economy of instructions are
concerned) when the different pages of Stored States are used.
Equations using variables from more than One page can, in
extreme circumstances, usa more page change inslructions than
actual procesGing!

For this reason, those bits commonly used together (e.g.
counters) should be grouped on asingle page. Itls better to leave
a page partly unused In order to dothis. Thus four 15 bit countenl
would certainly be better put one counter pe~ page with the odd
associated bits (like resets) kept on their respective pages, rather
than squeezing onto two pages and helJlng to put resets etc., on a
difterent page.

If possible, prooesslng should be performed In tna order of
pages. Thus page 1 processing would be dono first, than page 2
and so on to elJoid unnecessary page changes. It is easiest fo
write the program first and then allocate the stores to pages to gal
the flow right. Data transferring Irom one page to another can
often be stacked first as demonstrated in the following.

Bits on pago 1 labelled 1A, 1B, 1C to be moved to page 2, bits
labelled 2A, 2B, 2C, and It written:

2A c:: 1A;
2B:: lB,
2C:: 1C;

WIll use 11 Instructions while.
slak ::: lA;

stak:: 1B;
stak :: 1C;
2C = save;
2B :: save;
2A =. save:

uses only 9. If the pages were 1 ana 4, the number of Instructions
would be 17 and 11: it l"noving page 3 to page 2 we would have 14
against 10. Obsessive page instruction saving is, however, not
usually requIred and is only important when using the ROM to its
maXimum capacity, It is generally best to write the equations
Initially using the simple basic rules and to resort to more clever
reduction techniques if the ROM is filted.

D. PROGRAMMING EXAMPLES

Combinational Logic
Little needs to be said here smce any boolean equations is valid
end Can include AND, OR, EXOR, COMPARE and INVERT
operators and as many variables snd orackets as are required

For greatest economy of Instructions the equation should ba
minImized as far as possible, using EXOR and COMP if
appropria.te, and in general sums 01 mlnterms are most efficient.

If required, even further reductions cen be made by considerIng
tha Instruction set.lnver~lonof single terms costs nothing, white
inversIons of multiple terms costs one instruction. The AND
operator with a sIngle term is implicit with the reading function,

while all other op.eretors and the AND with a mUlUpleterm <lll cost
an extra instruction
p, good rule is to use es few OR, EXOR and COMP operators as
possible (al!>o ANO and INVERT outside brackets). The
dilterence in thCl number 01 instructions taken by two versions 01
the same equations is approximately the difference in tho
numbers of these 'bad' operators (shOwn underlined).

Examples:
(a) .A,-B 1:. ~C.~D 1. ~E.AI=" instead of (A 't B).(C :r Dl.(E "!. ~)

saves 3 (2 versus 5)
(b) +A.~B.·C.·D) instead of A:! 8.± C ;!,. D saves :2

Lalches

The stra.ightfOf\IJa~d storzng, temporarily or otherwise, of input
data or [ogical c::ombinatlons has been discussed and needs no

further comment.
However, it IS often requITed that a piece of data be hitched Into a
store, and in hardware solutions delJic'es such as S~R, J-K and 0
type latches ar~ available tor this function. The stored states in
the S81l together with a bit of logiC can be made to a.ct af; latches,
the type being limited only by the Imaglnallon. A lew examples

are as follows:
(a) Simple S~R latch that Is set by thevariable'set' and reset by

'reset': Q =. set + Q -reset
(b) In (a) the 'set' WIll override If both inputs appear together. If

·reset' is to olJerride Q :: (set + Qj -reset
(c) Clocked latches have greater variety, a simple D type

being' Q "" datn.clock + ~cloc::k.Q

(d) A clocked sel • reset
o = (set.clock) .. Q.-(reset.clock)

(e) Clocked set, asynchronous reset, set override
a " (sel-c[ock) ... Q.-reset

(1) Clocked set. asynchronous overriding reset·
Q:: ((set.clock) ... Q).-reset

(g) Full J-K latches:
0= J.cloclc"Q ... Q."(K.clock)

It Is usually best 10 design tne latch to fit the particu[e r

reqUirement since, In general, the more features required the
more Instructions are neaaed.lf a latch is required tocnange on a
particular edge of a clock, another store is required and we have,
for example;

clock:: Inclock.-storeclock;
storeclock '" inclock;

to detect the 0-1 transition. Either or both eages can be detectea
ih thIs way. It can be noled herethllt once an inpLltctock has been
monitored for a transition then anything In the whole of that
program cycle cen be clocked by the same edge.

Counters and Sequence Generators

There are selJeral ways In which counters can be programmad
but a good general purpose method is described here,

The counter witt have an Input to tell [t wnen to count and let this
be called COUNT.
C'..onsider each bl! of the counter in turn, from the least to most
significant bits, and determine the conditions that require that bll
to change. This condition, ANDed with COUNT. can be made to
change tnc bit using the exclusive OR Instruction. So tor the Rth
bIt, it the change condition Is CR we have:

R e R·(COUNT.CR):
Care must, of course, be taken to enSure that bits are not used
after they have been U""dated. They can be stored conveniently

on the -stack. In a binary counter each bil ChangelSwnonall bits of
lower signIficance are trua, and we have, for a 4 Oil counter as an
example

~~tak '" A*COUNT:
stak =. B"(COUNT.A);
stak :: C"(COUNTAB);
slacl< =. D*(COUNT.A.S.C);
0'" sava,
C :: save;
B '" sava;
i\ :: save,

If the counter is to slep each program cycle (for aswitch scanner
or a c::ounter using the cycle for its timing, for example), COUNT
carl be r~moved and the first equation changed to stak :: ·A;

The omary case is very regular ana an alternative approaoh,
which is more economica.l for larga (01Jt:Jr 4 bits) counters, uses
temporary stores to build up the change condItions

progreSSively:

T1'" COUNT.A
A:: A·COUNT
T2" T1.B
B:: S"T\
n =T2C
C" C'T2
T2 ;:- n.D
D =. D*Tl
elc,

Note that thiS time stacking has been avoidea Since the cnange
condition is built up progressively. II cal'" also be sean that only
two temporary stores are required.

Trle technique IS further Illustrated by con3laerlng the fottowtng

'random' sequence:

State DCBA
1 0000
2 0111
3 1110
4 0001
5 1011
6 0011
7 0100
8 1001
9 0000,

Examming each bit we see tnat:

A c::hanges after states 1, 2, 3, 6, 7, 8
S changes after states 1, 3, 4, 6
C changes after states 1, 3, 6, 7
D changes after states 2, 3, 4, 5, 7 8

Assuming the non~valid states cannot occur, and usmg standard
reductiol'" techniques, the change conditions reduce to'

eA = ~A ... S ~O .~ -B.D
CB:: ~C.~D ~ C.D
CC ::: ··A - B.~C-O

CD=C ... O+A·B
Now Incluoing STEP, and reducing still further forthe SSA USll"'g
exclusilJe OR(*) and compare (#0), we halJe finally·

stak: ::-. A * STEP.(A........ (B*D}).
stak :: B * STEP (C#D),
stak =. C " STEP (-A .. B.~C.-D)·

stak'" D* STEP.(C + D.,. A.~B),

D :: save,
c~, save:
B =. save.
A:= save

Ana, for completeness, the carry output is glvel'" by A,AB.-C.O.

reducing to

COUT '" ~B.D;

whlc::h should go at the beginning, before the states are updated

9-47

a
I

~

