CONTENTS

1. Features .. 3
2. Name of Parts ... 4
3. Keys and Switches ... 5
4. Indicators .. 8
5. Preparations ... 9
6. Calculations .. 10
 I. Basic Calculations 10
 1. Addition .. 10
 2. Subtraction ... 10
 3. Multiplication 10
 4. Successive Multiplication 11
 5. Division .. 12
 6. Successive Division 13
 II. Advanced Calculations 14
 1. Multiplication with a Constant 14
 2. Division by a Constant 14
 3. Mixed Calculation 15
 4. Power Calculation 15
 5. Addition and Subtraction of Products with Sub-
 Total and Grand Total 16
 6. Product of Sum and Difference 17
 III. Practical Calculations 20
 1. Percentage Calculation 20
 2. Increase/Decrease Rate Calculation 20
 3. Invoice Calculation 21
 4. Depreciation Calculation 22
 5. Proportional Division 23
 6. Probability Calculation 24
 7. Credit Loan Payment Calculation 25
 8. Simple Interest/Compound Interest Calculation ... 27
 9. High-Power Multinominal Calculation 28
8. Battery Recharging 29
9. Specifications .. 30
1. FEATURES

1. Specially designed LSIs
 The LSIs, specially designed by Sanyo, insure unsurpassed reliability.

2. Decimal point
 The floating input/fixed output system is used allowing the operator to
 pre-select the decimal position required in the answer, regardless of the
 number of decimals entered in the problem. Decimal position are 0, 2, 3, 4,
 and 6 places.

3. Independent memory
 A directly addressable memory allows entry of number into the memory.
 The sigma key allows accumulation of results for Grand Total.

4. Automatic constant
 The first number in multiplication and second number in division are
 automatically set up as a constant.

5. True credit balance with a floating minus sign
 Sign appears immediately to the left-most digit number.

6. Round-off/Drop-off switch
 By using the round-off switch, all numbers are immediately rounded off.

7. Sequential operation
 Chain multiplication or division can be accomplished without the need to
 attain unnecessary intermediate results.

8. Touch operation
 Convenient, fast touch operation can be accomplished due to symmetric
 keyboard design.

2. NAME OF PARTS

1. Clear all key
2. Clear memory key
3. Clear key
4. Recall memory key
5. Memory minus key
6. Memory plus key
7. Multiplication key
8. Division key
9. Plus key
10. Minus key
11. Equal key
12. Sigma switch
13. Numeric keys
14. Decimal point key
15. Round-off switch
16. Decimal point selector switch
17. Power switch
18. Battery alarm lamp
19. Error (over-flow) lamp/Minus sign indicator
3. KEYS AND SWITCHES

CA
Clear All Key

CM
Clear Memory Key

RM
Recall Memory Key

Σ OFF ON
Sigma Switch

0 9
Numeric Keys

M+ Memory Plus Key

M- Memory Minus Key

+ Plus Key

− Minus Key

× Multiplication Key

÷ Division Key

= Equal Key

% Round-off Key

Pre-select the position of the decimal point with this switch.

Depress this key to obtain final answers. Also clear the working register.

The last digit displayed on the indicator is result of counting fraction over 1/2 as one and disregarding those below 1/2.

Used for subtractions. When this key is depressed, the contents of the display are subtracted from the result of the previous calculation and the difference is displayed on the indicator.

In multiplications, depress this key after registering the multiplicand. The calculator is then in the multiplication position.

In divisions, depress this key after registering the dividend. The calculator is then in division position.
4. INDICATORS

1. Figure display
 Full size fluorescent tubes. Each figure including the decimal is formed from 9 segments, and the display, controlled by logic circuits, is as shown below:
 \[\overline{1234567890} \]

2. Minus sign
 The only time the minus sign indicator lights when the result is a negative figure as shown below.
 \[-123. \]

3. Error (overflow) lamp
 When a figure or the result of a calculation exceeds capacity of calculator, this lamp lights and further calculation is impossible. Depress the \(\text{[on]} \) key to clear the display. The error lamp will light in the following instances:
 a. When a figure registered into the calculator exceeds 14 digits.
 b. In additions and subtractions, when the number of figure registered into the calculator plus the number of pre-selected decimal figures exceed the capacity of calculator.

4. Battery alarm lamp
 This lamp shows the condition of the rechargeable Cadnica battery. For further details, refer to the section on Battery Recharging.
5. PREPARATIONS

Prepare for operation in the following order before starting calculations.

1. Turn on the power switch.

2. Confirm that when the [C] key and [M] key are depressed, only the first digit shows 0 and the other digits go off.

3. Check if the error lamp lights, when registering a random figure of more than 15 digits.

If there are no anomalies in the above check, try the following simple calculations.

(1) Set the decimal point selector switch at 2.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 + 23 [+]</td>
<td>1.23</td>
</tr>
<tr>
<td>456 [×]</td>
<td>457.23</td>
</tr>
</tbody>
</table>

(2) Set the round-off switch and the decimal point selector switch at 4.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>[A]</td>
<td>0</td>
</tr>
<tr>
<td>5 [+]</td>
<td>5.5555</td>
</tr>
</tbody>
</table>

(3) Set the round-off switch and the decimal point selector switch at 3.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 + 23 [×]</td>
<td>1.23</td>
</tr>
<tr>
<td>[×]</td>
<td>1.513</td>
</tr>
</tbody>
</table>

6. CALCULATIONS

1. BASIC CALCULATIONS

1. ADDITION

Ex. 12.3 + 45.67 = 57.97

<table>
<thead>
<tr>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 [+]</td>
<td>0</td>
</tr>
<tr>
<td>45 [×]</td>
<td>12.30</td>
</tr>
<tr>
<td>67 [×]</td>
<td>57.97</td>
</tr>
</tbody>
</table>

2. SUBTRACTION

Ex. 1 24.8 – 11.5 = 13.3

<table>
<thead>
<tr>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 [+]</td>
<td>0</td>
</tr>
<tr>
<td>11 [+]</td>
<td>24.80</td>
</tr>
<tr>
<td>5 [+]</td>
<td>13.30</td>
</tr>
</tbody>
</table>

Ex. 2 18.6 + 24.9 – 14.2 + 3.6 – 33.1

<table>
<thead>
<tr>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 [+]</td>
<td>0</td>
</tr>
<tr>
<td>24 [+]</td>
<td>18.60</td>
</tr>
<tr>
<td>14 [+]</td>
<td>43.30</td>
</tr>
<tr>
<td>3 [+]</td>
<td>29.30</td>
</tr>
<tr>
<td>8 [+]</td>
<td>33.10</td>
</tr>
</tbody>
</table>

3. MULTIPLICATION

Ex. 1 123 × 27 = 3321

<table>
<thead>
<tr>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>123 [×]</td>
<td>0</td>
</tr>
<tr>
<td>27 [×]</td>
<td>123.10</td>
</tr>
<tr>
<td>[×]</td>
<td>3321.00</td>
</tr>
</tbody>
</table>
4. SUCCESSIVE MULTIPLICATION

<table>
<thead>
<tr>
<th>Ex. 1</th>
<th>$12 \times 3 \times 6 = 216$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$12 \times$</td>
</tr>
<tr>
<td></td>
<td>$\times 3$</td>
</tr>
<tr>
<td></td>
<td>$\times 6$</td>
</tr>
<tr>
<td></td>
<td>$\Rightarrow 12$</td>
</tr>
<tr>
<td></td>
<td>$\Rightarrow 36$</td>
</tr>
<tr>
<td></td>
<td>$\Rightarrow 216$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ex. 2</th>
<th>$3 \times (-0.4) \times 20.8 = -24.96$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$3 \times (-0.4)$</td>
</tr>
<tr>
<td></td>
<td>$\times 20.8$</td>
</tr>
<tr>
<td></td>
<td>$\Rightarrow -1.20$</td>
</tr>
<tr>
<td></td>
<td>$\Rightarrow 20.8$</td>
</tr>
<tr>
<td></td>
<td>$\Rightarrow -24.96$</td>
</tr>
</tbody>
</table>

or

<table>
<thead>
<tr>
<th>Ex. 2</th>
<th>$3 \times (-0.4) \times 20.8 = -24.96$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\sum\left[\begin{array}{c}3 \times (-0.4) \times 20.8\end{array}\right]$</td>
</tr>
<tr>
<td></td>
<td>$\Rightarrow -1.20$</td>
</tr>
<tr>
<td></td>
<td>$\Rightarrow 20.8$</td>
</tr>
<tr>
<td></td>
<td>$\Rightarrow -24.96$</td>
</tr>
</tbody>
</table>

5. DIVISION

<table>
<thead>
<tr>
<th>Ex. 1</th>
<th>$625 \div 25 = 25$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$625 \div$</td>
</tr>
<tr>
<td></td>
<td>$25 \Rightarrow 25$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ex. 2</th>
<th>$-5.4 \div 2 = -2.7$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\begin{array}{c}-5.4\div\underline{2}\end{array}$</td>
</tr>
<tr>
<td></td>
<td>$\Rightarrow -5.4$</td>
</tr>
<tr>
<td></td>
<td>$\Rightarrow -2.7$</td>
</tr>
</tbody>
</table>

or

<table>
<thead>
<tr>
<th>Ex. 3</th>
<th>$5 \div 9 = 0.5555$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$5 \div 9 \Rightarrow$</td>
</tr>
<tr>
<td></td>
<td>0.5555</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ex. 4</th>
<th>Example 3 with round-off switch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$5 \div 9 \Rightarrow$</td>
</tr>
<tr>
<td></td>
<td>0.5556</td>
</tr>
</tbody>
</table>

NOTE 1 With multiplication or successive multiplication, clearing is automatic and there is no need to depress the \times key for each calculation.

NOTE 2 The product must not exceed 14 digits.

NOTE 3 When using \div key switch, \div key is used as an exclusive minus entry key.
6. SUCCESSIVE DIVISION

<table>
<thead>
<tr>
<th>Ex.</th>
<th>18.2 ÷ 3.9 ÷ 2.3 = 2.26089</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>18 ÷ 3 = 6</td>
</tr>
<tr>
<td>5</td>
<td>6 ÷ 5 = 1.2</td>
</tr>
<tr>
<td>2</td>
<td>1.2 ÷ 3 = 0.4</td>
</tr>
</tbody>
</table>

→ 18.2

→ 5.2000

→ 2.2609

NOTE 1. In division, both dividend and divisor can be registered up to 14 digits.

NOTE 2. With division and successive division, clearing is automatic and there is no need to depress the [CE] key for each calculation.

II. ADVANCED CALCULATIONS

1. MULTIPLICATION WITH A CONSTANT

<table>
<thead>
<tr>
<th>Ex.</th>
<th>3.14 × 2 = 6.28</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.14 × 3 = 9.42</td>
</tr>
<tr>
<td></td>
<td>3.14 × 2.6 = 8.792</td>
</tr>
</tbody>
</table>

3	× 14 [×]
2	=
8	× 8 [×]

→ 3.14

→ 6.280

→ 9.420

→ 8.792

2. DIVISION BY A CONSTANT

<table>
<thead>
<tr>
<th>Ex.</th>
<th>56 ÷ 2.8 = 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>63 ÷ 2.8 = 22.5</td>
<td></td>
</tr>
<tr>
<td>14 ÷ 2.8 = 5.25</td>
<td></td>
</tr>
</tbody>
</table>

56	÷ 2.8 [÷]
2	× 8 [×]
63	÷ 7 [÷]

→ 56

→ 20.00

→ 22.50

→ 5.25

NOTE 1. In multiplication and division with a constant, register the constant as multiplicand or divisor.

NOTE 2. In these calculations, it is not necessary to depress the [×] key or [÷] key for each calculation. If they are depressed during a calculation, a wrong result will be obtained.
3. MIXED CALCULATION

<table>
<thead>
<tr>
<th>Ex. 1</th>
<th>(3.6 \times 2 \div 8 = 0.9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)</td>
<td>(6 \times)</td>
</tr>
<tr>
<td>(2)</td>
<td>(\div)</td>
</tr>
<tr>
<td>(8)</td>
<td>(\div)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ex. 2</th>
<th>((12 \times 2 + 3) - 2 + 3 = 9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(12)</td>
<td>(\times)</td>
</tr>
<tr>
<td>(2)</td>
<td>(\div)</td>
</tr>
<tr>
<td>(3)</td>
<td>(\div)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ex. 3</th>
<th>((32 \times 3 + 28 + 98 \times 2) \times 4 = 32,0013)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(32)</td>
<td>(\times)</td>
</tr>
<tr>
<td>(3)</td>
<td>(\div)</td>
</tr>
<tr>
<td>(98)</td>
<td>(\div)</td>
</tr>
</tbody>
</table>

4. POWER CALCULATION

<table>
<thead>
<tr>
<th>Ex. 1</th>
<th>(2^6 = 32)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>(\div)</td>
</tr>
</tbody>
</table>

\(a^n = z\) (\(a\) is positive)

To show this calculation with an equation, it is equivalent to \(2 \times 2 \times 2 \times 2 \times 2 \times 2 = 32\). Therefore, in calculating \(a^n\), the \(\times\) key should be depressed \((n - 1)\) times. Especially, if \(n = 2, 4, 8, \ldots, 2^m\), the \(\times\) key and the \(=\) key should be depressed \(m\) times after registering \(a\).
6. PRODUCT OF SUM AND DIFFERENCE

\[(47.2 + 29.6) \times (19.2 - 12.6) = 508.2\]

7. ADDITION AND SUBTRACTION OF QUOTIENT WITH SUBTOTAL AND GRAND TOTAL

\[123 \div 4 = 31.25 (S_1)\]
\[628 \div 8 = 78.5 (S_2)\]
\[328 \div 20 = 16.4 (S_3)\]

Grand total = 126.05

8. QUOTIENT OF SUM AND DIFFERENCE

\[(28 - 48) \div (22 + 31) = 1.396\]
9. RECIPROCAL CALCULATION

\[
\frac{1}{(2 + 3) \times 4 + 5} = 0.04
\]

III. PRACTICAL CALCULATIONS

1. PERCENTAGE CALCULATION

Ex. Sales breakdown in percentage.

<table>
<thead>
<tr>
<th>Dept.</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>123,000</td>
</tr>
<tr>
<td>B</td>
<td>456,000</td>
</tr>
<tr>
<td>C</td>
<td>789,000</td>
</tr>
</tbody>
</table>

2. INCREASE/DECREASE RATE CALCULATION

Ex. The percentage increase/decrease rate of this month's sales ($5,024,000) to last month's sales ($4,238,000).

\[
\frac{\text{this month's sales} - \text{last month's sales}}{\text{last month's sales}} \times 100\% = 18.50\%
\]
3. INVOICE CALCULATION

Ex. Calculate the sub-totals and grand total of the invoice value.

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Unit price</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>29</td>
<td>28.30</td>
<td>820.70</td>
</tr>
<tr>
<td>B</td>
<td>105</td>
<td>290.00</td>
<td>30,450.00</td>
</tr>
<tr>
<td>C</td>
<td>65</td>
<td>528.00</td>
<td>32,449.00</td>
</tr>
<tr>
<td>D</td>
<td>47</td>
<td>67.30</td>
<td>3,163.10</td>
</tr>
</tbody>
</table>

Grand total: 67,382.80

4. DEPRECIATION CALCULATION

Ex. Obtain the price of fixed assets as booked at the end of each period (cost: $500,000, Life: 5 years, depreciation rate: 0.369)

1st year: \(500,000 - (500,000 \times 0.369) = A \)
2nd year: \(A - (A \times 0.369) = B \)
3rd year: \(B - (B \times 0.369) = C \)
4th year: \(C - (C \times 0.369) = D \)
5th year: \(D - (D \times 0.369) = E \)

Quantities in parenthesis are the depreciation of a corresponding year.

<table>
<thead>
<tr>
<th>Year</th>
<th>Price</th>
<th>Formula</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>500000</td>
<td>(500,000 \times 0.369)</td>
<td>(500,000 - (500,000 \times 0.369) = A)</td>
</tr>
<tr>
<td>2</td>
<td>315500</td>
<td>(500,000 \times (1 - 0.369))</td>
<td>(500,000 - (500,000 \times 0.369) = A)</td>
</tr>
<tr>
<td>3</td>
<td>199081</td>
<td>(500,000 \times (1 - 2 \times 0.369))</td>
<td>(500,000 - (500,000 \times 0.369) = A)</td>
</tr>
<tr>
<td>4</td>
<td>73460</td>
<td>(500,000 \times (1 - 3 \times 0.369))</td>
<td>(500,000 - (500,000 \times 0.369) = A)</td>
</tr>
<tr>
<td>5</td>
<td>125621</td>
<td>(500,000 \times (1 - 4 \times 0.369))</td>
<td>(500,000 - (500,000 \times 0.369) = A)</td>
</tr>
</tbody>
</table>
5. PROPORTIONAL DIVISION

Ex. Divide the profits (§ 78,000) among stores in proportion to their sales.

<table>
<thead>
<tr>
<th>Store</th>
<th>Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Store</td>
<td>$45,000</td>
</tr>
<tr>
<td>B Store</td>
<td>$34,000</td>
</tr>
<tr>
<td>C Store</td>
<td>$23,000</td>
</tr>
</tbody>
</table>

\[
\text{Profit } \begin{array}{c} \text{A Store} \\ \text{B Store} \\ \text{C Store} \end{array} = \begin{array}{c} \text{Profit } \begin{array}{c} \text{A Store} \\ \text{B Store} \\ \text{C Store} \end{array} \end{array}
\]

6. PROBABILITY CALCULATION

Ex. Obtain the probability that the "10", "Jack", "Queen", "King", and "Ace" of Hearts can be collected the first try in a bridge game.

\[
P = \frac{52 \times 4 \times 3 \times 2 \times 1}{52 \times 51 \times 50 \times 49} = \frac{0}{25,985,600} = 0
\]

That is, the chance comes once in 2,598,560 times.
7. CREDIT LOAN PAYMENT CALCULATION

Ex. Obtain each of 10 monthly installments for a $318,000 loan borrowed at the interest rate of 2.3% per month.

\[R = \frac{P \times i}{1 - (1 + i)^{-n}} = \frac{318000 \times 0.023}{1 - 1.023^{10}} \]

\[
\begin{array}{c}
0.2081 \\
0.2081 \\
0.2081 \\
0.2081 \\
0.2081 \\
0.1182 \\
0.1182 \\
35997.6000
\end{array}
\]
8. SIMPLE INTEREST/COMPOUND INTEREST CALCULATION

Ex. $10,000 is invested at 5.5% per annum.
Total assets after five years are to be calculated with simple interest and compound interest.

(a) Simple interest
Total assets = (Original investment) x (1 + annual interest x years)
= 10,000 x (1 + 0.055 x 5)

\[\begin{array}{c}
10000 \\
\times \\
5 \\
\times \\
1 \\
\times \\
10000 \\
\end{array} \]

\[\begin{array}{c}
10000 \\
0.055 \\
0.275 \\
1.275 \\
12750.000 \\
\end{array} \]

(b) Compound interest
Total assets = (Original investment) x (1 + annual interest)^years
= 10,000 (1 + 0.055)^5

\[\begin{array}{c}
10000 \\
1 \\
5 \\
0.055 \\
1.055 \\
1.174 \\
1.238 \\
1.306 \\
10000 \\
\end{array} \]

\[\begin{array}{c}
10000 \\
1.000 \\
1.055 \\
1.055 \\
1.174 \\
1.238 \\
1.306 \\
13060.000 \\
\end{array} \]

9. HIGH-POWER MULTINOMINAL CALCULATION

Ex. \[y = 3x^3 + 5x^4 - 8x^2 + x - 1 \]
Calculate y when x = 8.

\[\begin{array}{c}
3 \\
5 \\
-8 \\
1 \\
1 \\
8 \\
\end{array} \]

\[\begin{array}{c}
3 \\
5 \\
-8 \\
1 \\
1 \\
8 \\
\end{array} \]

\[\begin{array}{c}
3 \\
5 \\
-8 \\
1 \\
1 \\
8 \\
\end{array} \]

\[\begin{array}{c}
3 \\
5 \\
-8 \\
1 \\
1 \\
8 \\
\end{array} \]

\[\begin{array}{c}
3 \\
5 \\
-8 \\
1 \\
1 \\
8 \\
\end{array} \]

\[\begin{array}{c}
3 \\
5 \\
-8 \\
1 \\
1 \\
8 \\
\end{array} \]

\[\begin{array}{c}
3 \\
5 \\
-8 \\
1 \\
1 \\
8 \\
\end{array} \]

\[\begin{array}{c}
3 \\
5 \\
-8 \\
1 \\
1 \\
8 \\
\end{array} \]

\[\begin{array}{c}
3 \\
5 \\
-8 \\
1 \\
1 \\
8 \\
\end{array} \]

\[\begin{array}{c}
3 \\
5 \\
-8 \\
1 \\
1 \\
8 \\
\end{array} \]

\[\begin{array}{c}
3 \\
5 \\
-8 \\
1 \\
1 \\
8 \\
\end{array} \]

\[\begin{array}{c}
3 \\
5 \\
-8 \\
1 \\
1 \\
8 \\
\end{array} \]

\[\begin{array}{c}
3 \\
5 \\
-8 \\
1 \\
1 \\
8 \\
\end{array} \]

\[\begin{array}{c}
3 \\
5 \\
-8 \\
1 \\
1 \\
8 \\
\end{array} \]

\[\begin{array}{c}
3 \\
5 \\
-8 \\
1 \\
1 \\
8 \\
\end{array} \]

\[\begin{array}{c}
3 \\
5 \\
-8 \\
1 \\
1 \\
8 \\
\end{array} \]

\[\begin{array}{c}
3 \\
5 \\
-8 \\
1 \\
1 \\
8 \\
\end{array} \]

\[\begin{array}{c}
3 \\
5 \\
-8 \\
1 \\
1 \\
8 \\
\end{array} \]

\[\begin{array}{c}
3 \\
5 \\
-8 \\
1 \\
1 \\
8 \\
\end{array} \]

\[\begin{array}{c}
3 \\
5 \\
-8 \\
1 \\
1 \\
8 \\
\end{array} \]

\[\begin{array}{c}
3 \\
5 \\
-8 \\
1 \\
1 \\
8 \\
\end{array} \]

\[\begin{array}{c}
3 \\
5 \\
-8 \\
1 \\
1 \\
8 \\
\end{array} \]

\[\begin{array}{c}
3 \\
5 \\
-8 \\
1 \\
1 \\
8 \\
\end{array} \]

\[\begin{array}{c}
3 \\
5 \\
-8 \\
1 \\
1 \\
8 \\
\end{array} \]

\[\begin{array}{c}
3 \\
5 \\
-8 \\
1 \\
1 \\
8 \\
\end{array} \]

\[\begin{array}{c}
3 \\
5 \\
-8 \\
1 \\
1 \\
8 \\
\end{array} \]

\[\begin{array}{c}
3 \\
5 \\
-8 \\
1 \\
1 \\
8 \\
\end{array} \]

\[\begin{array}{c}
3 \\
5 \\
-8 \\
1 \\
1 \\
8 \\
\end{array} \]

\[\begin{array}{c}
3 \\
5 \\
-8 \\
1 \\
1 \\
8 \\
\end{array} \]
8. BATTERY RECHARGING

* Recharge before using for the first time.
* Built-in lifetime rechargeable CADNICA batteries.
 The Cadnica batteries are rechargeable, small, hermetically sealed cells.
 They never need replacing and are handy and economical in use.
* Recharging procedure
 1. Insert adaptor AC plug into power socket.
 2. Insert adaptor DC plug into three pin socket as far as it will go.
 3. Recharging takes place whether the power switch is ON or OFF and
 recharging is possible even when the calculator is in use.
* Recharging time
 Recharging of totally exhausted batteries takes at least 15 hours at power
 switch off.
* Battery alarm lamp

<table>
<thead>
<tr>
<th>Lamp</th>
<th>Battery condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light-off</td>
<td>Recharging unnecessary</td>
</tr>
<tr>
<td>Light-on</td>
<td>Recharging absolutely necessary</td>
</tr>
</tbody>
</table>

9. SPECIFICATIONS

<table>
<thead>
<tr>
<th>Type</th>
<th>Electronic desk top calculator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>ICC-1418D</td>
</tr>
<tr>
<td>Numeric key</td>
<td>10-key system</td>
</tr>
<tr>
<td>Display</td>
<td>Full size fluorescent tubes, with zeros suppression, error lamp, minus sign, battery alarm lamp.</td>
</tr>
<tr>
<td>Decimal point</td>
<td>Floating input/Fixed output (0, 2, 3, 4, 6) round-off / drop-off</td>
</tr>
<tr>
<td>Memory</td>
<td>1 memory</td>
</tr>
<tr>
<td>Capacity</td>
<td>Add/sub. Max. 14 digits ± 14 digits</td>
</tr>
<tr>
<td></td>
<td>Multiplication: Multiplicand + Multiplier ≤15 digits</td>
</tr>
<tr>
<td></td>
<td>Products Max. 14 digits</td>
</tr>
<tr>
<td></td>
<td>Division: Dividend: Max. 14 digits</td>
</tr>
<tr>
<td></td>
<td>Divisor: Max. 14 digits</td>
</tr>
<tr>
<td></td>
<td>Quotient: Max. 14 digits</td>
</tr>
<tr>
<td>Functions</td>
<td>4-rules, successive multi. and div., constant multi. and div., mixed calculation, power calculation, products sum and difference, reciprocal calculation, memory calculation, applied calculations and others.</td>
</tr>
<tr>
<td>Components</td>
<td>Mon-LSIs, Hybrid-ICs</td>
</tr>
<tr>
<td>Operating temp.</td>
<td>0°C ~ 40°C (32°F - 104°F)</td>
</tr>
<tr>
<td>Power supply</td>
<td>Adaptor: AC Local voltage ±10% 50/60 Hz</td>
</tr>
<tr>
<td></td>
<td>Calculator: DC 6.2 V, 7.8V</td>
</tr>
<tr>
<td>Power consumption</td>
<td>Adaptor: AC 8W</td>
</tr>
<tr>
<td></td>
<td>Calculator: DC 4.5W</td>
</tr>
<tr>
<td>Dimensions</td>
<td>60(H) x 226(W) x 140(D) mm</td>
</tr>
<tr>
<td></td>
<td>2-3/8(H) x 8-15/16(W) x 5-9/16(D) inch</td>
</tr>
<tr>
<td>Weight</td>
<td>1.3 kg (2 lbs, 14ozs.)</td>
</tr>
</tbody>
</table>