Battery replacement

Before replacing batteries, first turn switch to "OFF" position and, if using the AC mains adapter, disconnect this from the calculator. Slide the lid off the battery compartment in the direction indicated by the arrow and remove the exhausted batteries. When inserting the new batteries, ensure you observe the correct polarity— as indicated.

Inserting the batteries the wrong way could result in damage.

AC adapter (optional)

Use only a recommended AC mains adapter. Using other adapters, which might have incorrect outputs, could damage your calculator. When using the AC adaptor there is no need to remove the batteries.

These are automatically disconnected when the adapter plug is inserted.

Care of the calculator

In the event of damage, do not attempt to repair this instrument. Return it for attention by our trained service engineers. Avoid placing the calculator where there is a high temperature or high level of humidity. Do not use petroleum based cleaners.

Always switch to the "OFF" position after use, for some time.
Control switch and operating keys

ON-OFF switch

Square root key

Clear/Clear entry key

Sign change key

Memory equal key
Performs any previous set-up operation and accumulates the results of the operation into the memory.

Recall/Clear memory key
This key performs two functions.
1) First (RM) depression recalls the memory
2) Second (RM) depression clears the memory

Multiplication key
Division key
Addition key
Subtraction key
Percent key

Equals key

Decimal point key

Entry keys

Sign digit

Overflow sign

Overflow of Minus
Square root of Minus

Minus sign
Calculation examples

1. Addition and Subtraction

example

\[-12 + 124 + 3 - 10 + (-5)\]

= 100

2. Mixed Calculation

example

\[\frac{(-25) \times 40 + 100}{9} = -100\]

3. Constant Calculation

(multiplication with constant multiplier)

example

\[12 \times 2 = 24 (a1)\]

\[12 \times 3 = 36 (a2)\]

\[12 \times 5 = 60 (a3)\]
(division with constant divisor)

example

\[
\begin{align*}
3 \div 12 &= 0.25 (a1) \\
6 \div 12 &= 0.5 \quad (a2) \\
45 \div 12 &= 3.75 (a3)
\end{align*}
\]

operation display

\[
\begin{align*}
3 \div 12 &= 0.25 (a1) \\
6 \div 12 &= 0.5 \quad (a2) \\
45 \div 12 &= 3.75 (a3)
\end{align*}
\]

4. **Power Calculation**

example

\[
2^2 = 4
\]

operation display

\[
\begin{align*}
2 \times &= 4.
\end{align*}
\]

\[
(10 + 6)^3 = 4096
\]

operation display

\[
\begin{align*}
10 + &= 10. \\
6 \times &= 16. \\
+ &= 256. \\
+ &= 4096.
\end{align*}
\]

5. **Percentage calculation**

example

\[
3\% \text{ of } 123 = 3.69 (a1)
\]

\[
123 \text{ plus } 3\% = 126.69 (a2)
\]

\[
123 \text{ less } 5\% \text{ discount}
\]

operation display

\[
\begin{align*}
3 \times 123 &= 123. \\
3 \div &= 3. \\
3 \% &= 3.69 \quad (a1) \\
+ &= 126.69 \quad (a2) \\
123 \times 5 &= 6.15 \\
- &= 116.85
\end{align*}
\]
6. **Reverse calculation**

Example

\[3 \div (2 \times 3 \times 4) = 0.125 \]

<table>
<thead>
<tr>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\square \times 2)</td>
<td>2.0</td>
</tr>
<tr>
<td>(\times 3)</td>
<td>6.0</td>
</tr>
<tr>
<td>(\times 4)</td>
<td>24.0</td>
</tr>
<tr>
<td>(\div 3)</td>
<td>8.0</td>
</tr>
<tr>
<td>(\div)</td>
<td>0.125</td>
</tr>
</tbody>
</table>

7. **Memory Calculation**

Example-1

\[1200 \div 10 + (3 + 5) + (45.678 \times 0.01) + (9 - 14) = 123.45678 \]

<table>
<thead>
<tr>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>(@ @ \quad \square)</td>
<td>1200.0</td>
</tr>
<tr>
<td>(\div 10)</td>
<td>.120.0</td>
</tr>
<tr>
<td>(\square \quad 3)</td>
<td>.3.0</td>
</tr>
<tr>
<td>(\square \quad 5)</td>
<td>.8.0</td>
</tr>
<tr>
<td>(\times \quad 45.678)</td>
<td>.45.678</td>
</tr>
<tr>
<td>(\times \quad 0.01)</td>
<td>.045678</td>
</tr>
<tr>
<td>(\div 9)</td>
<td>.9.0</td>
</tr>
<tr>
<td>(\square \quad 14)</td>
<td>.5.0</td>
</tr>
<tr>
<td>(\div)</td>
<td>.123.45678</td>
</tr>
</tbody>
</table>

Example-2

\[123 - (3 \times 5) = 108 \]

<table>
<thead>
<tr>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>(@ @ \quad \square)</td>
<td>123.0</td>
</tr>
<tr>
<td>(\times 3)</td>
<td>.3.0</td>
</tr>
<tr>
<td>(\times 5)</td>
<td>.15.0</td>
</tr>
<tr>
<td>(-)</td>
<td>.15.0</td>
</tr>
<tr>
<td>(-)</td>
<td>.108.0</td>
</tr>
</tbody>
</table>

8. **Square root**

Example

\[\sqrt{2 \times 3} = 2.4494897 \]

<table>
<thead>
<tr>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\square \times 2)</td>
<td>2.0</td>
</tr>
<tr>
<td>(\times 3)</td>
<td>6.0</td>
</tr>
<tr>
<td>(\sqrt{ })</td>
<td>2.4494897</td>
</tr>
</tbody>
</table>
Specification

Display: 8 digits and sign digit

Functions: Addition, subtraction, multiplication, division, memory calculation, constant calculation, percentage calculation, square root calculation, add-on / discount calculation, power calculation, mixed chain calculation, exchange calculation, etc.

Decimal point: Fully floating with decimal underflow system.

Credit balance: Actual figure with sign

Operating temperature: 32°F ~ 104°F

\[0°C ~ 40°C\]

Power consumption: AC adapter approx. 2.0w
Dry battery approx. 0.5w

Power source

AC = Use exclusive AC adapter. Input 50/60 Hz, 100V/117V/220V/240V. Output, 6V 100mA

DC = Dry battery AA size 1.5V \(\times 4 = 6V \)
Overflow: Indicated on the sign digit

Calculation capacity:

Entry 8 digits
8 digits ± 8 digits ≤ 8 digits
8 digits × 8 digits ≤ 8 digits
memory calculation = 8 digits
Square root \(\sqrt{8} \) digits ≤ 8 digits.

Battery life:

manganese battery approx. 8 hours
alkaline battery approx. 13 hours

Because we continually strive to improve our products we may change specifications without prior notice.