Memory indicator
A vertical segment, (I), lights on the left of the display when the memory contains a number.

Example: The following quantity of parts for construction of a device are priced as follows:

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>152</td>
<td>$7.41</td>
</tr>
<tr>
<td>B</td>
<td>76</td>
<td>$6.73</td>
</tr>
<tr>
<td>C</td>
<td>45</td>
<td>$2.55</td>
</tr>
</tbody>
</table>

Find the total cost of construction.

Enter
Display
Comments

152
X
152.
7.41
= MS
1126.32
Memory indicator lights
76
X
76.
6.73
= M+
511.48
45
X
45.
2.55
= M+
114.75
MR
1752.55
Battery Information
Your calculator is powered by a 9-volt transistor battery. Use an alkaline battery for optimum operating time, which will give your calculator 10 to 15 hours of normal operation.

To replace battery, turn calculator off, slide battery hatch door open, and attach battery to snap-on connector.

Low Battery Indicator
Models 850/835
A decimal point will light on the left side of the display when the battery needs replacing.

12345678
↑

Left justified decimal point indicates low battery.

Model 750
(The display will flicker and blank when the battery needs replacing.) Continued use on a low battery will cause the display to blank. It is not uncommon for erratic information to be displayed shortly before the display finally blanks.

Optional AC Adapter
Your calculator can be operated on regular house current with the National Semiconductor adapter available as an option at the retail store where you bought your calculator.

Getting Started
To get started, turn your calculator on with the switch on the keyboard. Erratic information is displayed on 750. Depress \[CE/C\]. The display should now show a single zero. If it does not, the battery probably needs to be replaced. See Battery Information.

Exceeding 8 Digit Capacity
Results of calculations which exceed 99,999,999 cause the overflow indication to light as follows:

Model 850 and 835

.1.2.3.4.5.6.7.8.

Eight most significant digits of result and nine decimal points light.

Model 750
"L" lights on the left side of the display when 6 digit capacity is exceeded.

Depress \[CE/C\] to clear the overflow condition and resume calculations.

Clearing Mistaken Key Depressions
The \[CE/C\], clear entry/clear key, is designed to keep operator decision to a minimum. Depress \[CE/C\] directly following an erroneous key depression and the calculator will clear the affected register(s) only.
Basic Arithmetic Operations
Simple addition, subtraction, multiplication or division is performed as it is written.

Enter first number; depress +, -, x, or ÷.

Enter the second number; depress =.

It is a good practice to depress CE/C before performing calculations in order to clear any calculations pending from previous key depressions.

Multifactor (Chain) Calculations
The final result of any calculation may be used in further calculations, eliminating the need to reenter the value.

Example: \(\frac{5 \times 2 \times 3 \times 4}{6} + 7 + 8 - 3 = 32 \)

\[
\begin{array}{ccc}
\text{Enter} & \text{Display} & \text{Comments} \\
5 & 5. & \text{Previous instruction executed, intermediate answer displayed.} \\
2 & 10. & \\
3 & 30. & \\
4 & 120. & \\
6 & 20. & \\
+ & 27. & \\
7 & 35. & \\
- & & \\
3 & 32. & \\
\end{array}
\]

MODEL 835 AND 850A
Percent Key Operations
The % is used with the +, -, x, and ÷ as follows:

Example 1

<table>
<thead>
<tr>
<th>Enter</th>
<th>Display</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 ÷</td>
<td>100.</td>
<td></td>
</tr>
<tr>
<td>200 %</td>
<td>50.</td>
<td>Read as 50%</td>
</tr>
</tbody>
</table>

Example 2

<table>
<thead>
<tr>
<th>Enter</th>
<th>Display</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>115 x</td>
<td>115.</td>
<td></td>
</tr>
<tr>
<td>5 %</td>
<td>5.75</td>
<td>5.75 is 5 percent of 115</td>
</tr>
</tbody>
</table>

Example 3

A suit sells for $115.00. The tax is 5%. How much tax do you have to pay? What is the total cost of the suit?

<table>
<thead>
<tr>
<th>Enter</th>
<th>Display</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>115 +</td>
<td>115.</td>
<td></td>
</tr>
<tr>
<td>5 %</td>
<td>5.75</td>
<td>Amount of tax.</td>
</tr>
<tr>
<td>=</td>
<td>120.75</td>
<td>Total cost = 115 + 5.75</td>
</tr>
</tbody>
</table>
Example 4
A suit sells for $115. It is being discounted by 5%. How much do you save? What is the discontinued price?

<table>
<thead>
<tr>
<th>Enter</th>
<th>Display</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td>115.</td>
<td></td>
</tr>
<tr>
<td>5 %</td>
<td>5.75</td>
<td>Amount saved.</td>
</tr>
<tr>
<td>=</td>
<td>109.25</td>
<td>Total cost.</td>
</tr>
</tbody>
</table>

Performing Constant Calculations
The second factor in a two factor calculation is retained as a constant in the calculating register.
To use the Constant:
Perform an addition, subtraction, multiplication, or division problem in the usual manner remembering to enter the constant value last, on =.

Enter variable numbers; depress =, display shows answers.

<table>
<thead>
<tr>
<th>Enter</th>
<th>Display</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 X</td>
<td>5.</td>
<td>Problem performed in standard manner</td>
</tr>
<tr>
<td>2 =</td>
<td>10.</td>
<td></td>
</tr>
<tr>
<td>3 =</td>
<td>6.</td>
<td>$3 \times 2 = 6$</td>
</tr>
<tr>
<td>4 =</td>
<td>8.</td>
<td>$4 \times 2 = 8$</td>
</tr>
<tr>
<td>5 =</td>
<td>10.</td>
<td>$5 \times 2 = 10$</td>
</tr>
</tbody>
</table>

MODEL 835 ONLY
Square Root Key
To use this key, enter a number into the display; depress $\sqrt{}$, display shows the square root.

Memory Operations
The memory keys operate as follows:

- **MS**
 Memory Store key stores the amount in the display into the memory, writing over previous contents.

- **MR**
 Memory Recall key copies memory contents into the display allowing you to view memory contents, but not clearing memory.

- **M+**
 Adds contents of display to memory. Display does not change. Sum is stored in memory.

- **M-**
 Subtracts contents of display from memory. Display does not change. Difference is stored in memory.