Specifications

Type: "Palmtronic" (miniaturized) electronic calculator
Keyboard: 10-key system
Display: 8-digit fluorescent tube display
Registers: 3 calculation registers
Calculation capacity: 8 digits in all calculations (Result is 7 digits in extraction of square root.)
Decimal point system: Leftmost digit priority with all-floating decimal point
Negative numbers: True value with a minus sign
Types of calculation: Addition, subtraction, multiplication and division, Chain multiplication and division. Raising to powers, Percentage calculation, Add-on & discount calculations. Extraction of square root. Various mixed calculations.
Indication functions: Zero suppressed indication panel, Minus sign, Overflow sign.
Automatic calculation functions: Constant calculation, Raising to powers, Percentage and add-on/discount calculations.
Safety devices: Overflow keyboard interlock, Automatic clearing of calculations.
Elements: MOS-LSI
Power source:
1. 2 penlight dry batteries (size AA) DC 3V 0.2W
 Over 18 hours of use is possible by alkaline batteries.
 Over 12 hours of use is possible by manganese batteries.
2. AC with the Canon AC Adapter AD-2.
Usable temperature: 0°C to +40°C (32°F to 104°F)
Size: 74mm wide x 130mm long x 21.5mm high
 (2-15/16" x 5-1/8" x 13/16")
Weight: approx. 160 g. (5.6 oz) including dry batteries

Subject to alterations without notice.
Dry Battery

Load two new penlight dry batteries (size AA) from the (−) side according to the diagram inside. The Palmtronic will not operate if the batteries are placed upside down. If the display becomes dim, it means there is not sufficient voltage. In this case change two batteries at the same time.
Remove the batteries when not using the calculator for more than one month.

AC Adapter (option)

The Canon AC Adapter AD-2 is designed to allow the Palmtronic to be plugged in and operated by normal AC current.

How to use

1. Insert the output cord of the AC Adapter AD-2 to the socket of the Palmtronic.
2. Plug in AC Adapter AD-2 to the AC outlet.
3. Turn on the power switch of the Palmtronic for immediate operation.

- Use only the Canon AC Adapter AD-2 for the Palmtronic.
- Do not leave the AC Adapter AD-2 connected to outlet when not actually in use.
Operational Keys

- **Clear Key**: Used for clearing all entries and calculations.
- **Clear Indicator Key**: Used for correcting entries.
- **Function Keys**: Depress them according to the calculation expression.
- **Numeral Keys**: Used for entering numerals.
- **Decimal Point Key**: Used for entering decimal point. In the case of fractional numerals only, it is not necessary to depress the **key before the decimal point.**
Root Key: Used for obtaining square root.
Percent Plus-Minus Key: Used for performing percentage calculations and add-on & discount calculations.

How to Operate

1. Set the power switch at ON, and depress the key.
2. When incorrect entries are made, depress the key, and then make correct entries and continue the operation.
3. It is not necessary to depress the key every time before starting the calculations, because the preceding calculation result is automatically cleared.

Note: Please keep in mind that accurate results depend on correct key operation.

Overflow

When the integers of the calculation results exceed 8 digits, the overflow sign lights up and further operation is locked, and only the 8 leftmost significant digits are displayed.
The overflow sign is indicated as follows:
Overflow of positive number; \[+\] or \[\]
Overflow of negative number; \[\] or \[
In this case, the decimal point is displayed on the
indicator, showing by its position (counting from
the leftmost digit) how many digits have been

dropped.

ex. \[12345 \times 5678 \times 200 = 14018982000\]
\[12345 \times \hspace{1em} \times \hspace{1em} 200 \hspace{1em} \Rightarrow (\hspace{1em} 140,189,820)\]

Assume 3 digits have been dropped by reading
the position of decimal point.

Depress the \[\text{ }\] key to release the keyboard
interlock, and start the further operation.

Calculation Examples

<table>
<thead>
<tr>
<th>Example</th>
<th>Key Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Addition and Subtraction</td>
<td></td>
</tr>
<tr>
<td>1) (8 + 3 + 5.5 = 16.5)</td>
<td>(8 \ \boxed{+} \ 3 \ \boxed{+} \ 5.5 \ \boxed{=} \ (16.5))</td>
</tr>
<tr>
<td>2) (4 - 7 - 3 = -6)</td>
<td>(4 \ \boxed{-} \ 7 \ \boxed{-} \ 3 \ \boxed{=} \ (-6.))</td>
</tr>
</tbody>
</table>

2. Multiplication and Division	
1) \(3.6 \times 1.7 = 6.12\)	\(3.6 \ \boxed{\times} \ 1.7 \ \boxed{=} \ (6.12)\)
2) \(592 \div 4.8 = \frac{592}{4.8} = 123.33333\)	\(592 \ \boxed{\div} \ 4.8 \ \boxed{=} \ (123.33333)\)

3. Multiplication and Division by a Constant	
1) \(2 \times 3 = 6\)	\(2 \ \boxed{\times} \ 3 \ \boxed{=} \ (6.)\)
\(2 \times 4 = 8\)	\(4 \ \boxed{=} \ (8.)\)
\(2 \times 5 = 10\)	\(5 \ \boxed{=} \ (10.)\)
2) \(6 \div 3 = 2\)	\(6 \ \boxed{\div} \ 3 \ \boxed{=} \ (2.)\)
\(9 \div 3 = 3\)	\(9 \ \boxed{=} \ (3.)\)
\(12 \div 3 = 4\)	\(12 \ \boxed{=} \ (4.)\)
4. Raising to Powers
 1) \(3^2 = 9\)
 \(3^4 = 81\)

<table>
<thead>
<tr>
<th>(3 \times)</th>
<th>(=)</th>
<th>(9.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3 \times)</td>
<td>(=)</td>
<td>(=)</td>
</tr>
</tbody>
</table>

5. Reciprocal Calculation
 \[
 \frac{1}{2 \times 3 + 4} = 0.1
 \]

| \(2 \times \) | \(3 + 4 \times \) | \(=\) | (0.1) |

6. Percentage Calculation
 1) Percentage Calculation
 \(200 \times 15\% = 30\)

 2) Add-on Calculation
 \(20\%\) add-on of 200
 \((200 + 40 = 240)\)

 3) Discount Calculation
 \(20\%\) discount of 200
 \((200 - 40 = 160)\)

\(200 \times \)	\(15 \times \)	\(\%\)	(30.)	
\(200 \times \)	\(20 \times \)	\(\%\)	\(+\)	(240.)
\(200 \times \)	\(20 \times \)	\(\%\)	\(-\)	(160.)

7. Extraction of Square Root
 1) \(\sqrt{169} = 13\)

 2) \(\sqrt{(4 + 5) \times 9} = 9\)

| \(169 \sqrt{\text{ }}\) | (13.) |
| \(4 + 5 \times 9 \sqrt{\text{ }}\) | (9.) |

8. Mixed Calculations
 1) \(9 \div 5 \times 3.2 + 7 = 12.76\)

 2) \((2 + 4) \div 3 \times 8.1 = 16.2\)

| \(9 \div \) | \(5 \times \) | \(3.2 + 7 \sqrt{\text{ }}\) | (12.76) |
| \(2 + 4 \div \) | \(3 \times \) | \(8.1 \sqrt{\text{ }}\) | (16.2) |