Canon

CANON INC.
11-28, Mita 3-chome, Minato-ku, Tokyo 108, Japan

CANON U.S.A., INC. HEAD OFFICE
10 Nevada Drive, Lake Success, Long Island, N.Y. 11040, U.S.A.

CANON U.S.A., INC. CHICAGO OFFICE
457 Fullerton Avenue, Elmhurst, Illinois 60126, U.S.A.

CANON U.S.A., INC. LOS ANGELES OFFICE
123 Pulmonary Avenue East, Costa Mesa, California 92626, U.S.A.

CANON OPTICS & BUSINESS MACHINES CANADA, LTD.
HEAD OFFICE
3249 American Drive, Mississauga, Ontario, L4V 1B8, Canada

CANON AMSTERDAM N.V.
Gebouw 70, Boschhoof Oost, Holland

CANON LATIN AMERICA, INC. SALES DEPARTMENT
P. O. Box 7022, Panama 5, Rep. of Panama

CANON LATIN AMERICA, INC. REPAIR SERVICE CENTER
P. O. Box 2019, Colon Free Zone, Rep. of Panama

CANON INC. HONG KONG BRANCH
5th Floor 2-6, Fu Yiu Kok Street, Tsuen Wan, New Territories, Hong Kong

English Edition
Features

- 12-digit display and 2 memories (8 digit mantissa, sign of mantissa, 2 digit exponent, sign of exponent)
- Calculations are made accordingly to complete algebraic logical expression
- Calculation of up to seven-fold parenthesis max. and fractional calculation can be easily performed.
- Highly accurate calculation of numerals with 8 effective digits can be performed.
- Calculation of complicated functions can be promptly performed — trigonometrical, inverse trigonometrical, logarithm, power, root, cubic, factorial, constant π, conversion of sexagesimal notation into decimal notation, and vice versa, and conversion of rectangular co-ordinates into polar co-ordinates, and vice-versa.
- Various conversion calculations are made by depress- ing keys simply.
- Easy-to-read and large LED indication
- Plates with different colors classified according to functions are adopted.
- Compact size with 3 way power source method adopted for a wide use

Contents

- Operational Keys and Switches .. 4
- Before Calculation ... 6
- How to Input Numerals .. 7
- How to Correct Numerals Input .. 8
- How to Read Numerals Output .. 8
- How to Use the \div Key .. 9
- How to Use the $\frac{}{}$ (Fraction) Key ... 12
- How to Use the \pm (Parenthesis) Keys ... 12
- How to Use Memory ... 14
- How to Perform Calculations Using Calculation Expression 15
- Basic Calculations of Functions
 - Trigonometric and inverse trigonometric function 17
 - Logarithmic function ... 19
 - Power function ... 19
 - Square root, cubic root, factorial, and constant π 20
 - Conversion of sexagesimal notation into decimal notation and vice-versa 20
 - Rectangular co-ordinates and polar co-ordinates 21
- Various Calculations ... 22
- How to Perform Conversion Calculations 28
- NiCd Battery Pack ... 33
- Specifications ... 34
Operational Keys and Switches

Radian, Gradian Mode Switch:
Used for designating radian mode or
gradian mode.

- **Power Switch**: Slide the power switch to ON and the
 Palmtronic is ready for immediate use.
- **Clear Key**: This key clears all registers except
 memory.
- **Clear Indicator Key**: Used for correcting numeric
 entries.
- **F Key**: Used when instruction to execute function
 calculations (Functions written on key top are
 excluded) and instruction to execute conversion of
 unit systems are set and when the first memory is
 called out and cleared, and the second memory is
 called out.
 Instruction set by F key is released by depressing
 the key but in case of unit systems alone, instruction
 is continued until two keys for converted unit and
 unit system are depressed.
- **Sign Change Key**: Used for converting signs of the
 indicated value.
 However signs in the exponential part are only
 converted after the depression of the Exponential
 key EXP.
- **Exponential Key**: Used for designating the ex-
 ponential part of the input value.
- **Multiplication Key**: Used for performing multiplication.
- **Division Key**: Used for performing division.
- **Minus Key**: Used for performing subtraction.
- **Plus Key**: Used for performing addition.
- **Equal Key**: Used for obtaining calculating results.
- **Open Parenthesis Key**: Used for performing calculations
 according to its expression. Used as an open
 parenthesis when parenthesis function is required.
- **Closed Parenthesis Key**: Used for performing calculations
 according to its expression. Used as a closed
 parenthesis when parenthesis function is required.
- **Fraction Key**: Used for inputting data by fraction
 expression.
- **Plus-Memory Key**: Used for adding the displayed
 numerals to the first memory.
- **Total Recall Memory Key**: Used for recalling the
 content of the first memory and clear it, together
 with F key.
Store Memory Key: Used for storing the displayed numerals in the second memory.
Recall Memory Key: Used for recalling the content of the second memory, together with = key.

Before Calculation
1. Slide the power switch to ON.
2. Slide the switch to any necessary mode: when performing calculations dealing with degrees.
3. As all registers are cleared when the power switch is ON, Palmtronic is ready for immediate use.
4. When incorrect entries are made, depress the key to make correct entries and continue the operation.
5. Depress the key when the next calculation is performed without depressing the key.
6. Clear the first memory before starting calculation when it is used.
7. Please keep in mind that accurate results depend on correct key operation.

How to Input Numerals
1. Input numerals as they are written on paper when numerals within 8 digits including decimal points are input.
 When numerals are negative, input the numerals and depress the = key afterwards.

<table>
<thead>
<tr>
<th>Numerals input</th>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>456</td>
<td>4 5 6</td>
<td>456.</td>
</tr>
<tr>
<td>1234.5678</td>
<td>1 2 3 4 5 6 7 8</td>
<td>1234.5678</td>
</tr>
<tr>
<td>12.345678</td>
<td>1 2 3 4 5 6 7 8</td>
<td>-12.345678</td>
</tr>
</tbody>
</table>

2. To input numerals including exponential part, depress the = key after inputting the mantissa part.
 Then input the numerals of the exponential part.
 When the sign of the exponential part is negative, depress the = key after inputting the numerals in the exponential part.

<table>
<thead>
<tr>
<th>Numerals input</th>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.83×10^18</td>
<td>1 2 3 8 3 18</td>
<td>12.83</td>
</tr>
<tr>
<td>-34.567×10^25</td>
<td>3 4 5 6 7 25</td>
<td>-34.567</td>
</tr>
<tr>
<td>42.28×10^-21</td>
<td>4 2 2 8 2 1 21</td>
<td>42.28-21</td>
</tr>
<tr>
<td>-58.42×10^-46</td>
<td>5 8 4 2 4 6 46</td>
<td>-58.42-46</td>
</tr>
</tbody>
</table>

3. In mantissa part and exponential part, numerals up to 8 digits and 2 digits max. may be input respectively.
4. Fraction data can be input without performing fraction calculations.
 In this case, use the key and = key in the following manner:
 Example: In 12-5/16 operation 1 2 5 1 6
 In 7/16 operation 7 1 6
How to Correct Numerals Input

1. Clear all digits by the \(\text{C} \) key and input the right figures.
2. When the exponential part alone has to be corrected, depress again the \(\text{C} \) key. Then input the correct exponent.
3. When only signs of the exponential part have to be corrected, depress the \(\text{C} \) key.
4. It is possible to input and correct denominators by depressing the \(\text{C} \) key after inputting incorrect denominators. But when all numerals are corrected after depressing the fraction \(\frac{\text{C}}{\text{C}} \) key, depress the \(\text{C} \) key to perform calculation again. In this case, all registers are cleared.

<table>
<thead>
<tr>
<th>Numerals to be input</th>
<th>Operation</th>
<th>How to correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 2 3 4 5</td>
<td>(\text{C}) 1 2 3 4 5</td>
</tr>
<tr>
<td>2</td>
<td>34.567 (\times 10^{+2})</td>
<td>3 4 (\text{C}) 5 6 7 (\text{C})</td>
</tr>
<tr>
<td>3</td>
<td>42.786 (\times 10^{-1})</td>
<td>4 2 (\text{C}) 7 8 6 (\text{C})</td>
</tr>
<tr>
<td>4</td>
<td>128 (\frac{15}{6})</td>
<td>1 2 9 (\text{C}) 1 3 (\text{C})</td>
</tr>
</tbody>
</table>

1. When no exponent is used, the exponential part and the exponential sign part are not displayed.
2. In case of calculations not using exponents, intermediate calculation results and calculation results are automatically displayed with exponents in the following case.

Floating: 123456780.
Exponential expression \(\rightarrow \) 1.2345678 09

Floating: 0.00123450
Exponential expression \(\rightarrow \) 1.2345 \(\rightarrow \) 03

* When intermediate results and calculation results are displayed with exponents, the display will be that of a mantissa part within 8 digits with one digit of the integer.
3. Sign of mantissa and sign of exponent are negative, each negative sign lights up. No sign is displayed in plus.
4. Overflow error signs are displayed with E mark.
5. Decimal point on the rightmost display panel lights up only when F function works.
6. The (\(\ast \)1) Page 8 shows \(-1.2345678 \times 10^{-12} \) (\(\text{F} \) function is in execution.)

How to Use the \(\text{F} \) Key

Each function written on the top of the keys may be operated and executed by one touch but other functions written above the keys are made to execute and select instructions by the \(\text{F} \) key.

For example, in \(\text{sin} \) key, Sin function works when it is operated by one touch and when the \(\text{F} \) key is depressed, Sin\(^{-1}\) function works.

Example:
When Sin 30° has to be found, \(\rightarrow \) operation 30 \(\text{sin} \)
When Sin\(^{-1}\) 0.5 has to be found, \(\rightarrow \) operation 0.5 \(\text{sin}^{-1} \)
To offer a maximum function with minimum keys, the \(\text{F} \) key is provided as so-called second function.
Fundamental in Using

<table>
<thead>
<tr>
<th>Classification</th>
<th>Function</th>
<th>Operation procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>π, T, RM</td>
<td>![Constant or memory]</td>
</tr>
<tr>
<td>2</td>
<td>$\sin^{-1}, \cos^{-1}, \tan^{-1}, a^{\frac{1}{n}}, a^2, \sqrt[n]{a}, n!, a^2$</td>
<td>![Variable input] ![Function]</td>
</tr>
<tr>
<td>3</td>
<td>POL, REC</td>
<td>![Variable input 1] ![Function] ![Variable input 2] ![Function]</td>
</tr>
<tr>
<td>4</td>
<td>Mutual conversion of mile, yd, ft, in, ft/in, km, m, cm, mm, us gal, imp gal, liter, cc, s tn, l tn, kg, g, lb, oz, lb, oz</td>
<td>![Variable input] ![Converted unit system] ![Unit system]</td>
</tr>
</tbody>
</table>

Operation example

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sin^{-1} 0.5$</td>
<td>$\boxed{5}$</td>
<td>0.5</td>
</tr>
<tr>
<td>($=30$)</td>
<td>![sin]</td>
<td>30.</td>
</tr>
<tr>
<td>$\sqrt[3]{15}$</td>
<td>$\boxed{5}$</td>
<td>2.4662121</td>
</tr>
<tr>
<td>($=2.4662121$)</td>
<td></td>
<td>2.4662121</td>
</tr>
<tr>
<td>Constant π</td>
<td>$\boxed{5}$</td>
<td>0.</td>
</tr>
<tr>
<td>($=3.1415926$)</td>
<td></td>
<td>3.1415926</td>
</tr>
<tr>
<td>Recalls of the first memory</td>
<td>![Recall]</td>
<td>123.45</td>
</tr>
<tr>
<td>(123.45)</td>
<td></td>
<td>(The content of memory is cleared.)</td>
</tr>
<tr>
<td>$x=3, \ y=4$</td>
<td>$\boxed{3}$</td>
<td>3.</td>
</tr>
<tr>
<td>Conversion into polar co-ordinates</td>
<td>![Polar]</td>
<td>4.</td>
</tr>
<tr>
<td></td>
<td>![Polar]</td>
<td>5.</td>
</tr>
<tr>
<td></td>
<td>![Polar]</td>
<td>53.130102</td>
</tr>
<tr>
<td>Conversion of 135 yd into m</td>
<td>![Convert]</td>
<td>135.</td>
</tr>
<tr>
<td>($135 \text{ yd} = 123.444 \text{ m}$)</td>
<td>![Convert]</td>
<td>123.444</td>
</tr>
<tr>
<td>Conversion of 2 lbs. 3 oz into kg</td>
<td>![Convert]</td>
<td>2.3</td>
</tr>
<tr>
<td>($2 \text{ lb} 3 \text{ oz} = 0.9922333 \text{ kg}$)</td>
<td>![Convert]</td>
<td>0.9922333</td>
</tr>
</tbody>
</table>
How to Use the \(\frac{}{} \) (Fraction) Key

Use the \(\frac{}{} \) key in the following manner to input data with fractions without converting them into decimal system.

- **Key usage in calculation expression**
 \[\frac{1}{3} \times \frac{2}{5} \rightarrow \frac{12}{15} \times \frac{2}{3} \rightarrow 1 \frac{2}{3} \]
 \[(1 \frac{2}{3}) \times 2 \frac{2}{3} \rightarrow 1 \frac{2}{5} \times 3 \frac{3}{8} \rightarrow \left(4.6640625 \right) \]

- **Key usage in conversion function**
 \[\frac{13}{10} \text{ feet} \rightarrow \frac{1}{3} \text{ m} \rightarrow 1 \frac{3}{10} \text{ m} = (4.05765) \]

- **Key usage in power calculation**
 \[5 \frac{2}{3} \rightarrow 5 \times 2 \times 7 = (1.5838196) \]

Other Calculation Examples

<table>
<thead>
<tr>
<th>Example</th>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>[2 \times (1 \frac{1}{3} + 2 \frac{2}{5}) = 7.4666667]</td>
<td>2 (\times) 1 (\frac{}{}) 1 (\frac{}{}) 3 (\times)</td>
<td>(7.4666667)</td>
</tr>
<tr>
<td>[5 \times (1 + 0.5 \sin 30°) \times \sin 60° =]</td>
<td>5 (\times) 1 (\times) (\times)</td>
<td>(5.4126588)</td>
</tr>
<tr>
<td>[5 \times (\sin \frac{\pi}{6} + \frac{1}{4} \cos (0.1 + \frac{\pi}{6})) =]</td>
<td>5 (\times) (\sin) (\frac{}{}) (\frac{}{}) (\frac{}{})</td>
<td>(1.2956179)</td>
</tr>
<tr>
<td>[\sqrt{1 + 2 + \frac{1}{3} (1 - 0.2)^2} = 0.557856]</td>
<td>1 (\sqrt{}) (+) (+) (+) (\frac{}{}) (\times) (\times)</td>
<td>(0.557856)</td>
</tr>
</tbody>
</table>

How to Use the \(() \) (Parenthesis) Keys

This is not only used for calculations with parenthesis but also for performing calculation with equations included in functions.

The Palmtronic has seven memory registers for parenthesis in addition to the accumulation memory and storage memory ordinarily used to perform parenthesis calculations. Therefore calculations up to seven-fold parenthesis can be performed as shown in the following calculation example.

\[\left((1 (2 + 3) \times 4 + 5) \times 6 + 7 \right) \times 8 + 9 \times 10 + 11 \times 12 + 13 \times 14 + 15 = (2127245.) \]

But only double parentheses calculation is performed as in the following example in some cases.

\[2 + 3 \times (4 + 5 \times (6 + 7 \times 8)) = (944) \]

* Be sure to depress the \(\frac{}{} \) key in multiplication calculation just before and after the parenthesis in the middle of the equation.

Example: \[3 + 4 \times (5 + 6 \times 7) = 191 \]

Operation: \(3 \) \(+ \) \(\times \) \((\) \(5 \) \(+ \) \(\times \) \(6 \) \(\times \) \(7 \) \() \) \(\rightarrow \) (191)
How to Use the Memories
This Palmtronic has two memories: one for accumulation and the other for storage.

- In accumulation, the operation is performed as follows:
 Displayed numeral $\rightarrow \mathbf{w}$ key.
- When recalling accumulated results, the operation is performed as follows:
 \mathbf{e} key $\rightarrow \mathbf{w}$
 Or use \mathbf{w} key when it is used as a storage memory.
- When numerals are memorized, the operation is performed as follows:
 Displayed numeral $\rightarrow \mathbf{w}$ key.
- When recalling the content of memory, the operation is performed as follows:
 \mathbf{e} key $\rightarrow \mathbf{w}$ key.

1. When the first memory is used as an accumulated memory, clear the content of memory before starting calculations. Clear the keys as follows:
 \mathbf{e} key $\rightarrow \mathbf{w}$ key.
2. As soon as the content of the first memory is recalled, the content of memory is cleared.
 When it is necessary to memorize any data after recalled the content of memory, depress the \mathbf{w} key to input the data in the memory again.

How to Perform Calculation According to the Calculation Expression
As this Palmtronic adopts complete algebraic calculation method in four operations, calculations can be performed according to calculation expression. Parenthesis functions are available so that operations can be made according to calculation expression as much as possible. Perform calculations according to the following examples.

General calculations

<table>
<thead>
<tr>
<th>Example</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$45 + 6 \times 8.5 - 7.38 = 88.62$</td>
<td>$45 \ 6 \ 8.5 \ 7.38 \ (88.62)$</td>
</tr>
<tr>
<td>$(45 + 6) \times 8.5 - 7.38 = 426.12$</td>
<td>$(45 \ 6 \ 8.5 \ 7.38 \ (426.12)$</td>
</tr>
<tr>
<td>$2 + 3 \times (28 - 6 \times 3 + 4) + 8 - 92 \times 4 = -316$</td>
<td>$2 \ 3 \ 28 \ 6 \ 3 \ 4 \ 8 \ 4 \ (-316)$</td>
</tr>
<tr>
<td>$(1 + 3) \times (-6.23) \times (4.5 + 8)$</td>
<td>$(1 \ 3 \ (6.23 \times 4.5)$</td>
</tr>
<tr>
<td>$(9 - 8.43) = -177.555$</td>
<td>$9 \ 8.43 \ (-177.555)$</td>
</tr>
<tr>
<td>$((4 - 3.63 + 5) \times 0.8 - 0.68 \times 4.2 - 32.583) + 6 \times 5 =$</td>
<td>$(4 \ 3.63 \ 5 \ 0.8 \ 4.2 \ 32.583 \ 6 \ 5 \ (12.6042)$</td>
</tr>
</tbody>
</table>

(Note) In calculations according to *1 calculation expression, 6×8.5 shall be performed first since multiplication and division functions work ahead of addition and subtraction. Refer to *2.
Basic Calculations of Functions — Trigonometric and Inverse Trigonometric Functions

1. When a numeral is a degree, \(\text{Deg} \) is set; when it is a radian mode, \(\text{Rad} \) is set; and when it is a gradian mode, \(\text{Grad} \) is set.

2. The relation between radian and gradian modes is as follows:

 \[360 \text{ degrees} = 400 \text{ gradian} \]

3. When calculations are performed after numerals input executed calculation expression, use the \(\text{=} \) key or find calculating results by \(\text{ Mem} \) key. Then perform function calculations.

Example \[\sin (45 + 3 \times 23 - 20 \times 2) = 0.9612617 \]

Operation 1. \(L 45 + 3 \times 23 - 20 \times 2 \text{ Mem} \)

Operation 2. \(A 45 + 3 \times 23 - 20 \times 2 \text{ Mem} \)

4. When degree unit is degree, minute, second mode, convert it into a decimal notation and then perform trigonometric functions. (Refer to conversion of sexagesimal notation into decimal notation.)

5. When a result becomes 0, 1 or infinity in radian mode, the following is shown in an approximate value calculation due to exponent display priority.

1) \(\sin \pi = 1.8849556 \times 10^{-9} \) (≒ 0)

2) \(\cos \frac{\pi}{2} = 2.8060578 \times 10^{-8} \) (≒ 0)

3) \(\tan \frac{\pi}{4} = 0.9999999 \) (≒ 1)

4) \(\tan \frac{\pi}{2} = 35637185 \) (≒ 0)

5) \(\tan \frac{3}{4} \pi = -0.9999999 \) (≒ -1)

6) \(\tan \pi = -1.8849556 \times 10^{-9} \) (≒ 0)

Memory Calculation

<table>
<thead>
<tr>
<th>Example</th>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+) \sin 23° × log 2 = -0.1176217</td>
<td>23 =</td>
<td>0.3907311</td>
</tr>
<tr>
<td>(-) \sin 23° \times e^2 = -2.8874295</td>
<td>=</td>
<td>0.3907311</td>
</tr>
<tr>
<td>(+) \sin 23° \div 13 = 0.0300562</td>
<td>=</td>
<td>0.3907311</td>
</tr>
<tr>
<td>Total = -2.7394561</td>
<td>2 =</td>
<td>0.3010299</td>
</tr>
</tbody>
</table>

To clear the first memory, depress \(\text{F W} \) keys at the beginning.
Basic Calculations of Functions
- Logarithmic Function

<table>
<thead>
<tr>
<th>Example</th>
<th>Setting</th>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>sin30° + cos(15° + 4 × 5°) − tan(−150°) = 0.7418017</td>
<td></td>
<td>30 sin 15 cos 15 tan 150 = (0.7418017)</td>
<td></td>
</tr>
<tr>
<td>cos55.4° + tan48° 12' 30" = 1.5350474</td>
<td></td>
<td>55.4 cos 48 = 1.5350474</td>
<td></td>
</tr>
<tr>
<td>sin⁻¹ 0.7071 + cos⁻¹ 0.5 = tan⁻¹(0.78 × 2 − 0.2) = 51.326276</td>
<td></td>
<td>1.25 1.23 sin⁻¹ cos⁻¹ tan⁻¹ = (51.326276)</td>
<td></td>
</tr>
<tr>
<td>(Radian mode)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sin0.558 − cos(0.25 + 1.23) = 0.438819</td>
<td></td>
<td>0.558 sin 0.25 1.23 cos = (0.438819)</td>
<td></td>
</tr>
<tr>
<td>tan⁻¹ 0.794 + sin⁻¹ (0.6 − 0.08 × 4) = 0.9548657</td>
<td></td>
<td>0.794 tan⁻¹ sin⁻¹ 0.6 0.08 4 = (0.9548657)</td>
<td></td>
</tr>
<tr>
<td>(Gradian mode)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sin50° − cos28.57° + tan(25° − 4 × 50°) = 0.2203417</td>
<td>50 sin 28.57 cos 25 4 50 tan = (0.2203417)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tan⁻¹ 0.826 − sin⁻¹ 0.6 28 = 0.726653</td>
<td></td>
<td>0.826 tan⁻¹ sin⁻¹ 0.6 28 = (0.726653)</td>
<td></td>
</tr>
</tbody>
</table>

- Power Function

<table>
<thead>
<tr>
<th>Example</th>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10^{23} = 1.0000000$</td>
<td>23</td>
<td>(1.0000000 23)</td>
</tr>
<tr>
<td>$10^{2.35} = 239.8329$</td>
<td>2.35</td>
<td>(239.8329)</td>
</tr>
<tr>
<td>$10^{3.5} = 1.9306977$</td>
<td>2 3.5</td>
<td>(1.9306977)</td>
</tr>
<tr>
<td>$10^{(2+3×0.6)} = 6309.5734$</td>
<td>2 3 0.6 6 10</td>
<td>(6309.5734)</td>
</tr>
<tr>
<td>$e^{2.5} = 1.535063$</td>
<td>3 2.5</td>
<td>(1.535063)</td>
</tr>
<tr>
<td>$5.82^{2} = 33.8724$</td>
<td>5.82 2</td>
<td>(33.8724)</td>
</tr>
<tr>
<td>$4.5^{2.8} − (4.75 + 6 × 3)^{0.51}$</td>
<td>4.5 2.8 4.75 6 3 0.51 = (−6.8225836 08)</td>
<td></td>
</tr>
</tbody>
</table>

18
Basic Calculations of Functions — Square Root, Cubic Root, Factorial, and Constant π

<table>
<thead>
<tr>
<th>Example</th>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Square root)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\sqrt{28.45} = 5.3338541)</td>
<td>28.45</td>
<td>(5.3338541)</td>
</tr>
<tr>
<td>(\sqrt[3]{3.651 \times 10^{23}} = 6.0423505 \times 10^{11})</td>
<td>3.651</td>
<td>(6.0423505 11)</td>
</tr>
<tr>
<td>(Cubic root)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\sqrt[3]{29.568 \times 10^{37}} = 6.6620411 \times 10^{17})</td>
<td>29.568</td>
<td>(6.6620411 17)</td>
</tr>
<tr>
<td>(Extraction of n-th root)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\sqrt[100]{2.3842868 \times 10^{35}} = 100 \times 5.3)</td>
<td>100 5.3</td>
<td>(2.3842868)</td>
</tr>
<tr>
<td>(Factorial)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(25! = 1.5511210)</td>
<td>25</td>
<td>(1.5511210 25)</td>
</tr>
<tr>
<td>((4 \times 2 - 3)! = 120)</td>
<td>(4 \times 2 - 3 \times 10)</td>
<td>(120.)</td>
</tr>
<tr>
<td>(Constant π)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3.1415926)</td>
<td></td>
<td>(3.1415926)</td>
</tr>
</tbody>
</table>

Basic Calculations of Functions — Conversion of Sexagesimal Notation into Decimal Notation, and Vice-Versa

<table>
<thead>
<tr>
<th>Example</th>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexagesimal notation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>into decimal notation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(360^\circ 12' 38'')</td>
<td>360.1238</td>
<td>(360.21056)</td>
</tr>
<tr>
<td>(12' 35'')</td>
<td>.1235</td>
<td>(0.2097222)</td>
</tr>
<tr>
<td>Decimal notation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>into sexagesimal notation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4.38973)</td>
<td>4.38973</td>
<td>(4.2323028)</td>
</tr>
<tr>
<td>(3.38 \times 10^{-4})</td>
<td>3.38</td>
<td>(1:2168000 - 04)</td>
</tr>
</tbody>
</table>

1. To input sexagesimal notation, follow the following procedure:
 e.g. \(123^\circ 45' 12'' 34\) → \(123 \circ 45 12 34\)

Results by conversion of decimal notation into sexagesimal notation are performed the same way as in the above procedure.

Basic Calculations of Functions — Conversion into Polar Co-ordinates or into Rectangular Co-ordinates

<table>
<thead>
<tr>
<th>Example</th>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversion into rectangular co-ordinates</td>
<td>(28) 48.5</td>
<td>(18.553361)</td>
</tr>
<tr>
<td></td>
<td>3 (\theta) 4</td>
<td>(20.97076)</td>
</tr>
<tr>
<td>Conversion into polar co-ordinates</td>
<td>((3, 4))</td>
<td>(5.)</td>
</tr>
</tbody>
</table>

1. Input data as follows in conversion into rectangular co-ordinates: \(x\) co-ordinates and \(y\) co-ordinates; in conversion into polar co-ordinates, input data in the order of \(r\) and \(\theta\).

2. Two results can be found for two variables but in conversion into polar co-ordinates, data are output in the order of \(r\) and \(\theta\) and in conversion into rectangular co-ordinates, they are output in the order of \(x\) and \(y\).
Various Calculations

<table>
<thead>
<tr>
<th>Example</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sqrt{\sin^2 23 + \cos^2 43} = 0.8291857$</td>
<td>$\sqrt{23 \ \sin \ 43 + \cos 43} = 0.8291857$</td>
</tr>
<tr>
<td>(\sin h 0.5 = \frac{1}{2}(e^{0.5} - e^{-0.5}))</td>
<td>$2 \ \times \ 0.5 \ \sin \ 0.5 \ \cos \ 0.5 = 0.5210953$</td>
</tr>
<tr>
<td>(\cosh 0.6 = \frac{1}{2}(e^{0.6} + e^{-0.6}))</td>
<td>$2 \ \times \ 0.6 \ \cosh \ 0.6 = 1.1854652$</td>
</tr>
<tr>
<td>(\sin h^{-1} 2.5 = \ln(2.5 + \sqrt{2.5^2 + 1}))</td>
<td>$\ln 2.5 \ \cosh 1 = 1.64722311$</td>
</tr>
<tr>
<td>(\cos h^{-1} 4.0 = \ln(4 + \sqrt{4^2 - 1}))</td>
<td>$\ln 4 \ \cosh 1 = 2.0634371$</td>
</tr>
</tbody>
</table>

Example 1.

If a tetrapod containing 250 cc milk is made from a regular triangle paper box, what will be one base in inch?

Calculation expression

Let one base of the paper vessel be \(x \) and the height be \(h \).

Area of one surface \(S = \frac{1}{2} \times x \times \sqrt{\frac{3}{2}} \times x = \frac{\sqrt{3}}{4} x^2 \)

Volume \(= 250 \text{(cc)} = \frac{1}{3} \times S \times h = \frac{1}{3} \times S \times \frac{1}{3} \times \sqrt{\frac{3}{2}} x^2 \times \frac{1}{3} \times \frac{1}{3} x^3 \)

\(\Rightarrow \frac{2}{3} = \frac{\sqrt{2} x}{12} \)

\(\Rightarrow x = \frac{3}{\sqrt{2}} \times 250 \times 12/\sqrt{2} \rightarrow \text{convert cm into inch} \)

Operation

\[250 \times 12 \times 2 \times \sqrt[3]{2} \times 2 \times \sqrt[3]{2} \times \sqrt[3]{2} = (5.0586547) \]
Example 2.

Here is a regular triangle coil with one base being 100 cm long. Uneased copper wire 0.1 cm diameter is in four coils and its pitch is 0.5 cm. What μH will be self-inductance L?

Calculation expression

Let the length of one base of the triangle be a (cm), the number of coils times pitch be b and the number of coils be N.

\[
L = 0.008 \, a \, N^2 \left[2.303 \log \frac{a}{b} + 0.726 + 0.2231 \frac{b}{a} \right] - 0.008aN \left(A + B \right)
\]

Provided A and B are constants ($A = -1.053$ and $B = 0.197$).

Operation

\[
\begin{align*}
L &= 0.008 \times 100 \times 4 \times \log \frac{a}{b} + 2.303 \times 100 \times 4 \times 0.197 \times 0.726 + 0.2231 \times 4 \\
&= 199.67987
\end{align*}
\]

Example 3.

Obtain intersecting co-ordinates $C(x, y)$ of two straight lines from directional angles α and β to co-ordinates $A(x_1, y_1)$ and $B(x_2, y_2)$, and intersecting point.

Provided

\[
\begin{align*}
A & \quad \begin{cases} x_1 = 103.5 \\ y_1 = 24.3 \end{cases} \\
B & \quad \begin{cases} x_2 = 309 \\ y_2 = 5.62 \end{cases}
\end{align*}
\]

\[
\alpha = 26^\circ 50' 23'' \quad \beta = 335^\circ 3' 19''
\]

Calculation expression

Let its respective distance from the intersecting point C through A and B be l_1 and l_2.

\[
\begin{align*}
l_1 &= \frac{(x_2 - x_1) \sin \beta - (y_2 - y_1) \cos \beta}{\sin(\beta - \alpha)} \\
l_2 &= \frac{(x_2 - x_1) \sin \alpha - (y_2 - y_1) \cos \alpha}{\sin(\beta - \alpha)}
\end{align*}
\]

Co-ordinates $C(x, y)$ to be obtained as follows:

\[
\begin{align*}
x &= x_1 + l_1 \cos \alpha = x_2 + l_2 \cos \beta \\
y &= y_1 + l_1 \sin \alpha = y_2 + l_2 \sin \beta
\end{align*}
\]

Operation

\[
\begin{align*}
x &= 103.5 \times 103.5 \times 335.0319 \times 103.5 \times 335.0319 \\
&= 5.62 \times 24.3 \times 335.0319 \times 24.3 \times 335.0319 \\
&= 26.5023 \times 26.5023 \times 26.5023 \times 26.5023 \times 335.0319 \\
&= 182.69035
\end{align*}
\]

\[
y &= 24.3 \times 24.3 \times 26.5023 \times 26.5023 \times 335.0319 \\
&= 6.370858
\end{align*}
\]
Example 4.

What kg/cm² will be inner pressure obtained, if allowable stress of 650 kg/cm² has a 38 cm ID and thick wall 4 cm cylindrical tube?

Calculation expression

Since \(r_1 = 19 \text{ cm}, r_2 = 19 + 4 = 23 \text{ cm}, \) and \(J_0 = 650 \text{ kg/cm}^2, \) let the inner pressure be \(P_1. \)

\[
(\sigma^i)_{\text{max}} = \frac{P_1 (r_2^2 - r_1^2)}{r_2^2 - r_1^2} = \frac{650 (23^2 - 19^2)}{23^2 + 19^2}
\]

\[
\therefore P_1 = \frac{650 (23^2 - 19^2)}{23^2 + 19^2}
\]

Operation

\[
650 \times 23 \div 19 = 122.69663
\]

Example 5.

When a copper bar 1.4m long and having a regular triangle section of 6.2 cm² receives 5800 kg tensile strength and a pressure of 290 kg/cm² from the surrounding area, how is the length of this bar changed?

Calculation expression

\[
I = \text{length} \quad \sqrt{x} = \text{Stress of length direction} \\
\sqrt{\sqrt{A}} = \text{Stress of width and thickness direction} \\
E = 2.1 \times 10^8 \text{ kg/cm}^2 \\
\varepsilon_A = \text{Distortion to } \sqrt{x}
\]

Then,

\[
\varepsilon_A = \frac{l}{E} (\sigma_2 - \sigma_y) = \frac{l}{2.1 \times 10^8} (5800 - 290) = 0.00583565 \times 140 = 0.0739655 \text{ cm}
\]

Operation

\[
140 \times 2.1 \times 6 \times 5 \times 5800 \times 6.2 = 580 \times 60 \times 10 \times 3 = (0.0739655)
\]

Example 6.

As illustrated, an assembled bar with two different sections and materials is fixed on steel wall on both sides. What will be thermal stress when a temperature of 60°C \((t_1)\) raised to 98°C \((t_2)\)?

Provided

\[
\begin{align*}
A_1 &= 48.6 \text{ cm}^2 \\
A_2 &= 15.7 \text{ cm}^2 \\
E_1 &= 0.93 \times 10^6 \text{ kg/cm}^2 \\
E_2 &= 2.12 \times 10^6 \text{ kg/cm}^2 \\
\alpha_1 &= 1.84 \times 10^{-5} \\
\alpha_2 &= 1.12 \times 10^{-5}
\end{align*}
\]

Calculation expression

Let thermal stress arising in 1 and 2 be \(\sqrt{1}\) and \(\sqrt{2}\) and elongation be \(\xi_1\) and \(\xi_2\),

\[
\sigma_1 = \alpha_1 A_1 = \alpha_2 A_2 \quad \ldots \ldots \ldots (1)
\]

\[
\lambda_1 + \lambda_2 = \frac{\alpha_1}{E_1} l_1 + \frac{\alpha_2}{E_2} l_2 \quad \ldots \ldots \ldots (2)
\]

And free expansion amount by heat as is follows:

\[
\Delta l = \alpha_1 (t_2 - t_1) l_1 + \alpha_2 (t_2 - t_1) l_2 \quad \ldots \ldots \ldots (3)
\]

Since equations (2) and (3) are the same,

\[
\frac{\alpha_1}{E_1} l_1 + \frac{\alpha_2}{E_2} l_2 = (\alpha_1 l_1 + \alpha_2 l_2) (t_2 - t_1)
\]

Thus,

\[
\sigma_1 = \frac{(\alpha_1 l_1 + \alpha_2 l_2)(t_2 - t_1)}{l_1 / E_1 + A_1 / A_2 / E_2} \\
\sigma_2 = \frac{(\alpha_1 l_1 + \alpha_2 l_2)(t_2 - t_1)}{l_2 / E_2 + A_2 l_1 / A_1 E_1}
\]

Operation

\[
\sigma_1 : 60 1.84 \times 10^5 23 1.12 \times 10^6 5 60 31 1 1 98 \\
\sigma_2 : 60 1.12 \times 10^6 23 1.93 \times 6 48.6 31 15.7 23 48.6 0.93 \times 23 6 31 \times (1294.6792)
\]
How to Perform Conversion Calculation

1. Conversion calculations are performed as follows:

 Input numerals ➔ F key ➔ Conversion unit ➔ Conversion Unit

 Ex. 1) 128 yd ➔ \(x_1 (=117.0432) \) m
 Operation 128 ➔ ➔ ➔ D
 A B C D

 Ex. 2) 582 kg ➔ \(x_2 (=12830904) \) pound
 Operation 582 ➔ ➔ ➔ D
 A B C D

2. The blocks of this Palmtronic are as shown below.

 ![Conversion Unit Blocks Diagram]

 *1 Error sign (E) lights up on the left side of the display panel when calculations other than mutual conversion within the same block are performed.

 *2 Abbreviated letters written on the upper parts of the keys mean the following:
 - us. gal: American gallon
 - imp. gal: British gallon
 - S. tn: Short ton
 - l. tn: Long ton
 - ft./in.: Foot and inch. Used when both of the units are input and output simultaneously.
 - lb./oz.: Pound and ounce. Used when both of the units are input and output simultaneously.

3. Mutual conversion rules between each unit are as follows:

 ![Conversion Table]

 Premise: 1 liter is equal to 1 dm³.

 Definition:
 - 1 yard = 0.9144 m
 - 1 pound = 0.45359237 kg
 - 1 (US) gallon = 231 inch³
 - 1 (imp) gallon = 1.200942 (US) gallon

 Mutual relation:
 - 36 inches = 3 feet = 1 yard = \(\frac{1}{1760} \) miles
 - 1 pound = 16 ounces = \(\frac{1}{2240} \) (imp) tons
 - 1 short ton = 2000 pounds
 - 1 long ton = 2240 pounds

4. The rules when mixed units are input or output are as follows:
 Integer part ... Feet or pounds
 Decimal point part ... Integer part of inch or ounces
 by two decimal point digits

 Input display \(XXX \cdot XXX \)
 Feet or pounds
 Inches or integer
 Decimal
 part of ounces
 part of ounces

 Output display \(XXX \cdot XXXXXX \)
 Ex. 1) When 12 feet 5 inches,
 Input: 1 2 5 6
 Output: 12.05
 (Display)
Ex. 2) When 5 pounds 3 ounces,
Input: 5 3
Output: 5.03
(Display)

*1 Fraction key and input key of mixed units cannot be used simultaneously.
*2 Input numerals within two digits when inch or ounce is input.
*3 When inch or ounce is one digit, for example, 5 inches, it does not matter whether \(\times \times 0.05 \) is input or \(\times \times 0.5 \) is input. However, be sure to represent the integer part by two digits after decimal points as \(\times \times 0.05 \) when output is made. (See Ex. 1)

*4 If any numeral converting 16 in case of inch unit system and ounce unit system with two digits after decimal point is input, feet and pounds are respectively round off automatically. For example, if 3 feet 20 inches are input as they are, it will be the same as when 4 feet 8 inches are input.

<table>
<thead>
<tr>
<th>Conversion</th>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.584 miles (\rightarrow) km</td>
<td>1 2 5 8 4 F M</td>
<td>(20.251985)</td>
</tr>
<tr>
<td>0.482 miles (\rightarrow) m</td>
<td>4 8 2 F M</td>
<td>(0.77570381)</td>
</tr>
<tr>
<td>38.7 (\times 10^4) cm (\rightarrow) mile</td>
<td>3 8 7 8 F M</td>
<td>(24047.065)</td>
</tr>
<tr>
<td>6.89 feet (\rightarrow) m</td>
<td>6 8 9 F M</td>
<td>(2.100072)</td>
</tr>
<tr>
<td>3 (\frac{7}{8}) feet (\rightarrow) cm</td>
<td>3 7 8 F M</td>
<td>(118.11)</td>
</tr>
<tr>
<td>11 (\frac{1}{16}) inches (\rightarrow) mm</td>
<td>1 1 1 6 F M</td>
<td>(17.4625)</td>
</tr>
<tr>
<td>32 feet 6 inches (\rightarrow) cm</td>
<td>3 2 6 F M</td>
<td>(990.6)</td>
</tr>
<tr>
<td>38.689 cm (\rightarrow) feet/ inches</td>
<td>3 8 6 8 9 F M</td>
<td>(1.0323189)</td>
</tr>
<tr>
<td>382 m(^2) (\rightarrow) cm(^2)</td>
<td>3 8 2 F M</td>
<td>(38199998)</td>
</tr>
<tr>
<td>148.67 cm(^2) (\rightarrow) feet(^2)</td>
<td>1 4 8 6 7 F M</td>
<td>(0.160027)</td>
</tr>
<tr>
<td>98.067 feet(^3) (\rightarrow) cm(^3)</td>
<td>9 8 0 6 7 F M</td>
<td>(2776947.8)</td>
</tr>
</tbody>
</table>
Conversion — (Volume)

<table>
<thead>
<tr>
<th>Conversion</th>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.83 (US) gallon</td>
<td>3 2 8 3</td>
<td>(124.27507)</td>
</tr>
<tr>
<td>4.83 × 10⁶ (imp) gallon</td>
<td>4 8 3 6</td>
<td>(21957470.)</td>
</tr>
<tr>
<td>0.3721 (US) gallon</td>
<td>3 7 2 1</td>
<td>(1408.5517)</td>
</tr>
<tr>
<td>29.41 × 10³ cc</td>
<td>2 9 4 1</td>
<td>(2941000.)</td>
</tr>
<tr>
<td>32.9971 l (US)</td>
<td>3 2 9 9 7</td>
<td>(8.7169116)</td>
</tr>
<tr>
<td>80.07 l (imp.)</td>
<td>8 0 0 7</td>
<td>(17.613054)</td>
</tr>
</tbody>
</table>

NiCd Battery Pack
1. Insert the battery pack into the Palmtronic so that the metallic part of the battery pack will contact to that of the Palmtronic.
2. When removing, pull out the battery pack while pushing down the latch of the battery pack. Be careful that the metallic part of the pack will not touch any other metal.
 - For charging the NiCd battery pack, please refer to the instruction manual of the Canon Palmtronic Charger II.

Conversion — (Weight)

<table>
<thead>
<tr>
<th>Conversion</th>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.386 short tons</td>
<td>4 3 8 6</td>
<td>(3978.9123)</td>
</tr>
<tr>
<td>52.08 long tons</td>
<td>5 2 0 8</td>
<td>(52915.723)</td>
</tr>
<tr>
<td>29.847 × 10⁴ pounds</td>
<td>2 9 8 4 7</td>
<td>(1.3538371 08)</td>
</tr>
<tr>
<td>389 g</td>
<td>3 8 9</td>
<td>(13.721571)</td>
</tr>
<tr>
<td>350 pounds 4 ounces</td>
<td>3 5 0 4</td>
<td>(158870.73)</td>
</tr>
<tr>
<td>284.6 g</td>
<td>2 8 4 6</td>
<td>(0.6274356)</td>
</tr>
<tr>
<td>104.289 kg</td>
<td>1 0 4 2 8 9</td>
<td>(229.14686)</td>
</tr>
</tbody>
</table>

Dry Battery Cassette
1. Load the dry battery cassette with four new penlight dry batteries (size AA). When loading the batteries, first lay the black tape which comes attached with the cassette, on the bottom and then put the batteries from the (−) side according to the diagram inside. The Palmtronic will not operate if the batteries are placed upside down.
2. Load the dry battery cassette into the battery chamber of the Palmtronic.
3. When changing the dry batteries, take them out while holding the latch of the cassette. Change all of the four batteries at the same time. The dry batteries can be easily taken out by pulling the black tape of the cassette.
Specifications

Type: "Palmtronic" (miniaturized) electronic calculator with function keys.

Keyboard: 10-key system

Display: LED (Light Emitting Diodes)
8-digit (mantissa part) + 1-digit (mantissa sign)
2-digit (exponential part) + 1-digit (exponential sign)
display totalling 12-digit display

Calculation capacity: Calculation range; \(\pm 1.0000000 \times 10^{-99} \sim \pm 9.9999999 \times 10^{99} \)

Effective accuracy: 8 digit

Types of calculation: Addition, subtraction, multiplication, and division. Parenthesis calculation, fraction calculation, and mixed calculation. Function calculations (Trigonometric, Inverse trigonometric, Logarithmic, Exponential, Square and Cubic root, Power, and Reciprocal)

Calculation speed: Four operation: Within 0.1 seconds.
Function calculations: 2 seconds max.

Memory: Two memories (One for storage and the other for accumulation)

Negative numbers: True value indication with a minus sign.

Decimal point system: Leftmost digit priority with all-floating decimal point system.

Indication functions: Error indication. Zero unpressed indication panel/ exponential indication with a minus sign.

Safety devices: Electronically locked when results overflow or error presents. Automatic clearing circuit for immediate use.

Elements: MOS-LSI.

Power source:

1. 4 penlight dry batteries. D.C. 6V 0.9W. High performance manganese batteries: About 10 hours of continuous use. Alkaline batteries make possible about 18 hours of continuous use.

2. NiCd battery pack (charged with the Palmtronic Charger). D.C. 6V 1W. About 7 hours of continuous use is possible with one full charge.

3. AC with the Palmtronic Charger AC power source.

Usable temperature: \(0^\circ \text{C} \sim 40^\circ \text{C} (32^\circ \text{F} \sim 104^\circ \text{F}) \)

Size: 175mm long x 86mm wide x 48mm high
(6-7/8" x 3-3/8" x 1-7/8"")

Weight: 370g (13 oz)

Subject to alterations.