CONGRATULATIONS!

You are now the proud owner of one of the most advanced Electronic Slide Rules available today — the Bohn Omnitrex SR-1. This versatile electronic instrument not only silently performs the four basic arithmetic functions — addition, subtraction, multiplication, and division, but also performs more advanced calculations such as extracting square roots, squares, reciprocals, and percentages, all with true credit balance. The Bohn SR-1 also has a full function storage memory plus floating or fixed decimal.

The SR-1 comes complete with built in rechargeable batteries for a lifetime service and a combination AC adapter/charger.

The Bohn SR-1 is constructed of the most advanced space-age micro circuits combined with one of the largest, easiest to read displays available in a hand held calculator.

With proper care your Bohn SR-1 will provide dependable service for many years to come.
1. Display Blanking Indicator
2. Negative Overflow, Low Battery and Entry Error Indicator
3. Square/Percent Key
4. Square Root/Reciprocal Key
5. Selector Switch for Proper Mode
6. On-Off Switch
7. Numeric Entry Keyboard with Decimal Point
8. Memory and Constant Key
9. Equal Key
10. Addition Key
11. Multiplication Key
12. Division Key
13. Subtraction Key
14. Clear/Clear Entry Key
15. Display Panel
 (8 digits maximum with decimal point)
16. Power Cord Socket
SPECIFICATIONS

Functions
- Addition
- Subtraction
- Multiplication
- Division
- Raising to a power
- Memory
- Percentage Calculations
- Constant in all functions
- 5/4 Round-off (Fixed Decimal Mode)
- Clear Entry/Total Clear
- Mixed Calculations
- True Credit Balance

Capacity
- Addition and Subtraction Results — 8 digits
- Product — 8 digits
- Quotient — 8 digits

Decimal
Automatic floating logic or fixed position mode from 0-7.

Overflow System
Display indicates E Symbol if entry exceeds 8 whole numbers. Result overflow will appear as □ symbol when result produces more than 8 significant digits.

Underflow System
Display indicates the 8 most significant digits for answers greater than 8 digits.

Negative Number
Display indicates negative number by (−) sign at far left.

Display
Flourescent Display Tubes

Components
Mos/LSI and silicon solid state

Dimensions
1½ " high, 6½ " long, 4¼ " wide

Weight
10 ozs. net (without rechargeable batteries)
PRIOR TO USING

The rechargeable nickel cadmium batteries supplied with your Bohn Omnitrex SR-1 were completely charged at the factory, but may require additional charging before commencing battery operation due to discharging during shipping.
You may use the Omnitrex SR-1 while it is being charged. Just plug the charger/adapter into an electrical outlet and the charger/adapter cord into the power cord socket on the machine. A full charge should take about 12 hours.

HOW TO USE “AC” POWER

Turn ON/OFF switch to “OFF”
Plug the AC charger/adapter into 110 volt, AC power source. Insert the socket at the other end of the cord into the receptacle located on the calculator.
Turn the ON-OFF switch to “ON” position. Your calculator now is being operated thru “AC” power source, and is being charged at the same time.

HOW TO USE “BATTERY” POWER

If your unit was previously being operated by AC power source, then to use unit on “battery” power, move the ON-OFF switch to “OFF”. Disconnect socket from calculator, then turn the ON-OFF switch to “ON” again. Your calculator is now ready to be operated on “Battery” power source.

LOW BATTERY INDICATION

When battery power supply values are reduced to a sufficiently low level to produce erroneous calculations, a special symbol (L) is displayed on the left most digit of the display. Batteries should then be fully recharged. Under normal usage your Bohn S/R will operate efficiently for approximately 4 hours on fully recharged batteries.
GENERAL INFORMATION

All numbers are entered in sign/magnitude format. A true algebraic system is provided so that key sequences reflect precisely the manner in which a problem is written or stated.

EXAMPLE

\[
\frac{(-2 + 3 - 5) \times -(6)}{-8} = -3
\]

Key sequence \(-2 + 3 - 5 \times -6 + -8 = -3\)

DECIMAL OPERATIONS

When the unit is first turned on, it is automatically set in floating decimal mode.

Entry into the fixed decimal mode is accomplished using a specific key sequence:

\[
\ast = N \quad \text{where } N \text{ may be any numeral key from 0-7. Example: for 4 places depress } \ast = 4. \text{ You may change the decimal testing by redoing the sequence with another } N. \text{ However, when returning to the floating decimal, machine must be turned "OFF" and then "ON"}
\]
ADDITION AND SUBTRACTION

EXAMPLE:

\[12 + 14 = 26 \]

\[
\begin{array}{c}
12 \\
+ 14 \\
\hline
26
\end{array}
\]

EXAMPLE:

\[3.86 + 515.00 - 65.00 = 453.86 \]

\[
\begin{array}{c}
3.86 \\
+ 515.00 \\
- 65.00 \\
\hline
453.86
\end{array}
\]

EXAMPLE:

\[610 - 845 = -235 \]

\[
\begin{array}{c}
610 \\
\text{Error} \\
- 845 \\
\hline
- 235
\end{array}
\]

*Note: Two zeroes are always automatically added by the unit so it is unnecessary in this example to depress the zero key twice, or to depress the decimal key.

**Note: In this example (−) symbol would appear at far left indicating that the number is a (minus) −235. This is a true credit balance total.
MULTIPLICATION AND DIVISION

<table>
<thead>
<tr>
<th>ENTER NUMBERS</th>
<th>TOUCH FUNCTION KEY</th>
<th>DISPLAY NOW READS</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 x 14 = 168</td>
<td></td>
<td>12 x 14 = 168</td>
</tr>
<tr>
<td>2.67 x 15.2 = 40.584</td>
<td>2.67 x 15.2 = 40.584</td>
<td></td>
</tr>
<tr>
<td>- 4 x 3 = -12</td>
<td></td>
<td>- 4 x 3 = -12</td>
</tr>
<tr>
<td>126 ÷ 6 = 21</td>
<td></td>
<td>126 ÷ 6 = 21</td>
</tr>
<tr>
<td>14.36 ÷ 8.2 = 1.75121951210</td>
<td>14.36 ÷ 8.2 = 1.75121951210</td>
<td></td>
</tr>
</tbody>
</table>

Note: In this example the unit has utilized automatic underflow system.
Chain Calculations

Example:

\[
123.85 \times 346 \times 346.767 = 69840561.555290 \\
\div 3 \times 14.1 = 42852.1 \\
\times 346 = 14859694.16070 \\
\times 346.767 = 4953231.38680 \\
3) 1485969416070 = 69840561.555290
\]

<table>
<thead>
<tr>
<th>ENTER NUMBERS</th>
<th>TOUCH FUNCTION KEY</th>
<th>DISPLAY NOW READS</th>
</tr>
</thead>
<tbody>
<tr>
<td>123.85 346 346.767</td>
<td>(\times) (\times) (+) (=)</td>
<td>69840561.555290</td>
</tr>
</tbody>
</table>

Mixed Calculations

Example:

\[
55 \times 12 \div 22 + 85 - 14 = 101
\]

<table>
<thead>
<tr>
<th>ENTER NUMBERS</th>
<th>TOUCH FUNCTION KEY</th>
<th>DISPLAY NOW READS</th>
</tr>
</thead>
<tbody>
<tr>
<td>55 55 (\times) (\div) (\times) (+) (-) (=)</td>
<td>55 30 115 101</td>
<td>101</td>
</tr>
</tbody>
</table>
PERCENT CALCULATIONS

EXAMPLE:
First move selector switch to bottom position
6% of 220 = 13.2

<table>
<thead>
<tr>
<th>ENTER NUMBERS</th>
<th>TOUCH FUNCTION KEY</th>
<th>DISPLAY NOW READS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 2 0</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>C</td>
<td>0.</td>
</tr>
</tbody>
</table>

ROUNDOFF
When operating in the fixed point mode, results have a 5/4 rounded off.

DISPLAY BLANKING
To conserve on battery life, machine will blank out after 20 seconds. A (−) indicator in the middle of display will appear. To recall the previous display, depress = key.

OVERFLOW
If more than 8 digits are entered an (E) indicator will appear.
If result of problem is more than 8 digits, the machine will show a (□) on far left.
To get correct decimal position, move decimal eight places to right.

UNDERFLOW
Answers will be decimally correct at all times.
RAISING TO A POWER

EXAMPLE:

Move selector switch to upper position

\[3^4 = 81 \]

\[3 \times 3 \times 3 \times 3 \]

EXAMPLE:

Move selector switch to upper position

\[2^5 \times 3 = 96 \]

\[2 \times 2 \times 2 \times 2 \times 2 \times 3 = 96 \]

EXAMPLE:

\[1365 \div 2.2^3 = 128.19308 \]

\[\frac{128.19308}{10.648} \]

\[2 \]
CONSTANT MULTIPLIER OPERATION

(Following problems all have .75 as a constant)

<table>
<thead>
<tr>
<th>Example</th>
<th>Enter Numbers</th>
<th>Touch Function Key</th>
<th>Display Now Reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>(.75 \times 386 = 289.50)</td>
<td>386</td>
<td>.75</td>
<td>0.75</td>
</tr>
<tr>
<td>(\times .75)</td>
<td>386</td>
<td>75</td>
<td>289.5</td>
</tr>
<tr>
<td>(289.50)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(.75 \times 486 = 364.5)</td>
<td>486</td>
<td>.75</td>
<td>364.5</td>
</tr>
<tr>
<td>(\times .75)</td>
<td>486</td>
<td>75</td>
<td>364.5</td>
</tr>
<tr>
<td>(364.50)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(.75 \times 1397 = 1047.75)</td>
<td>1397</td>
<td>.75</td>
<td>1047.75</td>
</tr>
<tr>
<td>(\times .75)</td>
<td>1397</td>
<td>75</td>
<td>1047.75</td>
</tr>
<tr>
<td>(1047.75)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONSTANT DIVISOR OPERATION

(Following problems all have 8 as a constant)

<table>
<thead>
<tr>
<th>Example</th>
<th>Enter Numbers</th>
<th>Touch Function Key</th>
<th>Display Now Reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>(25 \div 8 = 3.125)</td>
<td>3.125</td>
<td>8</td>
<td>8.1</td>
</tr>
<tr>
<td>(8) (\div 25.000)</td>
<td>8</td>
<td>25</td>
<td>3.125</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>(546 \div 8 = 68.25)</td>
<td>68.25</td>
<td>8</td>
<td>68.25</td>
</tr>
<tr>
<td>(8) (\div 546.00)</td>
<td>8</td>
<td>546</td>
<td>68.25</td>
</tr>
<tr>
<td>(1734 \div 8 = 216.75)</td>
<td>216.75</td>
<td>8</td>
<td>216.75</td>
</tr>
<tr>
<td>(8) (\div 1734.00)</td>
<td>8</td>
<td>1734</td>
<td>216.75</td>
</tr>
</tbody>
</table>
CALCULATION WITH MEMORY

<table>
<thead>
<tr>
<th>Example:</th>
<th>Enter Numbers</th>
<th>Touch Function Key</th>
<th>Display Now Reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M = 4$</td>
<td>4</td>
<td>$\text{C} M$</td>
<td>4.</td>
</tr>
<tr>
<td>$M + 6 = 10$</td>
<td>6</td>
<td>$\text{C} M +$</td>
<td>10.</td>
</tr>
<tr>
<td>$M - 3 = 1$</td>
<td>3</td>
<td>$\text{C} M -$</td>
<td>4.</td>
</tr>
<tr>
<td>$M \times 6 = 24$</td>
<td>6</td>
<td>$\text{C} M \times$</td>
<td>4.</td>
</tr>
<tr>
<td>$M ÷ 2 = 2$</td>
<td>2</td>
<td>$\text{C} M ÷$</td>
<td>2.</td>
</tr>
</tbody>
</table>

Move selector switch to upper position

$M^2 = 16$
SQUARE ROOT
First move selector switch to upper position

EXAMPLE:
\[\sqrt{169} = 13 \]

\[\begin{array}{ccc|c|c}
1 & 6 & 9 & \sqrt{} & 13 \\
\end{array} \]

EXAMPLE:
\[\sqrt{170} = 13.038404 \]

\[\begin{array}{ccc|c|c}
1 & 7 & 0 & \sqrt{} & 13.038404 \\
\end{array} \]

RECIPIROCAL
First move selector switch to bottom position

EXAMPLE:
\[\frac{1}{4} = 0.25 \]

\[\begin{array}{ccc|c|c}
4 & \div & 4 & \sqrt{} & 0.25 \\
\end{array} \]

EXAMPLE:
\[\frac{1}{7} = 0.1428571 \]

\[\begin{array}{ccc|c|c}
7 & \div & 7 & \sqrt{} & 0.1428571 \\
\end{array} \]

SQUARE
First move selector switch to upper position

EXAMPLE:
\[15^2 = 225 \]

\[\begin{array}{ccc|c|c}
1 & 5 & \times^2 & \sqrt{} & 225 \\
\end{array} \]

EXAMPLE:
\[32^2 = 1024 \]

\[\begin{array}{ccc|c|c}
3 & 2 & \times^2 & \sqrt{} & 1024 \\
\end{array} \]

MEMORY
ACCUMULATION OF PRODUCTS TO A GRAND TOTAL

EXAMPLE:
\[25 \times 23 = 575 \]

\[13 \times 15 = 195 \]

\[14.2 \times 16 = \frac{227.2}{997.2} \]
VARIED CALCULATIONS

EXAMPLE:
\[4 \times 2 \sqrt{\times 1} \times \]

\[C \quad 0.0 \]

\[\times \quad 25.0 \]

\[= M \quad 575.0 \]

\[2 \quad 5 \]

\[2 \quad 3 \]

*To perform this function, move selector switch from top to bottom position.

CHAIN

EXAMPLE:

\[\frac{1}{\left(\frac{\sqrt{19} + 17}{2}\right)^2 - 5} = 0.25 \]

\[C \quad 0.0 \]

\[= \quad 195.0 \]

\[+ M = M \quad 770.0 \]

\[1 \quad 3 \]

\[1 \quad 5 \]

\[+ M = M \quad 997.2 \]

\[1 \quad 4 \quad . \quad 2 \]

\[1 \quad 6 \]

as above
MAINTENANCE INSTRUCTIONS

This calculator is made up of precise parts such as large scale integrated circuits. Hence radical changes in temperature or humidity are never permitted. The following points must be carefully noted.

1. Do not drop or give a strong shock or vibration to the machine.

2. Power switch must be always "OFF" when power cord is pulled out or to switch power sources between "AC" and "BAT"

3. Direct rays of the sun or a stove, etc. which gives direct heat for long hours must be avoided.

4. When removing dust from the machine, use either neutral cleaner or plastic cleaner. Do not use volatile matter, such as paint thinner or wet cloth.

5. Please put it in the carrying case when traveling.